156
Views
4
CrossRef citations to date
0
Altmetric
Review

Terpyridines as promising antitumor agents: an overview of their discovery and development

, , & ORCID Icon
Pages 259-271 | Received 30 Oct 2021, Accepted 09 Dec 2021, Published online: 20 Dec 2021

References

  • Ghosh S. Cisplatin: the first metal based anticancer drug. Bioorg Chem. 2019 Jul;88:102925.
  • Allardyce CS, Dyson PJ. Metal-based drugs that break the rules. Dalton Trans. 2016 Feb 28; 45(8):3201–3209.
  • Ndagi U, Mhlongo N, Soliman ME. Metal complexes in cancer therapy - an update from drug design perspective. Drug Des Devel Ther. 2017;11:599–616.
  • Monro S, Colon KL, Yin H, et al. Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem Rev. 2019 Jan 23 119(2):797–828.
  • Reedijk J. New clues for platinum antitumor chemistry: kinetically controlled metal binding to DNA. Proc Natl Acad Sci U S A. 2003 Apr 1; 100(7):3611–3616.
  • Boros E, Dyson PJ, Gasser G. Classification of metal-based drugs according to their mechanisms of action. Chem. 2020 Jan 9; 6(1):41–60.
  • Queyriaux N, Abel K, Fize J, et al. From non-innocent to guilty: on the role of redox-active ligands in the electro-assisted reduction of CO2 mediated by a cobalt(ii)-polypyridyl complex. Sustainable Energy Fuels. 2020;4(7):3668–3676.
  • Wei C, He Y, Shi X, et al. Terpyridine-metal complexes: applications in catalysis and supramolecular chemistry. Coord Chem Rev. 2019 Apr 15;385:1–19.
  • Schwarz G, Hasslauer I, Kurth DG. From terpyridine-based assemblies to metallo-supramolecular polyelectrolytes (MEPEs). Adv Colloid Interface Sci. 2014 May;207:107–120.
  • Xie TZ, Yao Y, Sun X, et al. Supramolecular arrays by the self-assembly of terpyridine-based monomers with transition metal ions. Dalton Trans. 2018 Jun 5 47(22):7528–7533.
  • Saccone D, Magistris C, Barbero N, et al. Terpyridine and quaterpyridine complexes as sensitizers for photovoltaic applications. Materials (Basel). 2016 Feb 27 9(3):137.
  • Ye YX, Wen C, Wang JW, et al. Valence-dependent catalytic activities of iron terpyridine complexes for pollutant degradation. Chem Commun (Camb). 2020 May 21 56(41):5476–5479.
  • Juneja A, Macedo TS, Magalhaes Moreira DR, et al. Synthesis of 4′-(2-ferrocenyl)-2,2′:6′2′′-terpyridine: characterization and antiprotozoal activity of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes. Eur J Med Chem. 2014 Mar 21;75:203–210.
  • Hadda TB, Akkurt M, Baba MF, et al. Anti-tubercular activity of ruthenium (II) complexes with polypyridines. J Enzyme Inhib Med Chem. 2009 Apr;24(2):457–463.
  • Anthonysamy A, Balasubramanian S, Shanmugaiah V, et al. Synthesis, characterization and electrochemistry of 4ʹ-functionalized 2,2ʹ:6ʹ,2”-terpyridine ruthenium(II) complexes and their biological activity. Dalton Trans. 2008 Apr;28(16):2136–2143.
  • Qiao J, Purro M, Liu Z, et al. Terpyridine-micelles for inhibiting bacterial biofilm development. ACS Infect Dis. 2018 Sep 14 4(9):1346–1354.
  • Hunter RC, Asfour F, Dingemans J, et al. Ferrous iron is a significant component of bioavailable iron in cystic fibrosis airways. mBio. 2013 Aug 20;4(4). https://doi.org/10.1128/mBio.00557-13.
  • Crans DC, Kostenkova K. Open questions on the biological roles of first-row transition metals. Communications Chemistry. 2020;3(1). https://doi.org/10.1038/s42004-020-00341-w
  • Winter A, Gottschaldt M, Newkome GR, et al., Terpyridines and their complexes with first row transition metal ions: cytotoxicity, nuclease activity and self-assembly of biomacromolecules. Curr Top Med Chem. 2012;12(3): 158–175.
  • Sanchez Delgado GY, Paschoal D, de Oliveira MAL, et al. Structure and redox stability of [Au(III)(X^N^X)PR3] complexes (X=C or N) in aqueous solution: the role of phosphine auxiliary ligand. J Inorg Biochem. 2019 Nov;200:110804.
  • Holyer RH, Hubbard CD, Kettle SFA, et al. The kinetics of replacement reactions of complexes of the transition metals with 2,2ʹ,2”-Terpyridine. Inorg Chem. 2002;5(4):622–625.
  • Schubert US, Winter A, Newkome GR. Terpyridine-based materials: for catalytic, optoelectronic and life science applications. Weinheim: Wiley-VCH; 2011.
  • Chen YWD, Santhanam KSV, Bard AJ. Solution redox couples for electrochemical energy storage: i. Iron (III)‐Iron (II) Complexes with O‐Phenanthroline and related ligands. J Electrochem Soc. 2019;128(7):1460–1467.
  • Fenton HJH. LXXIII.—Oxidation of tartaric acid in presence of iron. J Chem Soc, Trans. 1894;65:899–910.
  • Verbon EH, Post JA, Boonstra J. The influence of reactive oxygen species on cell cycle progression in mammalian cells. Gene. 2012 Dec 10; 511(1):1–6.
  • Hage JP, Llobet A, Sawyer DT. Aromatic hydroxylation by fenton reagents {Reactive intermediate[Lx+FeIIIOOH(BH+)], not free hydroxyl radical (HO·)}. Bioorg Med Chem. 1995;3(10):1383–1388.
  • Winterbourn CC. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett. 1995;82-83:969–974.
  • Miller CJ, Rose AL, Waite TD. Importance of iron complexation for fenton-mediated hydroxyl radical production at circumneutral pH. Frontiers in Marine Sci. 2016;3. https://doi.org/10.3389/fmars.2016.00134.
  • Beller G, Lente G, Fabian I. Kinetics and mechanism of the autocatalytic oxidation of Bis(terpyridine)iron(II) by Peroxomonosulfate Ion (Oxone) in acidic medium. Inorg Chem. 2017 Jul 17; 56(14):8270–8277.
  • Dickenson JC, Haley ME, Hyde JT, et al. Fine-Tuning metal and ligand-centered redox potentials of homoleptic bis-terpyridine complexes with 4ʹ-Aryl Substituents. Inorg Chem. 2021 Jul 5 60(13):9956–9969.
  • Grau J, Caubet A, Roubeau O, et al. Time-dependent cytotoxic properties of terpyridine-based copper complexes. Chembiochem. 2020 Aug 17 21(16):2348–2355.
  • Manikandamathavan VM, Weyhermuller T, Parameswari RP, et al. DNA/protein interaction and cytotoxic activity of imidazole terpyridine derived Cu(II)/Zn(II) metal complexes. Dalton Trans. 2014 Sep 14 43(34):13018–13031.
  • Liang X, Jiang J, Xue X, et al. Synthesis, characterization, photoluminescence, anti-tumor activity, DFT calculations and molecular docking with proteins of zinc(ii) halogen substituted terpyridine compounds. Dalton Trans. 2019;48(28):10488–10504.
  • Rebouissou S, Zucman-Rossi J, Moreau R, et al. Note of caution: contaminations of hepatocellular cell lines. J Hepatol. 2017 Nov;67(5):896–897.
  • Liang JW, Wang Y, Du KJ, et al. Synthesis, DNA interaction and anticancer activity of copper(II) complexes with 4ʹ-phenyl-2,2ʹ:6ʹ,2”-terpyridine derivatives. J Inorg Biochem. 2014 Dec;141:17–27.
  • Wu S, Wang X, He Y, et al. A monofunctional trinuclear platinum complex with steric hindrance demonstrates strong cytotoxicity against tumor cells. J Inorg Biochem. 2014 Oct;139:77–84.
  • Morel E, Beauvineau C, Naud-Martin D, et al. Selectivity of terpyridine platinum anticancer drugs for G-quadruplex DNA. Molecules. 2019 Jan 23 24(3):404.
  • Kumar A, Chinta JP, Ajay AK, et al. Synthesis, characterization, plasmid cleavage and cytotoxicity of cancer cells by a copper(II) complex of anthracenyl-terpyridine [https://doi.org/10.1039/C1DT10201J]. Dalton Trans. 2011 Nov 7;40(41):10865–10872.
  • Maity B, Gadadhar S, Goswami TK, et al. Impact of metal on the DNA photocleavage activity and cytotoxicity of ferrocenyl terpyridine 3d metal complexes [https://doi.org/10.1039/C1DT11102G]. Dalton Trans. 2011 Nov 28;40(44):11904–11913.
  • Heaney EK, Logan SR. Photo-oxidation of ferrocenyl-substituted carboxylic acids [https://doi.org/10.1039/P29780000590]. J Chem Soc Perkin Trans. 1978 6;2:590–594.
  • Basu U, Khan I, Koley D, et al. Nuclear targeting terpyridine iron(II) complexes for cellular imaging and remarkable photocytotoxicity. J Inorg Biochem. 2012 Nov;116:77–87.
  • Jain S, Bhar K, Kumar S, et al. Homo- and heteroleptic trimethoxy terpyridine-Cu(ii) complexes: synthesis, characterization, DNA/BSA binding, DNA cleavage and cytotoxicity studies. Dalton Trans. 2020 Apr 1 49(13):4100–4113.
  • Deka B, Sarkar T, Banerjee S, et al. Novel mitochondria targeted copper(ii) complexes of ferrocenyl terpyridine and anticancer active 8-hydroxyquinolines showing remarkable cytotoxicity, DNA and protein binding affinity. Dalton Trans. 2017 Jan 3 46(2):396–409.
  • Czaplinska B, Spaczynska E, Musiol R. Quinoline fluorescent probes for Zinc - from diagnostic to therapeutic molecules in treating neurodegenerative diseases. Med Chem. 2018;14(1):19–33.
  • Czaplinska B, Malarz K, Mrozek-Wilczkiewicz A, et al. Theoretical and experimental investigations of large stokes shift fluorophores based on a Quinoline Scaffold. Molecules. 2020 May 27 25(11):2488.
  • Czaplinska B, Malarz K, Mrozek-Wilczkiewicz A, et al. Acid selective pro-dye for cellular compartments. Sci Rep. 2019 Oct 25 9(1):15304.
  • Choroba K, Machura B, Szlapa-Kula A, et al. Square planar Au(III), Pt(II) and Cu(II) complexes with quinoline-substituted 2,2ʹ:6ʹ,2”-terpyridine ligands: from in vitro to in vivo biological properties. Eur J Med Chem. 2021 Jun 5;218:113404.
  • Mishra S, Tamta AK, Sarikhani M, et al. Subcutaneous Ehrlich Ascites Carcinoma mice model for studying cancer-induced cardiomyopathy. Sci Rep. 2018 Apr 4 8(1):5599.
  • Ehrlich P, Apolant H. Beobachtungen Über Maligne Mausentumoren. Vol. 28. Berlin Klin Wschr. 1905, 871–874
  • Mahendiran D, Kumar RS, Viswanathan V, et al. In vitro and in vivo anti-proliferative evaluation of bis(4ʹ-(4-tolyl)-2,2ʹ:6ʹ,2”-terpyridine)copper(II) complex against Ehrlich ascites carcinoma tumors. J Biol Inorg Chem. 2017 Oct;22(7):1109–1122.
  • Guney E, Yilmaz VT, Sengul A, et al. Platinum(II) and palladium(II) saccharinato complexes with 2,2′:6′,2″-terpyridine: synthesis, characterization, crystal structures, photoluminescence and thermal studies. Inorganica Chim Acta. 2010;363(2):438–448.
  • Ari F, Aztopal N, Icsel C, et al. Synthesis, structural characterization and cell death-inducing effect of novel palladium(II) and platinum(II) saccharinate complexes with 2-(hydroxymethyl)pyridine and 2-(2-hydroxyethyl)pyridine on cancer cells in vitro. Bioorg Med Chem. 2013 Nov 1 21(21):6427–6434.
  • Ulukaya E, Ari F, Dimas K, et al. Cell death-inducing effect of novel palladium(II) and platinum(II) complexes on non-small cell lung cancer cells in vitro. J Cancer Res Clin Oncol. 2011 Oct;137(10):1425–1434.
  • Ulukaya E, Ari F, Dimas K, et al. Anti-cancer activity of a novel palladium(II) complex on human breast cancer cells in vitro and in vivo. Eur J Med Chem. 2011 Oct;46(10):4957–4963.
  • Ikitimur-Armutak EI, Sonmez K, Akgun-Dar K, et al. Anticancer effect of a novel palladium-saccharinate complex of terpyridine by inducing apoptosis on Ehrlich ascites carcinoma (EAC) in Balb-C mice. Anticancer Res. 2015 Mar;35(3):1491–1497.
  • Ikitimur-Armutak EI, Ulukaya E, Gurel-Gurevin E, et al. Apoptosis-inducing effect of a Palladium(II) Complex-[PdCl(terpy)](sac).2H2O] on Ehrlich Ascites Carcinoma (EAC) in Mice. Vivo. 2016 Jul-Aug;30(4):457–464.
  • McFadyen WD, Wakelin LP, Roos IA, et al. Activity of platinum(II) intercalating agents against murine leukemia L1210. J Med Chem. 1985 Aug;28(8):1113–1116.
  • Messori L, Abbate F, Marcon G, et al. Gold(III) complexes as potential antitumor agents: solution chemistry and cytotoxic properties of some selected gold(III) compounds. J Med Chem. [2000 Sep 21];43(19):3541–3548.
  • Shi P, Jiang Q, Zhao Y, et al. DNA binding properties of novel cytotoxic gold(III) complexes of terpyridine ligands: the impact of steric and electrostatic effects. J Biol Inorg Chem. 2006 Sep;11(6):745–752.
  • Zhao LX, Sherchan J, Park JK, et al. Synthesis, cytotoxicity and structure-activity relationship study of terpyridines. Arch Pharm Res. 2006 Dec;29(12):1091–1095.
  • Zhao L-X, Kim TS, Ahn S-H, et al. Synthesis, topoisomerase I inhibition and antitumor cytotoxicity of 2,2′:6′,2″-, 2,2′:6′,3″- and 2,2′:6′,4″-Terpyridine derivatives. Bioorg Med Chem Lett. 2001;11(19):2659–2662.
  • Kwon HB, Park C, Jeon KH, et al. A series of novel terpyridine-skeleton molecule derivants inhibit tumor growth and metastasis by targeting topoisomerases. J Med Chem. 2015 Feb 12 58(3):1100–1122.
  • Jeong B-S, Choi H-Y, Kwak Y-S, et al. Synthesis of 2,4,6-Tripyridyl pyridines, and evaluation of their antitumor cytotoxicity, topoisomerase i and ii inhibitory activity, and structure-activity relationship. Bull Korean Chem Soc. 2011;32(10):3566–3570.
  • Son J-K, Zhao L-X, Basnet A, et al. Synthesis of 2,6-diaryl-substituted pyridines and their antitumor activities. Eur J Med Chem. 2008;43(4):675–682.
  • Karki R, Thapa P, Kwon Y-J, et al. Synthesis, topoisomerase I and II inhibitory activities, and cytotoxicity of 4,6-Diaryl-2,4ʹ-bipyridine Derivatives. Bull Korean Chem Soc. 2010;31(6):1747–1750.
  • Thapa P, Lee E-S. 2,4-Diaryl-5,6-dihydro-1,10-phenanthrolines with Furyl or Thienyl Moiety at 4-position: synthesis, topoisomerase I and II inhibitory activity, and cytotoxicity. Bull Korean Chem Soc. 2012;33(5):1769–1772.
  • Lo YC, Ko TP, Su WC, et al. Terpyridine-platinum(II) complexes are effective inhibitors of mammalian topoisomerases and human thioredoxin reductase 1. J Inorg Biochem. 2009 Jul;103(7):1082–1092.
  • Vrábel M, Hocek M, Havran L, et al. Purines bearing phenanthroline or bipyridine ligands and their ruii complexes in position 8 as model compounds for electrochemical DNA labeling – synthesis, crystal structure, electrochemistry, quantum chemical calculations, cytostatic and antiviral activity. Eur J Inorg Chem. 2007;2007(12):1752–1769.
  • Jiang Q, Zhu J, Zhang Y, et al. DNA binding property, nuclease activity and cytotoxicity of Zn(II) complexes of terpyridine derivatives. Biometals. 2009 Apr;22(2):297–305.
  • Darabi F, Hadadzadeh H, Simpson J, et al., A water-soluble Pd(ii) complex with a terpyridine ligand: experimental and molecular modeling studies of the interaction with DNA and BSA; and in vitro cytotoxicity investigations against five human cancer cell lines. New J Chem. 2016;40(11): 9081–9097.
  • Maron A, Czerwinska K, Machura B, et al. Spectroscopy, electrochemistry and antiproliferative properties of Au(iii), Pt(ii) and Cu(ii) complexes bearing modified 2,2ʹ:6ʹ,2”-terpyridine ligands. Dalton Trans. 2018 May 8 47(18):6444–6463.
  • Qin QP, Meng T, Tan MX, et al. Synthesis, characterization and biological evaluation of six highly cytotoxic ruthenium(ii) complexes with 4ʹ-substituted-2,2ʹ:6ʹ,2”-terpyridine. Medchemcomm. 2018 Mar 1 9(3):525–533.
  • Zych D, Slodek A, Krompiec S, et al. 4′-Phenyl-2,2′:6′,2′′-terpyridine derivatives containing 1-Substituted-2,3-Triazole ring: synthesis, characterization and anticancer activity. ChemistrySelect. 2018;3(24):7009–7017.
  • Malarz K, Zych D, Kuczak M, et al. Anticancer activity of 4ʹ-phenyl-2,2ʹ:6ʹ,2”-terpyridines - behind the metal complexation. Eur J Med Chem. 2020 Mar 1;189:112039.
  • Pugazhendhi A, Edison T, Velmurugan BK, et al. Toxicity of Doxorubicin (Dox) to different experimental organ systems. Life Sci. 2018 May 1;200:26–30.
  • Malarz K, Mrozek-Wilczkiewicz A, Serda M, et al. The role of oxidative stress in activity of anticancer thiosemicarbazones. Oncotarget. 2018 Apr 3 9(25):17689–17710.
  • Malarz K, Zych D, Gawecki R, et al. New derivatives of 4ʹ-phenyl-2,2ʹ:6ʹ,2”-terpyridine as promising anticancer agents. Eur J Med Chem. 2021 Feb 15;212:113032.
  • Durand N, Storz P. Targeting reactive oxygen species in development and progression of pancreatic cancer. Expert Rev Anticancer Ther. 2017 Jan;17(1):19–31.
  • Peric T, Jakovljevic V, Zivkovic V, et al. Toxic effects of palladium compounds on the isolated rat heart. Med Chem. 2012 Jan;8(1):9–13.
  • Christensen GM. Effects of metal cations and other chemicals upon the in vitro activity of two enzymes in the blood plasma of the white sucker, catostomus commersoni (lacépède). Chem Biol Interact. 1972;4(5):351–361.
  • Bunger J, Stork J, Stalder K. Cyto- and genotoxic effects of coordination complexes of platinum, palladium and rhodium in vitro. Int Arch Occup Environ Health. 1996;69(1):33–38.
  • Dragutan I, Dragutan V, Demonceau A. Editorial of special issue ruthenium complex: the expanding chemistry of the ruthenium complexes. Molecules. 2015 Sep 18; 20(9):17244–17274.
  • Bochevarov AD, Harder E, Hughes TF, et al. Jaguar: a high‐performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem. 2013;113(18):2110–2142.
  • Icard P, Fournel L, Wu Z, et al. Interconnection between metabolism and cell cycle in cancer. Trends Biochem Sci. 2019 Jun;44(6):490–501.
  • Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene. 2004 Apr 19; 23(18):3151–3171.
  • Chiu J, Dawes IW. Redox control of cell proliferation. Trends Cell Biol. 2012 Nov;22(11):592–601.
  • Patterson JC, Joughin BA, van de Kooij B, et al. ROS and oxidative stress are elevated in mitosis during asynchronous cell cycle progression and are exacerbated by mitotic arrest. Cell Syst. 2019 Feb 27 8(2):163–167 e2.
  • Chen Z, Odstrcil EA, Tu BP, et al. Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science. 2007 Jun 29 316(5833):1916–1919.
  • Rajalakshmi S, Weyhermuller T, Dinesh M, et al. Copper(II) complexes of terpyridine derivatives: a footstep towards development of antiproliferative agent for breast cancer. J Inorg Biochem. 2012 Dec;117:48–59.
  • Savic M, Arsenijevic A, Milovanovic J, et al. Antitumor activity of Ruthenium(II) terpyridine complexes towards colon cancer cells in vitro and in vivo. Molecules. 2020 Oct 14 25(20):4699.
  • Mitra K, Basu U, Khan I, et al. Remarkable anticancer activity of ferrocenyl-terpyridine platinum(ii) complexes in visible light with low dark toxicity. Dalton Trans. 2014 Jan 14 43(2):751–763.
  • Kacar O, Cevatemre B, Hatipoglu I, et al. The role of cell cycle progression for the apoptosis of cancer cells induced by palladium(II)-saccharinate complexes of terpyridine. Bioorg Med Chem. 2017 Mar 15;25(6):1770–1777.
  • Bormio Nunes JH, Hager S, Mathuber M, et al. Cancer cell resistance against the clinically investigated thiosemicarbazone COTI-2 Is based on formation of intracellular copper complex glutathione adducts and ABCC1-mediated efflux. J Med Chem. 2020 Nov 25 63(22):13719–13732.
  • Serda M, Kalinowski DS, Rasko N, et al. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships. PLoS One. 2014;9(10):e110291.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.