603
Views
12
CrossRef citations to date
0
Altmetric
Review

Recent advances in proteolytic stability for peptide, protein, and antibody drug discovery

, &
Pages 1467-1482 | Received 18 Dec 2020, Accepted 10 Jun 2021, Published online: 30 Jun 2021

References

  • Ibrahim YHY, Regdon G Jr., Hamedelniel EI, et al. Review of recently used techniques and materials to improve the efficiency of orally administered proteins/peptides. Daru. 2020 Jun;28(1):403–416.
  • de la Torre BG, Albericio F. The pharmaceutical industry in 2019. An analysis of FDA drug approvals from the perspective of molecules. Molecules. 2020 Feb 9;25(3):3.
  • Lee AC, Harris JL, Khanna KK, et al. A comprehensive review on current advances in peptide drug development and design. Int J Mol Sci. 2019 May 14;20(10). https://doi.org/10.3390/ijms20102383.
  • Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018Jun1;26(10):2700–2707.
  • Usmani SS, Bedi G, Samuel JS, et al., THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One. 12(7): e0181748. 2017. .
  • Lu RM, Hwang YC, Liu IJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020 Jan 2;27(1):1.
  • Otvos L Jr., Wade JD. Current challenges in peptide-based drug discovery. Front Chem. 2014;2:62.
  • Lagasse HA, Alexaki A, Simhadri VL, et al. Recent advances in (therapeutic protein) drug development. F1000Res. 2017;6:113.
  • Le Basle Y, Chennell P, Tokhadze N, et al. Physicochemical stability of monoclonal antibodies: a review. J Pharm Sci. 2020 Jan;109(1):169–190.
  • Bottger R, Hoffmann R, Knappe D. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS One. 2017;12(6):e0178943.
  • Varkhede N, Bommana R, Schoneich C, et al. Proteolysis and oxidation of therapeutic proteins after intradermal or subcutaneous administration. J Pharm Sci. 2020 Jan;109(1):191–205.
  • Brezski RJ, Jordan RE. Cleavage of IgGs by proteases associated with invasive diseases: an evasion tactic against host immunity? MAbs. 2010 May-Jun;2(3):212–220.
  • Brayden DJ, Hill TA, Fairlie DP, et al. Systemic delivery of peptides by the oral route: formulation and medicinal chemistry approaches. Adv Drug Deliv Rev. 2020 May;29;157:2-36.
  • Yamamoto A, Ukai H, Morishita M, et al. Approaches to improve intestinal and transmucosal absorption of peptide and protein drugs. Pharmacol Ther. 2020 Jul;211:107537.
  • Bai Y, Zhou R, Wu L, et al. Nanoparticles with surface features of dendritic oligopeptides as potential oral drug delivery systems. J Mater Chem B. 2020 Apr 1;8(13):2636–2649.
  • Bajracharya R, Song JG, Back SY, et al. Recent advancements in non-invasive formulations for protein drug delivery. Comput Struct Biotechnol J. 2019;17:1290–1308.
  • Madani F, Hsein H, Busignies V, et al. An overview on dosage forms and formulation strategies for vaccines and antibodies oral delivery. Pharm Dev Technol. 2020 Feb;25(2):133–148.
  • Reilly RM, Domingo R, Sandhu J. Oral delivery of antibodies. Clinical Pharmacokinetics. 1997 Apr;32(4):313–323.
  • Wright L, Barnes T, Prestidge C. Oral delivery of protein-based therapeutics: gastroprotective strategies, physiological barriers and in vitro permeability prediction. Int J Pharm. 2020 Jun;3:119488.
  • Muheem A, Shakeel F, Jahangir MA, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J. 2016 Jul;24(4):413–428.
  • Lee YH, Perry BA, Labruno S, et al. Impact of regional intestinal pH modulation on absorption of peptide drugs: oral absorption studies of salmon calcitonin in beagle dogs. Pharm Res. 1999 Aug;16(8):1233–1239. .
  • Liu H, Tang R, Pan WS, et al. Potential utility of various protease inhibitors for improving the intestinal absorption of insulin in rats. J Pharm Pharmacol. 2003 Nov;55(11):1523–1529.
  • Eng J, Kleinman WA, Singh L, et al. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem. 1992 Apr 15;267(11):7402–7405.
  • Sun C, Chen L, Shen Z. Mechanisms of gastrointestinal microflora on drug metabolism in clinical practice. Saudi Pharm J. 2019 Dec;27(8):1146–1156.
  • Rawlings ND, Waller M, Barrett AJ, et al. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2014 Jan;42(D1):D503–9.
  • Hartley BS. Proteolytic enzymes. Annu Rev Biochem. 1960;29(1):45–72.
  • Klein T, Eckhard U, Dufour A, et al. Proteolytic cleavage-mechanisms, function, and “omic” approaches for a near-ubiquitous posttranslational modification. Chem Rev. 2018 Feb 14;118(3):1137–1168.
  • Rawlings ND, Tolle DP, Barrett AJ. Evolutionary families of peptidase inhibitors. Biochem J. 2004 Mar 15;378(Pt 3):705–716.
  • Uhlen M, Bjorling E, Agaton C, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005 Dec 4;4(12):1920–1932. .
  • Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015 Jan 23;347(6220):1260419.
  • Sjostedt E, Zhong W, Fagerberg L, et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. 2020 Mar 6;367(6482):eaay5947.
  • Thul PJ, Akesson L, Wiking M, et al. A subcellular map of the human proteome. Science. 2017 May 26;356(6340):eaal3321.
  • Uhlen M, Karlsson MJ, Zhong W, et al. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science. 2019 Dec 20;366(6472):eaax9198.
  • Uhlen M, Karlsson MJ, Hober A, et al. The human secretome. Sci Signal. 2019 Nov 26;12(609):eaaz0274.
  • Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome. Science. 2017 Aug 18;357(6352):eaan2507.
  • Ulleberg EK, Comi I, Holm H, et al. Human gastrointestinal juices intended for use in in vitro digestion models. Food Digestion. 2011 Dec 2;2(1–3):52–61.
  • Hu S, Loo JA, Wong DT. Human body fluid proteome analysis. Proteomics. 2006 Dec 6(23):6326–6353.
  • Boland M. Human digestion--a processing perspective. J Sci Food Agric. 2016 May;96(7):2275–2283.
  • Wang J, Yadav V, Smart AL, et al. Toward oral delivery of biopharmaceuticals: an assessment of the gastrointestinal stability of 17 peptide drugs. Mol Pharm. 2015 Mar 2;12(3):966–973.
  • Smart AL, Gaisford S, Basit AW. Oral peptide and protein delivery: intestinal obstacles and commercial prospects. Expert Opin Drug Deliv. 2014 Aug;11(8):1323–1335.
  • Carter CS. The Oxytocin–Vasopressin pathway in the context of love and fear. Front Endocrinol (Lausanne). 2017;8:356.
  • Baribeau DA, Anagnostou E. Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits. Front Neurosci. 2015;9:335.
  • Fjellestad-Paulsen A, Söderberg-Ahlm C, Lundin S. Metabolism of vasopressin, oxytocin, and their analogues in the human gastrointestinal tract. Peptides. 19951995 Jan 01;16(6):1141–1147.
  • Ahmad S, Kumar V, Ramanand KB, et al. Probing protein stability and proteolytic resistance by loop scanning: a comprehensive mutational analysis. Protein Sci. 2012 Mar;21(3):433–446.
  • Hall MP. Biotransformation and in vivo stability of protein biotherapeutics: impact on candidate selection and pharmacokinetic profiling. Drug Metab Dispos. 2014 Nov;42(11):1873–1880.
  • Liao S, Liang Y, Zhang Z, et al. In vitro metabolic stability of exendin-4: pharmacokinetics and identification of cleavage products. PLoS One. 2015;10(2):e0116805.
  • Ciechanover A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin–proteasome system and onto human diseases and drug targeting. Cell Death Differ. 2005 Sep;12(9):1178–1190.
  • Pillay CS, Elliott E, Dennison C. Endolysosomal proteolysis and its regulation. Biochem J. 2002 May 1;363(Pt 3):417–429.
  • Ferrone M, Raimondo M, Scolapio JS. Pancreatic enzyme pharmacotherapy. Pharmacotherapy. 2007 Jun;27(6):910–920.
  • Littman A, Hanscom DH. Current concepts: pancreatic extracts. N Engl J Med. 1969 Jul 24;281(4):201–204.
  • Zheng C, Liu Y, Zhou Q, et al. Capillary electrophoresis with noncovalently bilayer-coated capillaries for stability study of allergenic proteins in simulated gastrointestinal fluids. J Chromatogr B Analyt Technol Biomed Life Sci. 2010 Oct 15;878(28):2933–2936.
  • Heda R, Toro F, Tombazzi CR. Physiology, Pepsin. Treasure Island (FL): StatPearls; 2020.
  • Fruton JS. A history of pepsin and related enzymes. Q Rev Biol. 2002 Jun;77(2):127–147.
  • Gray GM, Cooper HL. Protein digestion and absorption. Gastroenterology. 1971 Oct;61(4):535–544.
  • Kassell B, Kay J. Zymogens of proteolytic enzymes. Science. 1973 Jun 8;180(4090):1022–1027.
  • Lam MPY, Lau E, Liu X, et al. Sample Preparation for Glycoproteins. In: Pawliszyn J, editor. Comprehensive Sampling and Sample Preparation. Oxford: Academic Press; 2012; p. 307-322.
  • Chesnut CH 3rd, Azria M, Silverman S, et al. Salmon calcitonin: a review of current and future therapeutic indications. Osteoporos Int. 2008 Apr;19(4):479–491.
  • Ryan SM, Frias JM, Wang X, et al. PK/PD modelling of comb-shaped PEGylated salmon calcitonin conjugates of differing molecular weights. J Control Release. 2011 Jan 20;149(2):126–132.
  • Panopoulos AD, Watowich SS. Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and ‘emergency’ hematopoiesis. Cytokine. 2008 Jun;42(3):277–288.
  • Jensen-Pippo KE, Whitcomb KL, DePrince RB, et al. Enteral bioavailability of human granulocyte colony stimulating factor conjugated with poly(ethylene glycol). Pharm Res. 1996 Jan;13(1):102–107.
  • Carrere J, Figarella C, Guy O, et al. Human pancreatic chymotrypsinogen A: a non-competitive enzyme immunoassay, and molecular forms in serum and amniotic fluid. Biochim Biophys Acta. 1986 Aug 6;883(1):46-531.
  • Ma W, Tang C, Lai L. Specificity of trypsin and chymotrypsin: loop-motion-controlled dynamic correlation as a determinant. Biophys J. 2005 Aug;89(2):1183–1193.
  • de Oliveira EB, Salgado MCO. Chapter 584 - Pancreatic elastases. In: Rawlings ND, Salvesen G, editors. Handbook of proteolytic enzymes. Third Edition ed. Cambridge, Massachusetts: Academic Press; 2013. p. 2639–2645.
  • Bode W, Meyer E Jr., Powers JC. Human leukocyte and porcine pancreatic elastase: x-ray crystal structures, mechanism, substrate specificity, and mechanism-based inhibitors. Biochemistry. 1989 Mar 7;28(5):1951–1963.
  • Werb Z, Banda MJ, McKerrow JH, et al. Elastases and elastin degradation. J Invest Dermatol. 1982 Jul;79(1):154s–159s. .
  • Fricker L. Carboxypeptidases. In: Enna SJ, Bylund DB, editors. xPharm: the comprehensive pharmacology reference. New York: Elsevier; 2007. p. 1–4.
  • Clauser E, Gardell SJ, Craik CS, et al. Structural characterization of the rat carboxypeptidase A1 and B genes. Comparative analysis of the rat carboxypeptidase gene family. J Biol Chem. 1988 Nov 25;263(33):17837–17845.
  • Merkler DJ. C-Terminal amidated peptides: production by the in vitro enzymatic amidation of glycine-extended peptides and the importance of the amide to bioactivity. Enzyme Microb Technol. 19941994 Jun 01;16(6):450–456.
  • Taylor A. Aminopeptidases: structure and function. FASEB J. 1993 Feb 1;7(2):290–298.
  • Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev. 2014 Dec;35(6):992–1019.
  • Cho YM, Kieffer TJ. Chapter Four - K-cells and glucose-dependent insulinotropic polypeptide in health and disease. In: Litwack G, editor. Vitamins & Hormones. Vol. 84. Cambridge, Massachusetts: Academic Press; 2010. p. 111–150.
  • Tran KL, Park YI, Pandya S, et al. Overview of glucagon-like peptide-1 receptor agonists for the treatment of patients with type 2 diabetes. Am Health Drug Benefits. 2017 Jun;10(4):178–188.
  • Aisina RB, Mukhametova LI. [Structure and functions of plasminogen/plasmin system]. Bioorg Khim. 2014 Nov-Dec;40(6):642–657.
  • Ogston D. Biochemistry of the plasmin system. J Clin Pathol Suppl (R Coll Pathol). 1980;14(Suppl 14):5–9.
  • Kibirev VK, Osadchuk TV, Radavskii IL. [Furin and its biological role]. Ukr Biokhim Zh (1999) 2007 Nov-Dec;79(6):5–18.
  • Thomas G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol. 2002 Oct;3(10):753–766.
  • Simoes PSR, Visniauskas B, Perosa SR, et al. Expression and activity of thimet oligopeptidase (TOP) are modified in the hippocampus of subjects with temporal lobe epilepsy (TLE). Epilepsia. 2014 May;55(5):754–762. .
  • Kimura Y, Ikuta K, Kimura T, et al. Nardilysin regulates inflammation, metaplasia, and tumors in murine stomach. Sci Rep. 2017 Feb;23(7):43052. .
  • Hashimoto S, Amaya F, Oh-Hashi K, et al. Expression of neutral endopeptidase activity during clinical and experimental acute lung injury. Respir Res. 2010 Nov;29(11):164. .
  • Turk V, Stoka V, Vasiljeva O, et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta. 2012 Jan;1824(1):68–88.
  • Sevlever D, Jiang P, Yen SH. Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species. Biochemistry. 2008Sep9;47(36):9678–9687.
  • Oberle C, Huai J, Reinheckel T, et al. Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes. Cell Death Differ. 2010 Jul;17(7):1167–1178. .
  • McDonnell AM, Dang CH. Basic review of the cytochrome p450 system. J Adv Pract Oncol. 2013 Jul;4(4):263–268.
  • Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007 Aug 1;76(3):391–396.
  • Yao JF, Yang H, Zhao YZ, et al. Metabolism of Peptide Drugs and Strategies to Improve their Metabolic Stability. Curr Drug Metab. 2018;19(11):892–901. .
  • Schechter I, Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. .
  • Schechter I, Berger A. On the active site of proteases. 3. Mapping the active site of papain; specific peptide inhibitors of papain. Biochem Biophys Res Commun. 1968Sep6;32(5):898–902.
  • Song J, Wang Y, Li F, et al. iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites. Brief Bioinform. 2019 Mar 25;20(2):638–658.
  • Kang L, Weng N, Jian W. LC-MS bioanalysis of intact proteins and peptides. Biomed Chromatogr. 2020 Jan;34(1):e4633.
  • van den Broek I, van Dongen WD. LC-MS-based quantification of intact proteins: perspective for clinical and bioanalytical applications. Bioanalysis. 2015;7(15):1943–1958.
  • Araujo F, Fonte P, Santos HA, et al. Oral delivery of glucagon-like peptide-1 and analogs: alternatives for diabetes control? J Diabetes Sci Technol. 2012 Nov 1;6(6):1486–1497.
  • Ritzel U, Leonhardt U, Ottleben M, et al. A synthetic glucagon-like peptide-1 analog with improved plasma stability. J Endocrinol. 1998 Oct;159(1):93–102.
  • Sharma R, McDonald TS, Eng H, et al. In vitro metabolism of the glucagon-like peptide-1 (GLP-1)-derived metabolites GLP-1 (9-36)amide and GLP-1(28-36)amide in mouse and human hepatocytes. Drug Metab Dispos. 2013 Dec;41(12):2148–2157.
  • Carmona G, Rodriguez A, Juarez D, et al. Improved protease stability of the antimicrobial peptide Pin2 substituted with D-amino acids. Protein J. 2013 Aug;32(6):456–466.
  • Hubbard SJ. The structural aspects of limited proteolysis of native proteins. Biochim Biophys Acta. 1998 Feb 17;1382(2):191–206.
  • Markert Y, Koditz J, Mansfeld J, et al. Increased proteolytic resistance of ribonuclease A by protein engineering. Protein Eng. 2001 Oct;14(10):791–796.
  • Alavi SE, Cabot PJ, Moyle PM. Glucagon-Like Peptide-1 Receptor Agonists and Strategies To Improve Their Efficiency. Mol Pharm. 2019Jun3;16(6):2278–2295.
  • Xue YP, Cao CH, Zheng YG. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev. 2018 Feb 19;47(4):1516–1561.
  • Narancic T, Almahboub SA, O’Connor KE. Unnatural amino acids: production and biotechnological potential. World J Microbiol Biotechnol. 2019 Apr 8;35(4):67.
  • Tugyi R, Uray K, Ivan D, et al. Partial D-amino acid substitution: improved enzymatic stability and preserved Ab recognition of a MUC2 epitope peptide. Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):413–418.
  • Sela M, Zisman E. Different roles of D-amino acids in immune phenomena. FASEB J. 1997 May;11(6):449–456.
  • Huhmann S, Koksch B. Fine-Tuning the proteolytic stability of peptides with fluorinated amino acids. European J Org Chem. 2018;2018(27–28):3667–3679.
  • Huhmann S, Stegemann A-K, Folmert K, et al. Position-dependent impact of hexafluoroleucine and trifluoroisoleucine on protease digestion. Beilstein J Org Chem. 2017;13:2869–2882.
  • Dong JZ, Shen Y, Zhang J, et al. Discovery and characterization of taspoglutide, a novel analogue of human glucagon-like peptide-1, engineered for sustained therapeutic activity in type 2 diabetes. Diabetes Obes Metab. 2011 Jan;13(1):19–25.
  • Madsbad S, Kielgast U, Asmar M, et al. An overview of once-weekly glucagon-like peptide-1 receptor agonists--available efficacy and safety data and perspectives for the future. Diabetes Obes Metab. 2011 May;13(5):394–407.
  • Bann SJ, Ballantine RD, McCallion CE, et al. A chemical-intervention strategy to circumvent peptide hydrolysis by d-stereoselective peptidases. J Med Chem. 2019 Nov 27;62(22):10466–10472.
  • Griffith OW. Beta-amino acids: mammalian metabolism and utility as alpha-amino acid analogues. Annu Rev Biochem. 1986;55(1):855–878.
  • Nicolaou KC, Dai W-M, Guy RK. Chemistry and Biology of Taxol. Angew Chem Int Ed Engl. 1994;33(1):15–44.
  • Minami Y, Yoshida K-I, Azuma R, et al. Structure of an aromatization product of C-1027 chromophore. Tetrahedron Lett. 19931993 Apr 16;34(16):2633–2636.
  • Cardillo G, Tomasini C. Asymmetric synthesis of ß-amino acids and α-substituted β-amino acids []https://doi.org/10.1039/CS9962500117. Chem Soc Rev. 1996;25(2):117–128.
  • Cabrele C, Martinek TA, Reiser O, et al. Peptides containing beta-amino acid patterns: challenges and successes in medicinal chemistry. J Med Chem. 2014 Dec 11;57(23):9718–9739.
  • Hook DF, Bindschadler P, Mahajan YR, et al. The proteolytic stability of ‘designed’ beta-peptides containing alpha-peptide-bond mimics and of mixed alpha, beta-peptides: application to the construction of MHC-binding peptides. Chem Biodivers. 2005 May;2(5):591–632.
  • Brinckerhoff LH, Kalashnikov VV, Thompson LW, et al. Terminal modifications inhibit proteolytic degradation of an immunogenic MART-1(27-35) peptide: implications for peptide vaccines. Int J Cancer. 1999 Oct 29;83(3):326–334.
  • Kim K-H, Seong BL. Peptide amidation: production of peptide hormones in vivo and in vitro. Biotechnol Bioprocess Eng. 20012001 Aug 01;6(4):244–251.
  • Eipper BA, Mains RE. Peptide alpha-amidation. Annu Rev Physiol. 1988;50(1):333–344.
  • Keiler KC, Silber KR, Downard KM, et al. C-terminal specific protein degradation: activity and substrate specificity of the Tsp protease. Protein Sci. 1995 Aug;4(8):1507–1515.
  • Borchardt RT. Optimizing oral absorption of peptides using prodrug strategies. J Control Release. 1999 Nov 1;62(1–2):231–238.
  • Khatri B, Nuthakki VR, Chatterjee J. Strategies to enhance metabolic stabilities. Methods Mol Biol. 2019;2001:17–40.
  • Kluskens LD, Nelemans SA, Rink R, et al. Angiotensin-(1-7) with thioether bridge: an angiotensin-converting enzyme-resistant, potent angiotensin-(1-7) analog. J Pharmacol Exp Ther. 2009 Mar;328(3):849–854. .
  • Chatterjee J, Rechenmacher F, Kessler H. N-methylation of peptides and proteins: an important element for modulating biological functions. Angew Chem Int Ed Engl. 2013Jan2;52(1):254–269.
  • Adessi C, Frossard MJ, Boissard C, et al. Pharmacological profiles of peptide drug candidates for the treatment of Alzheimer’s disease. J Biol Chem. 2003 Apr 18;278(16):13905–13911.
  • Sola RJ, Griebenow K. Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci. 2009 Apr;98(4):1223–1245.
  • Carter CR, Whitmore KM, Thorpe R. The significance of carbohydrates on G-CSF: differential sensitivity of G-CSFs to human neutrophil elastase degradation. J Leukoc Biol. 2004 Mar;75(3):515–522.
  • Zhou Q, Qiu H. The mechanistic impact of N-Glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins. J Pharm Sci. 2019 Apr;108(4):1366–1377.
  • Raju TS, Scallon BJ. Glycosylation in the Fc domain of IgG increases resistance to proteolytic cleavage by papain. Biochem Biophys Res Commun. 2006 Mar 17;341(3):797–803.
  • Raju TS, Scallon B. Fc glycans terminated with N-acetylglucosamine residues increase antibody resistance to papain. Biotechnol Prog. 2007 Jul-Aug;23(4):964–971.
  • Mishra P, Nayak B, Dey RK. PEGylation in anti-cancer therapy: an overview. Asian J Pharm Sci. 2016 Jun 01;11(3):337–348.
  • Zhang C, Desai R, Perez-Luna V, et al. PEGylation of lysine residues improves the proteolytic stability of fibronectin while retaining biological activity. Biotechnol J. 2014 Aug;9(8):1033–1043. .
  • Belen LH, Rangel-Yagui CO, Beltran Lissabet JF, et al. From synthesis to characterization of site-selective PEGylated proteins. Front Pharmacol. 2019;10:1450.
  • Zhang F, Liu MR, Wan HT. Discussion about several potential drawbacks of PEGylated therapeutic proteins. Biol Pharm Bull. 2014;37(3):335–339.
  • Shiraishi K, Yokoyama M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review. Sci Technol Adv Mater. 2019;20(1):324–336.
  • Knudsen LB. Liraglutide: the therapeutic promise from animal models. Int J Clin Pract Suppl. 2010 Oct;64(167):4–11.
  • Knudsen LB, Lau J. The discovery and development of liraglutide and semaglutide. Front Endocrinol (Lausanne). 2019;10:155.
  • Li Y, Wang Y, Wei Q, et al. Variant fatty acid-like molecules Conjugation, novel approaches for extending the stability of therapeutic peptides. Sci Rep. 2015 Dec;11(5):18039.
  • Boutureira O, Bernardes GJ. Advances in chemical protein modification. Chem Rev. 2015Mar11;115(5):2174–2195.
  • Basle E, Joubert N, Pucheault M. Protein chemical modification on endogenous amino acids. Chem Biol. 2010Mar26;17(3):213–227.
  • Chandrashekar C, Okamoto R, Izumi M, et al. Chemical modification of the N termini of unprotected peptides for semisynthesis of modified proteins by utilizing a hydrophilic protecting group. Chemistry. 2019 Aug 1;25(43):10197–10203.
  • Selo I, Negroni L, Creminon C, et al. Preferential labeling of alpha-amino N-terminal groups in peptides by biotin: application to the detection of specific anti-peptide antibodies by enzyme immunoassays. J Immunol Methods. 1996 Dec 15;199(2):127–138.
  • Glukhov E, Stark M, Burrows LL, et al. Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J Biol Chem. 2005 Oct 7;280(40):33960–33967.
  • Foerg C, Weller KM, Rechsteiner H, et al. Metabolic cleavage and translocation efficiency of selected cell penetrating peptides: a comparative study with epithelial cell cultures. AAPS J. 2008 Jun;10(2):349–59.141.
  • Di L. Strategic approaches to optimizing peptide ADME properties. AAPS J. 2015 Jan;17(1):134–143.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.