2,135
Views
13
CrossRef citations to date
0
Altmetric
Review

An update on the importance of plasma protein binding in drug discovery and development

Pages 1453-1465 | Received 28 May 2021, Accepted 26 Jul 2021, Published online: 17 Aug 2021

References

  • Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discovery. 2010;9(12): 929–939.
  • Liu X, Wright M, Hop CECA. Rational use of plasma protein and tissue binding data in drug design. J. Med. Chem. 2014;57(20):8238–8248.
  • Benet LZ, Hoener B-A. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther (St. Louis, MO, U. S.). 2002;71(3): 115–121.
  • Sethi PK, White CA, Cummings BS, et al. Ontogeny of plasma proteins, albumin and binding of diazepam, cyclosporine, and deltamethrin. Pediatr. Res. 2016;79(3):409–415.
  • Sansom LN, Evans AM. What is the true clinical significance of plasma protein binding displacement interactions? Drug Saf. 1995;12(4):227–233.
  • Rolan PE. Plasma protein binding displacement interactions - why are they still regarded as clinically important? Br J Clin Pharmacol. 1994;37(2):125–128.
  • Sellers EM. Plasma protein displacement interactions are rarely of clinical significance. Pharmacology. 1979;18(5):225–227.
  • Christensen H, Baker M, Tucker GT, et al. Prediction of plasma protein binding displacement and its implications for quantitative assessment of metabolic drug-drug interactions from in vitro data. J. Pharm. Sci. 2006;95(12):2778–2787.
  • Peters JT. All about albumin: biochemistry, genetics, and medical applications. London, UK: Academic Press; 1995.
  • Fournier T, Medjoubi-N N, Porquet D. Alpha-1-acid glycoprotein. Biochim Biophys Acta Protein Struct Mol Enzymol. 2000;1482(1–2):157–171.
  • Smith SA, Waters NJ. Pharmacokinetic and pharmacodynamic considerations for drugs binding to alpha-1-acid glycoprotein. Pharm. Res. 2019;36(2):1–19.
  • Jusko WJ, Gretch M. Plasma and tissue protein binding of drugs in pharmacokinetics. Drug Metab Rev. 1976;5(1):43–140.
  • Hammond GL. Plasma steroid-binding proteins: primary gatekeepers of steroid hormone action. J. Endocrinol. 2016;230(1):R13–R25.
  • Di L, Breen C, Chambers R, et al. Industry perspective on contemporary protein-binding methodologies: considerations for regulatory drug-drug interaction and related guidelines on highly bound drugs. J. Pharm. Sci. 2017;106(12):3442–3452.
  • Colclough N, Ruston L, Wood JM, et al. Species differences in drug plasma protein binding. MedChemComm. 2014;5(7):963–967.
  • Gleeson MP. Plasma protein binding affinity and its relationship to molecular structure: an in-silico analysis. J. Med. Chem. 2007;50(1):101–112.
  • Hosea NA, Collard WT, Cole S, et al. Prediction of human pharmacokinetics from preclinical information: comparative accuracy of quantitative prediction approaches. J. Clin. Pharmacol. 2009;49(5):513–533.
  • Scott DO, Ghosh A, Di L, et al. Passive drug permeation through membranes and cellular distribution. Pharmacol Res. 2017;117:94–102.
  • Di L, Riccardi K, Tess David A. Evolving approaches on measurements and applications of intracellular free drug concentration and Kp uu in drug discovery. Exp Opin on Drug Met Tox. 2021;17(7):733–746.
  • Orozco CC, Atkinson K, Ryu S, et al. Structural attributes influencing unbound tissue distribution. Eur J Med Chem. 2020;185:111813.
  • Ryu S, Tess D, Chang G, et al. Evaluation of fraction unbound across 7 tissues of 5 species. J. Pharm. Sci. 2020;109(2):1178–1190.
  • Di L, Umland JP, Chang G, et al. Species independence in brain tissue binding using brain homogenates. Drug Metab. Dispos. 2011;39(7):1270–1277.
  • Riccardi K, Li Z, Brown JA, et al. Determination of unbound partition coefficient and in vitro-in vivo extrapolation for SLC13A transporter-mediated uptake. Drug Metab. Dispos. 2016;44(10):1633–1642.
  • Mateus A, Gordon LJ, Wayne GJ, et al. Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery. Proc. Natl. Acad. Sci. U. S. A. 2017;114(30):E6231–E6239.
  • Trunkle C, Lechner C, Korr D, et al. Concentration dependence of the unbound partition coefficient kpuu and its application to correct for exposure-related discrepancies between biochemical and cellular potency of KAT6A Inhibitors. Drug Metab. Dispos. 2020;48(7):553–562.
  • Riccardi K, Ryu S, Di L, et al. Comparison of fraction unbound between liver homogenate and hepatocytes at 4°C. AAPS J. 2020;22(4):91.
  • Riccardi K, Ryu S, Lin J, et al. Comparison of species and cell-type differences in fraction unbound of liver tissues, hepatocytes, and cell lines. Drug Metab Dispos. 2018;46(4):415–421,S1-S4. .
  • Riede J, Camenisch G, Huwyler J, et al. Current in vitro methods to determine hepatic Kpuu: a comparison of their usefulness and limitations. J. Pharm. Sci. 2017;106(9):2805–2814.
  • Ryu S, Novak J, Patel R, et al. The impact of low temperature on fraction unbound for plasma and tissue. Biopharm Drug Dispos. 2018;39(9):437–442.
  • Nirogi R, Molgara P, Bhyrapuneni G, et al. The use of inactivated brain homogenate to determine the in vitro fraction unbound in brain for unstable compounds. Xenobiotica. 2020;50(10):1228–1235.
  • Howard ML, Hill JJ, Galluppi GR, et al. Plasma protein binding in drug discovery and development. Comb Chem High Throughput Screening. 2010;13(2):170–187.
  • Cohen LH. Plasma protein-binding methods in drug discovery, 2004. Totowa, New Jersey: Humana Press Inc.; 2004. p. 111–122.
  • Testa B, Krämer SD, Wunderli-Allenspach H, et al. (Eds). Pharmacokinetic Profiling in Drug Research. Biological, physicochemical, and Computational Strategies, 2006. Wiley-VCH, Verlag Helvetica Chimica Acta. Postfach, CH-8042 Zürich, Switzerlaand. 2006. p. 119–141.
  • Banker MJ, Clark TH, Williams JA. Development and validation of a 96-well equilibrium dialysis apparatus for measuring plasma protein binding. J. Pharm. Sci. 2003;92(5):967–974.
  • Waters NJ, Jones R, Williams G, et al. Validation of a rapid equilibrium dialysis approach for the measurement of plasma protein binding. J. Pharm. Sci. 2008;97(10):4586–4595.
  • Di L, Kerns EH. Drug-Like Properties: concepts, Structure Design, and Methods. London, UK: Elevier; 2016.
  • Waters N, Obach J, Di RS. Consideration of the unbound drug concentration in enzyme kinetics. Enzyme kinetics in drug metabolism: fundamentals and applications, methods in molecular biology. Nagar S, Argikar UA, Tweedie DJ, editors. Totowa, NJ: Humana Press; 2021.
  • Di L, Umland JP, Trapa PE, et al. Impact of recovery on fraction unbound using equilibrium dialysis. J Pharm Sci. 2012;101(3):1327–1335.
  • Riccardi K, Cawley S, Yates PD, et al. Plasma protein binding of challenging compounds. J Pharm Sci. 2015;104(8):2627–2636.
  • Plum A, Jensen LB, Kristensen JB. In vitro protein binding of liraglutide in human plasma determined by reiterated stepwise equilibrium dialysis. J Pharm Sci. 2013;102(8):2882–2888.
  • Srivastava A, Pike A, Williamson B, et al. A novel method for preventing non-specific binding in equilibrium dialysis assays using solutol as an additive. J Pharm Sci. 2021;110(3):1412–1417.
  • Kalvass JC, Phipps C, Jenkins Gary J, et al. Mathematical and experimental validation of flux dialysis method: an improved approach to measure unbound fraction for compounds with high protein binding and other challenging properties. Drug Metab Dispos. 2018;46(4):458–469.
  • Ryu S, Riccardi K, Patel R, et al. Applying two orthogonal methods to assess accuracy of plasma protein binding measurements for highly bound compounds. J Pharm Sci. 2019;108(11):3745–3749.
  • Isbell J, Yuan D, Torrao L, et al. Plasma protein binding of highly bound drugs determined with equilibrium gel filtration of nonradiolabeled compounds and LC-MS/MS detection. J. Pharm. Sci. 2019;108(2):1053–1060.
  • Weiss HM, Gatlik E. Equilibrium gel filtration to measure plasma protein binding of very highly bound drugs. J. Pharm. Sci. 2014;103(2):752–759.
  • Longhi R, Corbioli S, Fontana S, et al. Brain tissue binding of drugs: evaluation and validation of solid supported porcine brain membrane vesicles (TRANSIL) as a novel high-throughput method. Drug Metab. Dispos. 2011;39(2):312–321.
  • Schuhmacher J, Kohlsdorfer C, Buehner K, et al. High-throughput determination of the free fraction of drugs strongly bound to plasma proteins. J. Pharm. Sci. 2004;93(4):816–830.
  • Ungewiss J, Gericke S, Boriss H. Determination of the plasma protein binding of liraglutide using the EScalate equilibrium shift assay. J. Pharm. Sci. 2019;108(3):1309–1314.
  • Vuignier K, Guillarme D, Veuthey J-L, et al. High performance affinity chromatography (HPAC) as a high-throughput screening tool in drug discovery to study drug-plasma protein interactions. J Pharm Biomed Anal. 2013;74:205–212.
  • Li Y-F, Zhang X-Q, Hu W-Y, et al. Rapid screening of drug-protein binding using high-performance affinity chromatography with columns containing immobilized human serum albumin. J Anal Methods Chem. 2013;439039:7.
  • Valko K, Nunhuck S, Bevan C, et al. Fast gradient HPLC method to determine compounds binding to human serum albumin. Relationships with octanol/water and immobilized artificial membrane lipophilicity. J Pharm Sci. 2003;92(11):2236–2248.
  • Fortugno C, van der Gronde T, Varchi G, et al. Species-dependent binding of new synthesized bicalutamide analogues to albumin by optical biosensor analysis. J Pharm Biomed Anal. 2015;111:324–332.
  • Gallo M, Matteucci S, Alaimo N, et al. A novel method using nuclear magnetic resonance for plasma protein binding assessment in drug discovery programs. J Pharm Biomed Anal. 2019;167:21–29.
  • Li P, Fan Y, Wang Y, et al. Characterization of plasma protein binding dissociation with online SPE-HPLC. Sci. Rep. 2015;5(1):14866.
  • Fuse E, Tanii H, Takai K, et al. Altered pharmacokinetics of a novel anticancer drug, UCN-01, caused by specific high affinity binding to α1-acid glycoprotein in humans. Cancer Res. 1999;59:1054–1060.
  • Jusko WJ, Molins EAG, Ayyar VS. Seeking nonspecific binding: assessing the reliability of tissue dilutions for calculating fraction unbound. Drug Metab. Dispos. 2020;48(10):894–902.
  • Clarke HJ, Gregoire F, Ma F, et al. Cross-species differential plasma protein binding of MBX-102/JNJ39659100: a novel PPAR-gamma agonist. PPAR Res. 2008;2008:465715.
  • Novak JJ, Burchett W, Di L. Effects of low temperature on blood-to-plasma ratio measurement. Biopharm. Drug Dispos. 2021;42(5):234–241.
  • Ye Z, Gao H. Approaches to measure protein binding of enzymatically unstable compounds in plasma. Bioanalysis. 2018;10(7):451–459.
  • Eng H, Niosi M, McDonald TS, et al. Utility of the carboxylesterase inhibitor bis-para-nitrophenylphosphate (BNPP) in the plasma unbound fraction determination for a hydrolytically unstable amide derivative and agonist of the TGR5 receptor. Xenobiotica. 2010;40(6):369–380.
  • Nilsson LB. The bioanalytical challenge of determining unbound concentration and protein binding for drugs. Bioanalysis. 2013;5(24):3033–3050.
  • Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. 2012;736837:26.
  • Di L, Keefer C, Scott DO, et al. Mechanistic insights from comparing intrinsic clearance values between human liver microsomes and hepatocytes to guide drug design. Eur J Med Chem. 2012;57:441–448.
  • Leung C, Kenny JR, Hop CECA, et al. Strategy for determining the free fraction of labile covalent modulators in plasma using equilibrium dialysis. J. Pharm. Sci. 2020;109(10):3181–3189.
  • Uchimura T, Kato M, Shiokawa R, et al. Estimation of serum protein binding of compounds metabolized in serum using matrix inhibition. Biopharm. Drug Dispos. 2008;29(5):308–310.
  • Uchimura T, Kato M, Tachibana T, et al. New method for the simultaneous estimation of intrinsic hepatic clearance and protein binding by matrix inhibition. Biopharm. Drug Dispos. 2008;29(1):7–16.
  • Wenlock MC, Barton P, Austin RP. A kinetic method for the determination of plasma protein binding of compounds unstable in plasma: specific application to enalapril. J. Pharm. Biomed. Anal. 2011;55(3):385–390.
  • In vitro drug interaction studies cytochrome p450 enzyme- and transporter-mediated drug interactions guidance for industry. [cited 2021 Aug 5]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/vitro-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions.
  • Guideline on the investigation of drug interactions. European medicines agency. [cited 2021 Aug 5]. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf.
  • Zamek-Gliszczynski MJ, Ruterbories KJ, Ajamie RT, et al. Validation of 96-well equilibrium dialysis with non-radiolabeled drug for definitive measurement of protein binding and application to clinical development of highly-bound drugs. J. Pharm. Sci. 2011;100(6):2498–2507.
  • Muller PY, Milton MN. The determination and interpretation of the therapeutic index in drug development. Nat Rev Drug Discovery. 2012;11(10):751–761.
  • Hickman D, Vasavanonda S, Nequist G, et al. Estimation of serum-free 50-percent inhibitory concentrations for human immunodeficiency virus protease inhibitors lopinavir and ritonavir. Antimicrob. Agents Chemother. 2004;48(8):2911–2917.
  • Li G-F, Yu G, Li Y, et al. Quantitative estimation of plasma free drug fraction in patients with varying degrees of hepatic impairment: a methodological evaluation. J Pharm Sci. 2018;107(7):1948–1956.
  • SIMCYP population files.
  • Heimbach T, Chen Y, Chen J, et al. Physiologically-based pharmacokinetic modeling in renal and hepatic impairment populations: a pharmaceutical industry perspective. Clin Pharmacol Ther. 2021:110(2):297-310.
  • McNamara PJ, Alcorn J. Protein binding predictions in infants. AAPS PharmSci. 2002;4(1):E4.
  • Gardiner P, Cox RJ, Grime K. Plasma protein binding as an optimizable parameter for acidic drugs. Drug Metab. Dispos. 2019;47(8):865–873.
  • Rowland M, Tozer TN. Clinical pharmacokinetics: concepts and applications. 3rd ed. Philadelphia, PA: Williams & Wilkins; 1989.
  • Grime KH, Barton P, McGinnity DF. Application of in silico, in vitro and preclinical pharmacokinetic data for the effective and efficient prediction of human pharmacokinetics. Mol Pharm. 2013;10(4):1191–1206.
  • Highlights of Prescribing Information. BYETTA (exenatide) Injection. [cited 2021 Aug 5]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/021773s036lbl.pdf.
  • Edwards CMB, Stanley SA, Davis R, et al. Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am J Physiol. 2001;281:E155–E161.
  • Linnebjerg H, Kothare PA, Park S, et al. Effect of renal impairment on the pharmacokinetics of exenatide. Br J Clin Pharmacol. 2007;64(3):317–327.
  • Lau J, Bloch P, Schaffer L, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J. Med. Chem. 2015;58(18):7370–7380.
  • Kapitza C, Nosek L, Jensen L, et al. Semaglutide, a once-weekly human GLP-1 analog, does not reduce the bioavailability of the combined oral contraceptive, ethinylestradiol/levonorgestrel. J. Clin. Pharmacol. 2015;55(5):497–504.
  • Agerso H, Jensen LB, Elbrond B, et al. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia. 2002;45(2):195–202.
  • Elbrond B, Jakobsen G, Larsen S, et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care. 2002;25(8):1398–1404.
  • Knudsen LB, Nielsen PF, Huusfeldt PO, et al. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem. 2000;43(9):1664-1669.
  • Highlights of prescribing information. VICTOZA® (liraglutide) injection, for subcutaneous use. [cited 2021 Aug 5]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/022341s027lbl.pdf.
  • Highlights of prescribing information. OZEMPIC (semaglutide) injection, for subcutaneous use. [cited 2021 Aug 5]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209637lbl.pdf.
  • Buckley ST, Vegge A, Pyke C, et al. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci Transl Med. 2018;10(467):eaar7047.
  • Di L. Strategic approaches to optimizing peptide ADME properties. AAPS J. 2015;17(1):134–143.
  • 5 Human Albumin. Transfus med hemother. 2009 Dec; 36(6):399–407. [cited 2021 Aug 5]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997295/
  • Schmidt S, Gonzalez D, Derendorf H. Significance of protein binding in pharmacokinetics and pharmacodynamics. J. Pharm. Sci. 2010;99(3):1107–1122.
  • Bteich M. An overview of albumin and alpha-1-acid glycoprotein main characteristics: highlighting the roles of amino acids in binding kinetics and molecular interactions. Heliyon. 2019;5(11):e02879.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.