2,674
Views
14
CrossRef citations to date
0
Altmetric
Review

Strategies for targeting undruggable targets

, , , &
Pages 55-69 | Received 17 May 2021, Accepted 13 Aug 2021, Published online: 30 Aug 2021

References

  • Singh J, Petter RC, Baillie TA, et al. The resurgence of covalent drugs. Nat Rev Drug Discov. 2011;10(4):307–317.
  • DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643–8653.
  • Deshaies RJ. Multispecific drugs herald a new era of biopharmaceutical innovation. Nature. 2020;580(7803):329–338.
  • Zhang J, Yang PL, Gray NS, et al. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9(1):28–39.
  • Dang CV, Reddy EP, Shokat KM, et al. Drugging the ‘undruggable’ cancer targets. Nat Rev Cancer. 2017;17(8): 502–508.
  • Zorn JA, Wells JA. Turning enzymes on with small molecules. Nat Chem Biol. 2010;6(3):179–188.
  • Lazo JS, Sharlow ER. Drugging undruggable molecular cancer targets. Ann Rev Pharmacol. 2016;56(1):23–40.
  • Chen H, Liu H, Qing G, et al. Targeting oncogenic myc as a strategy for cancer treatment. Signal Transduction Tar. 2018;3(1):5.
  • Sabapathy K, Lane DP. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol. 2018;15(1):13–30.
  • Moore AR, Rosenberg SC, McCormick F, et al. RAS-targeted therapies: is the undruggable drugged?. Nat Rev Drug Discov. 2020;19:533–552.
  • Brautigan DL. Protein Ser/Thr phosphatases - the ugly ducklings of cell signalling. FEBS J. 2013;280(2):324–325.
  • Van Der Lee R, Buljan M, Lang B, et al. Classification of intrinsically disordered regions and proteins. Chem Rev. 2014;114:6589–6631.
  • Marasco D, Scognamiglio PL. Identification of inhibitors of biological interactions involving intrinsically disordered proteins. Int J Mol Sci. 2015;16(12):7394–7412.
  • Kale J, Osterlund EJ, Andrews DW, et al. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 2018;25(1):65–80.
  • Ding Y, Fei Y, Lu B, et al. Emerging new concepts of degrader technologies. Trends Pharmacol Sci. 2020;41(7): 464–474.
  • Konstantinidou M, Li J, Zhang B, et al. PROTACs– a game-changing technology. Expert Opin Drug Discov. 2019;14(12):1255–1268.
  • Banik SM, Pedram K, Wisnovsky S, et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature. 2020;584(7820):291–297.
  • Takahashi D, Moriyama J, Nakamura T, et al. AUTACs: cargo-specific degraders using selective autophagy. Mol Cell. 2019;76(5):797–810.
  • Li Z, Zhu C, Ding Y, et al. ATTEC: a potential new approach to target proteinopathies. Autophagy. 2020;16(1):185–187.
  • den Besten W, Lipford JR. Prospecting for molecular glues. Nat Chem Biol. 2020;16(11):1157–1158.
  • Hansen JD, Correa M, Alexander M, et al. CC-90009: a cereblon E3 ligase modulating drug that promotes selective degradation of GSPT1 for the treatment of acute myeloid leukemia. J Med Chem. 2021;64(4):1835–1843.
  • Osborne CK, Wakeling A, Nicholson RI, et al. Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action. Br J Cancer. 2004;90(S1):S2–S6.
  • Andrei SA, Sijbesma E, Hann M, et al. Stabilization of protein-protein interactions in drug discovery. Expert Opin Drug Discov. 2017;12(9):925–940.
  • Sijbesma E, Visser E, Plitzko K, et al. Structure-based evolution of a promiscuous inhibitor to a selective stabilizer of protein–protein interactions. Nat Commun. 2020;11(1):3954.
  • Bauer RA. Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies. Drug Discov Today. 2015;20(9):1061–1073.
  • Gehringer M, Laufer SA. Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. J Med Chem. 2019;62(12):5673–5724.
  • Honigberg LA, Smith AM, Sirisawad M, et al. The bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA. 2010;107(29):13075–13080.
  • Akçay G, Belmonte MA, Aquila B, et al. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Nat Chem Biol. 2016;12(11):931–936.
  • Kim D, Xue JY, Lito P, et al. Targeting KRAS(G12C): from inhibitory mechanism to modulation of antitumor effects in patients. Cell. 2020;183(4): 850–859.
  • Tsomaia N. Peptide therapeutics: targeting the undruggable space. Eur J Med Chem. 2015;94:459–470.
  • London N, Raveh B, Schueler-Furman O, et al. Druggable protein–protein interactions – from hot spots to hot segments. Curr Opin Chem Biol. 2013;17(6):952–959.
  • Klein M. Stabilized helical peptides: overview of the technologies and its impact on drug discovery. Expert Opin Drug Discov. 2017;12(11):1117–1125.
  • White AM, Craik DJ. Discovery and optimization of peptide macrocycles. Expert Opin Drug Discov. 2016;11(12):1151–1163.
  • La Manna S, Lopez-Sanz L, Bernal S, et al. Cyclic mimetics of kinase-inhibitory region of suppressors of cytokine signaling 1: progress toward novel anti-inflammatory therapeutics. Eur J Med Chem. 2021;221:113547.
  • La Manna S, Lopez-Sanz L, Bernal S, et al. Antioxidant effects of PS5, a peptidomimetic of suppressor of cytokine signaling 1, in experimental atherosclerosis. Antioxidants. 2020;9(8):754.
  • Patgiri A, Yadav KK, Arora PS, et al. An orthosteric inhibitor of the Ras-Sos interaction. Nat Chem Biol. 2011;7(9):585–587.
  • Leshchiner ES, Parkhitko A, Bird GH, et al. Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proc Natl Acad Sci USA. 2015;112(6):1761–1766.
  • Upadhyaya P, Qian Z, Selner NG, et al. Inhibition of ras signaling by blocking ras–effector interactions with cyclic peptides. Angew Chem Int Ed. 2015;54(26):7602–7606.
  • Bernal F, Wade M, Godes M, et al. A stapled p53 helix overcomes HDMX-mediated suppression of p53. Cancer Cell. 2010;18(5):411–422.
  • Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the ‘high-hanging fruit.’ Nat Rev Drug Discov. 2018;17:197–223.
  • Mahoney KM, Rennert PD, Freeman GJ, et al. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14:561–584.
  • Polakis P. Antibody drug conjugates for cancer therapy. Pharmacol Rev. 2016;68(1):e254–e262.
  • Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today. 2015;20(7):838–847.
  • Niamsuphap S, Fercher C, Kumble S, et al. Targeting the undruggable: emerging technologies in antibody delivery against intracellular targets. Expert Opin Drug Deliv. 2020;17(9):1189–1211.
  • Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82(1):775–797.
  • Ozcan G, Ozpolat B, Coleman RL, et al. Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev. 2015;87:108–119.
  • Martinez LA, Naguibneva I, Lehrmann H, et al. Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc Natl Acad Sci USA. 2002;99(23):14849–14854.
  • Wang D, Zhang F, Gao G, et al. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell. 2020;181(1):136–150.
  • Galán A, Comor L, Horvatić A, et al. Library-based display technologies: where do we stand?. Mol Biosyst. 2016;12(8):2342–2358.
  • Pande J, Szewczyk MM, Grover AK, et al. Phage display: concept, innovations, applications and future. Biotechnol Adv. 2010;28(6):849–858.
  • Lee SY, Choi JH, Xu Z, et al. Microbial cell-surface display. Trends Biotechnol. 2003;21(1):45–52.
  • Zahnd C, Amstutz P, Plückthun A, et al. Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods. 2007;4(3):269–279.
  • Josephson K, Ricardo A, Szostak JW, et al. mRNA display: from basic principles to macrocycle drug discovery. Drug Discov Today. 2014;19(4):388–399.
  • Guillard S, Kolasinska-Zwierz P, Debreczeni J, et al. Structural and functional characterization of a DARPin which inhibits ras nucleotide exchange. Nat Commun. 2017;8(1):16111.
  • Spencer-Smith R, Koide A, Zhou Y, et al. Inhibition of RAS function through targeting an allosteric regulatory site. Nat Chem Biol. 2017;13(1):62–68.
  • Franzini RM, Randolph C. Chemical space of DNA-encoded libraries. J Med Chem. 2016;59(14):6629–6644.
  • Neri D, Lerner RA. DNA-encoded chemical libraries: a selection system based on endowing organic compounds with amplifiable information. Annu Rev Biochem. 2018;87(1):479–502.
  • Goodnow RA, Dumelin CE, Keefe AD, et al. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat Rev Drug Discov. 2017;16(2):131–147.
  • Zhao G, Huang Y, Zhou Y, et al. Future challenges with DNA-encoded chemical libraries in the drug discovery domain. Expert Opin Drug Discov. 2019;14(8):735–753.
  • Belyanskaya SL, Ding Y, Callahan JF, et al. Discovering drugs with DNA-encoded library technology: from concept to clinic with an inhibitor of soluble epoxide hydrolase. ChemBioChem. 2017;18(9):837–842.
  • Harris PA, King BW, Bandyopadhyay D, et al. DNA-encoded library screening identifies Benzo[b][1,4]oxazepin-4-ones as highly potent and monoselective receptor interacting Protein 1 kinase inhibitors. J Med Chem. 2016;59(5):2163–2178.
  • Harris PA, Berger SB, Jeong JU, et al. Discovery of a first-in-class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases. J Med Chem. 2017;60(4):1247–1261.
  • Yu Z, Ku AF, Anglin JL, et al. Discovery and characterization of bromodomain 2–specific inhibitors of BRDT. Proc Natl Acad Sci USA. 2021;118(9):e2021102118.
  • Li Y, De Luca R, Cazzamalli S, et al. Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold. Nat Chem. 2018;10(4):441–448.
  • Petersen LK, Christensen AB, Andersen J, et al. Screening of DNA-encoded small molecule libraries inside a living cell. J Am Chem Soc. 2021;143(7):2751–2756.
  • Huang Y, Meng L, Nie Q, et al. Selection of DNA-encoded chemical libraries against endogenous membrane proteins on live cells. Nat Chem. 2021;13(1):77–88.
  • Congreve M, Chessari G, Tisi D, et al. Recent developments in fragment-based drug discovery. J Med Chem. 2008;51(13):3661–3680.
  • Jhoti H, Williams G, Rees DC, et al. The ‘rule of three’ for fragment-based drug discovery: where are we now?. Nat Rev Drug Discov. 2013;12(8):644–645.
  • Bembenek SD, Tounge BA, Reynolds CH, et al. Ligand efficiency and fragment-based drug discovery. Drug Discov Today. 2009;14(5–6):278–283.
  • Li Q. Application of fragment-based drug discovery to versatile targets. Front Mol Biosci. 2020;7:180.
  • Murray CW, Rees DC. The rise of fragment-based drug discovery. Nat Chem. 2009;1(3):187–192.
  • Perry E, Mills JJ, Zhao B, et al. Fragment-based screening of programmed death ligand 1 (PD-L1). Bioorg Med Chem Lett. 2019;29(6):786–790.
  • Resnick E, Bradley A, Gan J, et al. Rapid covalent-probe discovery by electrophile-fragment screening. J Am Chem Soc. 2019;141(22):8951–8968.
  • Ni D, Li Y, Qiu Y, et al. Combining allosteric and orthosteric drugs to overcome drug resistance. Trends Pharmacol Sci. 2020;41(5):336–348.
  • Han B, Salituro FG, Blanco M-J, et al. Impact of allosteric modulation in drug discovery: innovation in emerging chemical modalities. ACS Med Chem Lett. 2020;11(10):1810–1819.
  • Chen Y-NP, LaMarche MJ, Chan HM, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature. 2016;535(7610):148–152.
  • Ni D, Lu S, Zhang J, et al. Emerging roles of allosteric modulators in the regulation of protein-protein interactions (PPIs): a new paradigm for PPI drug discovery. Med Res Rev. 2019;39(6):2314–2342.
  • Zimmerman T, Oyarzabal J, Sebastián ES, et al. ICAM-1 peptide inhibitors of T-cell adhesion bind to the allosteric site of LFA-1. An NMR characterization. Chem Biol Drug Des. 2007;70(4):347–353.
  • Meijer FA, van den Oetelaar MCM, Doveston RG, et al. Covalent occlusion of the RORγt ligand binding pocket allows unambiguous targeting of an allosteric site. ACS Med Chem Lett. 2021;12(4):631–639.
  • Lu S, Ji M, Ni D, et al. Discovery of hidden allosteric sites as novel targets for allosteric drug design. Drug Discov Today. 2018;23(2):359–365.
  • Lavecchia A, Di Giovanni C. Virtual screening strategies in drug discovery: a critical review. Curr Med Chem. 2013;20(23):2839–2860.
  • Yang C, Wang W, Chen L, et al. Discovery of a VHL and HIF1α interaction inhibitor with in vivo angiogenic activity via structure-based virtual screening. Chem Commun. 2016;52(87):12837–12840.
  • Zhong H-J, Lee BR, Boyle JW, et al. Structure-based screening and optimization of cytisine derivatives as inhibitors of the menin–MLL interaction. Chem Commun. 2016;52(34):5788–5791.
  • Miller JJ, Gaiddon C, Storr T, et al. A balancing act: using small molecules for therapeutic intervention of the p53 pathway in cancer. Chem Soc Rev. 2020;49(19):6995–7014.
  • Liu Z, Su M, Han L, et al. Forging the basis for developing protein–ligand interaction scoring functions. Acc Chem Res. 2017;50(2):302–309.
  • Khan FI, Wei D-Q, Gu K-R, et al. Current updates on computer aided protein modeling and designing. Int J Biol Macromol. 2016;85:48–62.
  • Yu W, MacKerell AD Jr. Computer-aided drug design methods. Methods Mol Biol. 2017;1520:85–106.
  • Welsch ME, Kaplan A, Chambers JM, et al. Multivalent small-molecule pan-RAS inhibitors. Cell. 2017;168(5):878–889.
  • Kessler D, Gmachl M, Mantoulidis A, et al. Drugging an undruggable pocket on KRAS. Proc Natl Acad Sci USA. 2019;116(32):15823–15829.
  • Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435(7042):677–681.
  • Wendt MD, Shen W, Kunzer A, et al. Discovery and structure-activity relationship of antagonists of B-cell lymphoma 2 family proteins with chemopotentiation activity in vitro and in vivo. J Med Chem. 2006;49(3):1165–1181.
  • Tse C, Shoemaker AR, Adickes J, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68(9):3421.
  • Souers AJ, Leverson JD, Boghaert ER, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202–208.
  • Sanz G, Singh M, Peuget S, et al. Inhibition of p53 inhibitors: progress, challenges and perspectives. J Mol Cell Biol. 2019;11(7):586–599.
  • Hoppmann C, Wang L. Proximity-enabled bioreactivity to generate covalent peptide inhibitors of p53–Mdm4. Chem Commun. 2016;52(29):5140–5143.
  • Ding Q, Zhang Z, Liu -J-J, et al. Discovery of RG7388, a potent and selective p53–MDM2 inhibitor in clinical development. J Med Chem. 2013;56(14):5979–5983.
  • Bykov VJN, Issaeva N, Shilov A, et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med. 2002;8(3):282–288.
  • Chen S, Wu J-L, Liang Y, et al. Arsenic trioxide rescues structural p53 mutations through a cryptic allosteric site. Cancer Cell. 2021;39(2):225–239.
  • Papke B, Der CJ. Drugging RAS: know the enemy. Science. 2017;355(6330):1158–1163.
  • Ostrem JML, Shokat KM. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat Rev Drug Discov. 2016;15(11):771–785.
  • Ostrem JM, Peters U, Sos ML, et al. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503(7477): 548–551.
  • Zeng M, Xiong Y, Safaee N, et al. Exploring targeted degradation strategy for oncogenic KRASG12C. Cell Chem Biol. 2020;27(1):19–31.
  • Bond MJ, Chu L, Nalawansha DA, et al. Targeted degradation of oncogenic KRAS G12C by VHL-recruiting PROTACs. ACS Cent Sci. 2020;6(8):1367–1375.
  • Bery N, Miller A, Rabbitts T, et al. A potent KRAS macromolecule degrader specifically targeting tumours with mutant KRAS. Nat Commun. 2020;11(1):3233.
  • Zhang Z, Shokat KM. Bifunctional small-molecule ligands of K-Ras induce its association with immunophilin proteins. Angew Chem Int Ed. 2019;58(45):16314–16319.
  • Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–698.
  • Cotton AD, Nguyen DP, Gramespacher JA, et al. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J Am Chem Soc. 2021;143(2):593–598.
  • Butler DSC, Cafaro C, Putze J, et al. A bacterial protease depletes c-MYC and increases survival in mouse models of bladder and colon cancer. Nat Biotechnol. 2021;(6). DOI:https://doi.org/10.1038/s41587-020-00805-3.
  • He H, Liu B, Luo H, et al. Big data and artificial intelligence discover novel drugs targeting proteins without 3D structure and overcome the undruggable targets. Stroke Vasc Neurol. 2020;5(4):381–387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.