400
Views
3
CrossRef citations to date
0
Altmetric
Review

Guided structure-based ligand identification and design via artificial intelligence modeling

ORCID Icon & ORCID Icon
Pages 71-78 | Received 14 Jul 2021, Accepted 08 Sep 2021, Published online: 23 Sep 2021

References

  • CN C, Orry AJ. Ligand Docking and Structure-based Virtual Screening in Drug Discovery. Curr Top Med Chem. 2007;7(10):1006–1014.
  • Cavasotto CN, Aucar MG, Adler NS. Computational chemistry in drug lead discovery and design. Int J Quantum Chem. 2019;119(2):e25678.
  • Spyrakis F, Cavasotto CN. Open challenges in structure-based virtual screening: receptor modeling, target flexibility consideration and active site water molecules description. Arch Biochem Biophys. 2015;583:105–119.
  • Jorgensen WL. Efficient drug lead discovery and optimization. Acc Chem Res. 2009;42(6):724–733.
  • Jorgensen WL. Challenges for academic drug discovery. Angew Chemie Int Ed English. 2012;51(47):11680–11684.
  • Mak -K-K, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today. 2019;24(3):773–780.
  • Chan HCS, Shan H, Dahoun T, et al. Advancing Drug Discovery via Artificial Intelligence. Trends Pharmacol Sci. 2019;40(8):592–604.
  • Chen H, Engkvist O, Wang Y, et al. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23(6):1241–1250.
  • Carpenter KA, Cohen DS, Jarrell JT, et al. Deep learning and virtual drug screening. Future Med Chem. 2018;10(21):2557–2567.
  • Jørgensen PB, Schmidt MN, Winther O. Deep generative models for molecular science. Mol Inform. 2018;37(1–2):1700133.
  • Gao W, Mahajan SP, Sulam J, et al. Deep Learning in Protein Structural Modeling and Design. Patterns. 2020;1(9):100142.
  • Walters WP, Barzilay R. Critical assessment of AI in drug discovery. Expert Opin Drug Discov. 2021;16(9):937-947.
  • Cavasotto CN, Di Filippo JI. Artificial intelligence in the early stages of drug discovery. Arch Biochem Biophys. 2021;698:108730.
  • Di Filippo JI, Bollini M, Cavasotto CN. A Machine Learning Model to Predict Drug Transfer Across the Human Placenta Barrier. Front Chem. 2021;9:714678.
  • Ragoza M, Hochuli J, Idrobo E, et al. Protein–ligand scoring with convolutional neural networks. J Chem Inf Model. 2017;57(4):942–957.
  • Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019;37(9):1038–1040.
  • Sanchez-Lengeling B, Outeiral C, Guimaraes GL, et al. Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). ChemRxiv. 2017. doi:https://doi.org/10.26434/chemrxiv.5309668.v3
  • Kadurin A, Aliper A, Kazennov A, et al. The cornucopia of meaningful leads: applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget. 2017;8(7):10883.
  • Gómez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci. 2018;4(2):268–276.
  • Olivecrona M, Blaschke T, Engkvist O, et al. Molecular de-novo design through deep reinforcement learning. J Cheminform. 2017;9(1):48.
  • Ragoza M, Masuda T, Koes DR. Learning a Continuous Representation of 3D Molecular Structures with Deep Generative Models. arXiv Prepr . 2020: arXiv201008687. Available from:  https://arxiv.org/abs/2010.08687
  • Durrant JD, McCammon JA. Molecular dynamics simulations and drug discovery. BMC Biol. 2011;9(1):1–9.
  • Kerrigan JE. Molecular dynamics simulations in drug design. Methods Mol Biol. 2013;993:95–113.
  • Zhao H, Caflisch A. Molecular dynamics in drug design. Eur J Med Chem. 2015;91:4–14.
  • Smith JS, Isayev O, Roitberg AE. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci. 2017;8(4):3192–3203.
  • Noé F, Tkatchenko A, K-r M, et al. Machine learning for molecular simulation. Annu Rev Phys Chem. 2020;71(1):361–390.
  • Morrone JA, Weber JK, Huynh T, et al. Combining Docking Pose Rank and Structure with Deep Learning Improves Protein–Ligand Binding Mode Prediction over a Baseline Docking Approach. J Chem Inf Model. 2020;60(9):4170–4179.
  • Li Y, Liu Z, Li J, et al. Comparative assessment of scoring functions on an updated benchmark: 1 Compilation of the test set. J Chem Inf Model. 2014;54(6):1700–1716.
  • Li Y, Han L, Liu Z, et al. Comparative assessment of scoring functions on an updated benchmark: 2 Evaluation methods and general results. J Chem Inf Model. 2014;54(6):1717–1736.
  • Mysinger MM, Carchia M, Irwin JJ, et al. Directory of Useful Decoys, Enhanced (DUD-E): better Ligands and Decoys for Better Benchmarking. J Med Chem. 2012;55(14):6582–6594.
  • Verdonk ML, Mortenson PN, Hall RJ, et al. Protein− ligand docking against non-native protein conformers. J Chem Inf Model. 2008;48(11):2214–2225.
  • Smith RD, Dunbar JJB, Ung PM-U, et al. CSAR benchmark exercise of 2010: combined evaluation across all submitted scoring functions. J Chem Inf Model. 2011;51(9):2115–2131.
  • Li H, Sze K-H, Lu G, et al. Machine-learning scoring functions for structure-based virtual screening. Wiley Interdiscip Rev Comput Mol Sci. 2021;11(1):e1478.
  • Li H, Sze K-H, Lu G, et al. Machine-learning scoring functions for structure-based drug lead optimization. Wiley Interdiscip Rev Comput Mol Sci. 2020;10(5):e1465.
  • Nguyen DD, G-w W. AGL-Score: algebraic graph learning score for protein–ligand binding scoring, ranking, docking, and screening. J Chem Inf Model. 2019;59(7):3291–3304.
  • Cheng T, Li X, Li Y, et al. Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model. 2009;49(4):1079–1093.
  • Su M, Yang Q, Du Y, et al. Comparative assessment of scoring functions: the CASF-2016 update. J Chem Inf Model. 2018;59(2):895–913.
  • Wang C, Zhang Y. Improving scoring‐docking‐screening powers of protein–ligand scoring functions using random forest. J Comput Chem. 2017;38(3):169–177.
  • Nguyen DD, Wei G. DG‐GL: differential geometry‐based geometric learning of molecular datasets. Int J Numer Method Biomed Eng. 2019;35(3):e3179.
  • Li H, Leung K-S, Wong M-H, et al. Low-quality structural and interaction data improves binding affinity prediction via random forest. Molecules. 2015;20(6):10947–10962.
  • Wójcikowski M, Kukiełka Michałand Stepniewska-Dziubinska MM, Siedlecki P. Development of a protein–ligand extended connectivity (PLEC) fingerprint and its application for binding affinity predictions. Bioinformatics. 2019;35(8):1334–1341.
  • Yasuo N, Sekijima M. Improved method of structure-based virtual screening via interaction-energy-based learning. J Chem Inf Model. 2019;59(3):1050–1061.
  • Wójcikowski M, Ballester PJ, Siedlecki P. Performance of machine-learning scoring functions in structure-based virtual screening. Sci Rep. 2017;7(1):46710.
  • Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739–1749.
  • Da C, Kireev D. Structural protein–ligand interaction fingerprints (SPLIF) for structure-based virtual screening: method and benchmark study. J Chem Inf Model. 2014;54(9):2555–2561.
  • C. C. G. Inc., Molecular Operating Environment (MOE). Available from: https://www.chemcomp.com/ [Last accessed 2021 Jul 7]
  • Perez-Castillo Y, Sotomayor-Burneo S, Jimenes-Vargas K, et al. CompScore: boosting structure-based virtual screening performance by incorporating docking scoring function components into consensus scoring. J Chem Inf Model. 2019;59(9):3655–3666.
  • Wallach I, Dzamba M, Heifets A. AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv Prepr . 2015 ; arXiv151002855. Available from: https://arxiv.org/abs/1510.02855
  • Deng Z, Chuaqui C, Singh J. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein- ligand binding interactions. J Med Chem. 2004;47(2):337–344.
  • Pérez-Nueno VI, Rabal O, Borrell JI, et al. APIF: a new interaction fingerprint based on atom pairs and its application to virtual screening. J Chem Inf Model. 2009;49:1245–1260.
  • Hsieh C-H, Li L, Vanhauwaert R, et al. Miro1 marks Parkinson’s disease subset and Miro1 reducer rescues neuron loss in Parkinson’s models. Cell Metab. 2019;30(6):1131–1140.
  • Mcule Drug Discovery Platform. Available from: https://mcule.com/ [Last accessed 2021 Jul 7]
  • Adeshina YO, Deeds EJ, Karanicolas J. Machine learning classification can reduce false positives in structure-based virtual screening. Proc Natl Acad Sci. 2020;117(31):18477–18488.
  • Durrant JD, McCammon JA. NNScore 2.0: a neural-network receptor–ligand scoring function. J Chem Inf Model. 2011;51(11):2897–2903.
  • Ballester PJ, Mitchell JBO. A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics. 2010;26(9):1169–1175.
  • Ballester PJ, Schreyer A, Blundell TL. Does a more precise chemical description of protein–ligand complexes lead to more accurate prediction of binding affinity? J Chem Inf Model. 2014;54(3):944–955.
  • Li H, Leung K-S, Wong M-H, et al. Improving AutoDock Vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets. Mol Inform. 2015;34(2–3):115–126.
  • Alford RF, Leaver-Fay A, Jeliazkov JR, et al. The Rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput. 2017;13(6):3031–3048.
  • Durrant JD, McCammon JA. BINANA: a novel algorithm for ligand-binding characterization. J Mol Graph Model. 2011;29(6):888–893.
  • ChemAxon. Available from: https://chemaxon.com/ [Last accessed 7 July 2021]
  • Szybki. Available from: https://www.eyesopen.com/szybki [Last accessed 2021 Jul 7]
  • Vogel SM, Bauer MR, Boeckler FM. DEKOIS: demanding Evaluation Kits for Objective in Silico Screening — a Versatile Tool for Benchmarking Docking Programs and Scoring Functions. J Chem Inf Model. 2011;51(10):2650–2665.
  • Bauer MR, Ibrahim TM, Vogel SM, et al. Evaluation and optimization of virtual screening workflows with DEKOIS 2.0–a public library of challenging docking benchmark sets. J Chem Inf Model. 2013;53(6):1447–1462.
  • Bazzoli A, Kelow SP, Karanicolas J. Enhancements to the Rosetta energy function enable improved identification of small molecules that inhibit protein-protein interactions. PLoS One. 2015;10(10):e0140359.
  • Fresnais L, Ballester PJ. The impact of compound library size on the performance of scoring functions for structure-based virtual screening. Brief Bioinform. 2020;22(3):bbaa095.
  • Jastrzebski S, Szymczak M, Pocha A, et al. Emulating docking results using a deep neural network: a new perspective for virtual screening. J Chem Inf Model. 2020;60(9):4246–4262.
  • Sato T, Honma T, Yokoyama S. Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening. J Chem Inf Model. 2010;50(1):170–185.
  • Koes DR, Baumgartner MP, Camacho CJ. Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise. J Chem Inf Model. 2013;53(8):1893–1904.
  • Gentile F, Agrawal V, Hsing M, et al. Deep Docking: a Deep Learning Platform for Augmentation of Structure Based Drug Discovery. ACS Cent Sci. 2020;6(6):939–949.
  • Sterling T, Irwin JJ. ZINC 15–ligand discovery for everyone. J Chem Inf Model. 2015;55(11):2324–2337.
  • McGann M. FRED and HYBRID docking performance on standardized datasets. J Comput Aided Mol Des. 2012;26(8):897–906.
  • Yang Y, Yao K, Repasky MP, et al. Efficient Exploration of Chemical Space with Docking and Deep-Learning. ChemRxiv. 2021. DOI:https://doi.org/10.26434/chemrxiv.14153819.v1
  • Lyu J, Wang S, Balius TE, et al. Ultra-large library docking for discovering new chemotypes. Nature. 2019;566(7743):224–229.
  • Aldrich Market Select. Available from: https://www.aldrichmarketselect.com/ [Last accessed 2021 Jul 7]
  • Graff DE, Shakhnovich EI, Coley CW. Accelerating high-throughput virtual screening through molecular pool-based active learning. Chem Sci. 2021;12(22):7866–7881.
  • Imrie F, Bradley AR, van der Schaar M, et al. Deep Generative Models for 3D Linker Design. J Chem Inf Model. 2020;60(4):1983–1995.
  • Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Adv Neural Inf Process Syst. 2014;27:2672–2680.
  • Skalic M, Sabbadin D, Sattarov B, et al. From target to drug: generative modeling for the multimodal structure-based ligand design. Mol Pharm. 2019;16(10):4282–4291.
  • Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular docking. J Med Chem. 2006;49(23):6789–6801.
  • Sieg J, Flachsenberg F, Rarey M. In need of bias control: evaluating chemical data for machine learning in structure-based virtual screening. J Chem Inf Model. 2019;59(3):947–961.
  • Chen L, Cruz A, Ramsey S, et al. Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening. PLoS One. 2019;14(8):e0220113.
  • Yang J, Shen C, Huang N. Predicting or pretending: artificial intelligence for protein-ligand interactions lack of sufficiently large and unbiased datasets. Front Pharmacol. 2020;11:69.
  • Bender A, Cortes-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: ways to make an impact, and why we are not there yet. Drug Discov Today. 2021;26(2):511-524.
  • Bender A, Cortes-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data used for AI in drug discovery. Drug Discov Today. 2021;26(4):1040-1052.
  • Walters WP, Murcko M. Assessing the impact of generative AI on medicinal chemistry. Nat Biotechnol. 2020;38(2):143–145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.