266
Views
4
CrossRef citations to date
0
Altmetric
Review

In silico drug discovery of melatonin receptor ligands with therapeutic potential

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 343-354 | Received 30 Nov 2021, Accepted 15 Feb 2022, Published online: 08 Mar 2022

References

  • Lerner AB, Case JD, and Takahashi Y, et al. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc. 1958;80(10):2587.
  • Zhao D, Yu Y, and Shen Y, et al. Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol (Lausanne). 2019;17(10):249.
  • Hardeland R, Cardinali DP, and Srinivasan V, et al. Melatonin–a pleiotropic, orchestrating regulator molecule. Prog Neurobiol. 2011;93(3):350.
  • Liu L, Labani N, and Cecon E, et al. Melatonin target proteins: too many or not enough? Front Endocrinol. 2019;10:791.
  • Reiter RJ, Tan D-X, and Rosales-Corral S, et al. The universal nature, unequal distribution and antioxidant functions of melatonin and its derivatives. Mini Rev Med Chem. 2013;13(3):373–384.
  • Dubocovich ML, Delagrange P, and Krause DN, et al. International union of basic and clinical pharmacology. LXXV. nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev. 2010;62(3):343–380.
  • Cecon E, Oishi A, and Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol. 2018;175(16):3263–3280.
  • Jockers R, Delagrange P, and Dubocovich ML, et al. Update on melatonin receptors: IUPHAR review 20. Br J Pharmacol. 2016;173(18):2702–2725.
  • Liu J, Clough SJ, and Hutchinson AJ, et al. MT 1 and MT 2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxocol. 2016;56(1):361–383.
  • Hardeland R, Poeggeler B, Srinivasan V, et al. Melatonergic drugs in clinical practice. Arzneimittelforschung. 2008;58(1):1–10.
  • Dubocovich ML, Masana MI, and Iacob S, et al. Melatonin receptor antagonists that differentiate between the human mel1a and mel1b recombinant subtypes are used to assess the pharmacological profile of the rabbit retina ML1 presynaptic heteroreceptor. Naunyn Schmiedebergs Arch Pharmacol. 1997;355(3):365–375.
  • Zlotos DP, Jockers R, and Cecon E, et al. MT1 and MT2 melatonin receptors: ligands, models, oligomers, and therapeutic potential. J Med Chem. 2014;57(8):3161–3185.
  • Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27(2):101–110.
  • Rivara S, Pala D, and Bedini A, et al. Therapeutic uses of melatonin and melatonin derivatives: a patent review (2012 – 2014). Expert Opin Ther Pat. 2015;25(4):425–441.
  • Johansson LC, Stauch B, and McCorvy JD, et al. XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity. Nature. 2019;569(7755):289–292.
  • Stauch B, Johansson LC, and McCorvy JD, et al. Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature. 2019;569(7755):284–288.
  • Boutin JA, Witt-Enderby PA, and Sotriffer C, et al. Melatonin receptor ligands: a pharmaco-chemical perspective. J Pineal Res. 2020;69(3):e12672.
  • Wallez V, Durieux-Poissonnier S, and Chavatte P, et al. Synthesis and structure-affinity-activity relationships of novel benzofuran derivatives as MT2 melatonin receptor selective ligands. J Med Chem. 2002;45(13):2788–2800.
  • Yous S, Andrieux J, and Howell HE, et al. Novel naphthalenic ligands with high affinity for the melatonin receptor. J Med Chem. 1992;35(8):1484–1486.
  • Depreux P, Lesieur D, and Mansour HA, et al. Synthesis and structure-activity relationships of novel naphthalenic and bioisosteric related amidic derivatives as melatonin receptor ligands. J Med Chem. 1994;37(20):3231–3239.
  • Mésangeau C, Fraise M, and Delagrange P, et al. Preparation and pharmacological evaluation of a novel series of 2-(phenylthio)benzo[b]thiophenes as selective MT2 receptor ligands. Eur J Med Chem. 2011;46(5):1835–1840.
  • Fourmaintraux E, Depreux P, and Lesieur D, et al. Tetrahydronaphthalenic derivatives as new agonist and antagonist ligands for melatonin receptors. Bioorg Med Chem. 1998;6(1):9–13.
  • Uchikawa O, Fukatsu K, and Tokunoh R, et al. Synthesis of a novel series of tricyclic indan derivatives as melatonin receptor agonists. J Med Chem. 2002;45(19):4222–4239.
  • Li P-K, Chu G-H, and Gillen ML, et al. Synthesis and receptor binding studies of quinolinic derivatives as melatonin receptor ligands. Bioorg Med Chem Lett. 1997;7(17):2177–2180.
  • Garratt PJ, Travard S, and Vonhoff S, et al. Mapping the melatonin receptor. 4. Comparison of the binding affinities of a series of substituted phenylalkyl amides. J Med Chem. 1996;39(9):1797–1805.
  • Rivara S, Lodola A, and Mor M, et al. N-(substituted-anilinoethyl)amides: design, synthesis, and pharmacological characterization of a new class of melatonin receptor ligands. J Med Chem. 2007;50(26):6618–6626.
  • Carocci A, Catalano A, and Lovece A, et al. Design, synthesis, and pharmacological effects of structurally simple ligands for MT1 and MT2 melatonin receptors. Bioorg Med Chem. 2010;18(17):6496–6511.
  • Teh MT, and Sugden D. Comparison of the structure-activity relationships of melatonin receptor agonists and antagonists: lengthening the N-acyl side-chain has differing effects on potency on Xenopus melanophores. Naunyn Schmiedebergs Arch Pharmacol. 1998;358(5):522–528.
  • Ballesteros JA, and Weinstein H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. J Neurosci Methods. 1995;25(19):366–428.
  • Leclerc V, Fourmaintraux E, and Depreux P, et al. Synthesis and structure-activity relationships of novel naphthalenic and bioisosteric related amidic derivatives as melatonin receptor ligands. Bioorg Med Chem. 1998;6(10):1875–1887.
  • Rami M, Landagaray E, and Ettaoussi M, et al. Novel conformationally constrained analogues of agomelatine as new melatoninergic ligands. Molecules. 2012;18(1):154–166.
  • de la Fuente Revenga M, Fernández-Sáez N, and Herrera-Arozamena C, et al. Novel N-acetyl bioisosteres of melatonin: melatonergic receptor pharmacology, physicochemical studies, and phenotypic assessment of their neurogenic potential. J Med Chem. 2015;58(12):4998–5014.
  • Kanayama T, Kubota H, and Matsumoto S, et al. Astellas Pharma Inc., assignee. Indolecarboxamide derivatives. European Patent EP2873660B1. 2016 Oct 26.
  • Ferreira MA Jr, Azevedo H, and Mascarello A, et al. Discovery of ACH-000143: a novel potent and peripherally preferred melatonin receptor agonist that reduces liver triglycerides and steatosis in diet-induced obese rats. J Med Chem. 2021;64(4):1904–1929.
  • Faust R, Garratt PJ, and Jones R, et al. Mapping the melatonin receptor. 6. melatonin agonists and antagonists derived from 6H-isoindolo[2,1-a]indoles, 5,6-dihydroindolo[2,1-a]isoquinolines, and 6,7-dihydro-5H-benzo[c]azepino[2,1-a]indoles. J Med Chem. 2000;43(6):1050–1061.
  • Fisher SP, and Sugden D. Sleep-promoting action of IIK7, a selective MT2 melatonin receptor agonist in the rat. Neurosci Lett. 2009;457(2):93–96.
  • Alarma-Estrany P, Crooke A, and Aránzazu M, et al. Sympathetic nervous system modulates the ocular hypotensive action of MT2-melatonin receptors in normotensive rabbits. J Pineal Res. 2008;45(4):468–475.
  • Dortch-Carnes J, and Tosini G. Melatonin receptor agonist-induced reduction of SNP-released nitric oxide and cGMP production in isolated human non-pigmented ciliary epithelial cells. Exp Eye Res. 2013;107:1–10.
  • Crooke A, Guzman-Aranguez A, and Aránzazu M, et al. Effect of melatonin and analogues on corneal wound healing: involvement of Mt2 melatonin receptor. Curr Eye Res. 2015;40(1):56–65.
  • Navarro Gil FJ, Huete-Toral F, Crooke A, et al. Effect of melatonin and its analogs on tear secretion. J Pharmacol Exp Ther. 2019;371(1):186–190.
  • Descamps-François C, Yous S, and Chavatte P, et al. Design and synthesis of naphthalenic dimers as selective MT1 melatoninergic ligands. J Med Chem. 2003;46(7):1127–1129.
  • Sun L-Q, Chen J, and Takaki K, et al. Design and synthesis of benzoxazole derivatives as novel melatoninergic ligands. Bioorg Med Chem Lett. 2004;14(5):1197–1200.
  • Mésangeau C, Pérès B, and Descamps-François C, et al. Design, synthesis and pharmacological evaluation of novel naphthalenic derivatives as selective MT1 melatoninergic ligands. Bioorg Med Chem. 2010;18(10):3236–3426.
  • Di Giacomo B, Bedini A, and Spadoni G, et al. Synthesis and biological activity of new melatonin dimeric derivatives. Bioorg Med Chem. 2007;15(13):4643–4650.
  • Rivara S, Pala D, Lodola A, et al. MT1-selective melatonin receptor ligands: synthesis, pharmacological evaluation, and molecular dynamics investigation of N-{[(3-O-substituted)anilino]alkyl}amides. ChemMedChem. 2012;7(11):1954–1964.
  • Stein RM, Kang HJ, and McCorvy JD, et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature. 2020;579(7800):609–614.
  • Jansen JM, Copinga S, and Gruppen G, et al. The high affinity melationin binding site probed with conformationally restricted ligand–I. pharmacophore and minireceptor models. Bioorg Med Chem. 1996;4(8):1321–1332.
  • Spadoni G, Balsamini C, and Diamantini G, et al. Conformationally restrained melatonin analogues: synthesis, binding affinity for the melatonin receptor, evaluation of the biological activity, and molecular modeling study. J Med Chem. 1997;40(13):1990–2002.
  • Morellato L, Lefas-Le Gall M, and Langlois M, et al. Synthesis of new N-(arylcyclopropyl)acetamides and N-(arylvinyl)acetamides as conformationally-restricted ligands for melatonin receptors. Bioorg Med Chem Lett. 2013;23(2):430–434.
  • Sun L-Q, Chen J, and Takaki K, et al. Design and synthesis of benzoxazole derivatives as novel melatoninergic ligands. Bioorg Med Chem Lett. 2004;14(5):1197–1200.
  • Rivara S, Diamantini G, and Di Giacomo B, et al. Reassessing the melatonin pharmacophore–enantiomeric resolution, pharmacological activity, structure analysis, and molecular modeling of a constrained chiral melatonin analogue. Bioorg Med Chem. 2006;14(10):3383–3391.
  • Mor M, Spadoni G, and Di Giacomo B, et al. Synthesis, pharmacological characterization and QSAR studies on 2-substituted indole melatonin receptor ligands. Bioorg Med Chem. 2001;9(4):1045–1057.
  • Spadoni G, Balsamini C, and Diamantini G, et al. 2-N-Acylaminoalkylindoles: design and quantitative structure −activity relationship studies leading to MT2-selective melatonin antagonists. J Med Chem. 2001;44(18):2900–2912.
  • Bedini A, Lucarini S, and Spadoni G, et al. Toward the definition of stereochemical requirements for MT2-selective antagonists and partial agonists by studying 4-phenyl-2-propionamidotetralin derivatives. J Med Chem. 2011;54(24):8362–8372.
  • Rivara S, Mor M, and Silva C, et al. Three-dimensional quantitative structure-activity relationship studies on selected MT1 and MT2 melatonin receptor ligands: requirements for subtype selectivity and intrinsic activity modulation. J Med Chem. 2003;46(8):1429–1439.
  • Rivara S, Lorenzi S, and Mor M, et al. Analysis of structure-activity relationships for MT2 selective antagonists by melatonin MT1 and MT2 receptor models. J Med Chem. 2005;48(12):4049–4060.
  • Lucini V, Pannacci M, and Scaglione F, et al. Tricyclic alkylamides as melatonin receptor ligands with antagonist or inverse agonist activity. J Med Chem. 2004;47(17):4202–4212.
  • Spadoni G, Bedini A, Diamantini G, et al. Synthesis, enantiomeric resolution, and structure-activity relationship study of a series of 10,11-dihydro-5H-dibenzo[a,d]cycloheptene MT 2 receptor antagonists. ChemMedChem. 2007;2(12):1741–1749.
  • Devavry S, Legros C, and Brasseur C, et al. Description of the constitutive activity of cloned human melatonin receptors hMT1 and hMT2 and discovery of inverse agonists. J Pineal Res. 2012;53(1):29–37.
  • Bedini A, Spadoni G, and Gatti G, et al. Design and synthesis of N-(3,3-diphenylpropenyl)alkanamides as a novel class of high-affinity MT2-selective melatonin receptor ligands. J Med Chem. 2006;49(25):7393–7403.
  • Ochoa-Sanchez R, Comai D, and Lacoste B, et al. Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. J Neurosci. 2011;31(50):18439–18452.
  • Ochoa-Sanchez R, Rainer Q, and Comai S, et al. Anxiolytic effects of the melatonin MT2 receptor partial agonist UCM765: comparison with melatonin and diazepam. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39(2):318–325.
  • Ferlenghi F, Mari M, Gobbi G, et al. N-(anilinoethyl)amide melatonergic ligands with improved water solubility and metabolic Stability. ChemMedChem. 2021;16(19):3071–3082.
  • Rivara S, Vacondio F, Fioni A, et al. N-(anilinoethyl)amides: design and synthesis of metabolically stable, selective melatonin receptor ligands. ChemMedChem. 2009;4(10):1746–1755.
  • Posa L, De Gregorio D, and Gobbi G, et al. Targeting melatonin MT2 receptors: a novel pharmacological avenue for inflammatory and neuropathic pain. Curr Med Chem. 2018;25(32):3866–3882.
  • Posa L, Lopez-Canul M, and Rullo L, et al. Nociceptive responses in melatonin MT2 receptor knockout mice compared to MT1 and double MT1/MT2 receptor knockout mice. J Pineal Res. 2020;69(3):e12671.
  • Spadoni G, Bedini A, and Lucarini S, et al. Highly potent and selective mt 2 melatonin receptor full agonists from conformational analysis of 1-Benzyl--acylaminomethyl-tetrahydroquinolines. J Med Chem. 2015;58(18):7512–7525.
  • Comai S, De Gregorio D, and Posa L, et al. Dysfunction of serotonergic activity and emotional responses across the light-dark cycle in mice lacking melatonin MT2 receptors. J Pineal Res. 2020;69(1):e12653.
  • Elisi GM, Bedini A, Scalvini L, et al. Chiral recognition of flexible melatonin receptor ligands induced by conformational equilibria. Molecules. 2020;25(18):4057.
  • Palczewski K, Kumasaka T, and Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 2000;289(5480):739–745.
  • Pala D, Lodola A, and Bedini A, et al. Homology models of melatonin receptors: challenges and recent advances. Int J Mol Sci. 2013;14(4):8093–8121.
  • Pala D, Beuming T, and Sherman W, et al. Structure-based virtual screening of MT2 melatonin receptor: influence of template choice and structural refinement J Chem Inf Model . 2013;53(4):821–835.
  • Clément N, Renault N, and Guillaume J-L, et al. Importance of the second extracellular loop for melatonin MT1 receptor function and absence of melatonin binding in GPR50. Br J Pharmacol. 2018;175(16):3281–3297.
  • Okamoto H, Miyauchi H, and Inoue A, et al. Cryo-EM structure of the human MT1-Gi signaling complex. Nat Struct Mol Biol. 2021;28(8):694–701.
  • Yan J-H, Su H-R, and Boutin JA, et al. High-throughput screening assay for new ligands at human melatonin receptors. Acta Pharmacol Sin. 2008;29(12):1515–1521.
  • Boutin JA, Bonnaud A, and Brasseur C, et al. New MT2 melatonin receptor-selective ligands: agonists and partial agonists. Int J Mol Sci. 2017;18(7):1347.
  • Legros C, Brasseur C, and Delagrange P, et al. Alternative radioligands for investigating the molecular pharmacology of melatonin receptors. J Pharmacol Exp Ther. 2016;356(3):681–692.
  • Patel N, Huang XP, and Grandner JM, et al. Structure-based discovery of potent and selective melatonin receptor agonists. eLife. 2020;9:e53779.
  • Liu L, and Jockers R. Structure-based virtual screening accelerates GPCR drug discovery. Trends Pharmacol Sci. 2020;41(6):382–384.
  • Karamitri A, and Jockers R. Melatonin in type 2 diabetes mellitus and obesity. Nat Rev Endocrinol. 2019;15(2):105–125.
  • Owino S, Buonfiglio DDC, and Tchio C, et al. Melatonin signaling a key regulator of glucose homeostasis and energy metabolism. Front Endocrinol (Lausanne). 2019;10:488.
  • Gurunathan S, Qasim M, and Kang M-H, et al. Role and therapeutic potential of melatonin in various type of cancers. Onco Targets Ther. 2021;14:2019–2052.
  • Crooke A, Colligris B, and Pintor J. Update in glaucoma medicinal chemistry: emerging evidence for the importance of melatonin analogues. Curr Med Chem. 2012;19(21):3508–3522.
  • Scuderi L, Davinelli S, and Iodice CM, et al. Melatonin: implications for ocular disease and therapeutic potential. Curr Pharm Des. 2019;25(39):4185–4191.
  • Posa L, De Gregorio D, Gobbi G et al. Targeting Melatonin MT2 Receptors: A Novel Pharmacological Avenue for Inflammatory and Neuropathic Pain. Curr Med Chem. 2018;25(32):3866–3882.
  • Kinker GS, Ostrowski LH, and Ribeiro PAC, et al. MT1 and MT2 melatonin receptors play opposite roles in brain cancer progression. J Mol Med (Berl). 2021;99(2):289–301.
  • Oertel J, Golz L, and Kirch W. Elucidation of Neu-P11 metabolism in urine of volunteers by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2013;1278:69–75.
  • Zemlan FP, Mulchahey JJ, and Scharf MB, et al. The efficacy and safety of the melatonin agonist beta-methyl-6-chloromelatonin in primary insomnia: a randomized, placebo-controlled, crossover clinical trial. J Clin Psychiatry. 2005;66(3):384–390.
  • Journé A-S, Habib SAM, Dodda BR, et al. N1-linked melatonin dimers as bivalent ligands targeting dimeric melatonin receptors. MedChemComm. 2014;5:792–796.
  • Karamitri A, Sadek MS, and Journé A-S, et al. O-linked melatonin dimers as bivalent ligands targeting dimeric melatonin receptors. Eur J Med Chem. 2019;85:349–356.
  • Oishi A, Cecon E, and Jockers R. Melatonin receptor signaling: impact of receptor oligomerization on receptor function. Int Rev Cell Mol Biol. 2018;38:59–77.
  • Legros C, Devavry S, and Caignard S, et al. Melatonin MT₁ and MT₂ receptors display different molecular pharmacologies only in the G-protein coupled state. Br J Pharmacol. 2014;171(1):186–201.
  • Elisi GM, Scalvini L, and Lodola A, et al. Free-energy simulations support a lipophilic binding route for melatonin receptors. J Chem Inf Model. 2022;62(1):210–222.
  • De Bodinat C, Guardiola-Lemaître B, and Mocaër E, et al. Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov. 2010;9(8):628–642.
  • Gerbier R, Ndiaye-Lobry D, and Martínez de Morentin PB, et al. Pharmacological evidence for transactivation within melatonin MT2 and serotonin 5-HT2C receptor heteromers in mouse brain. FASEB J. 2021;35(1):e21161.
  • Hasan M, Marzouk MA, and Adhikari S, et al. Pharmacological, mechanistic, and pharmacokinetic assessment of novel melatonin-tamoxifen drug conjugates as breast cancer drugs. Mol Pharmacol. 2019;96(2):272–296.
  • Spadoni G, Bedini A, and Furiassi L, et al. Identification of bivalent ligands with melatonin receptor agonist and fatty acid amide hydrolase (FAAH) inhibitory activity that exhibit ocular hypotensive effect in the rabbit. J Med Chem. 2018;61(17):7902–7916.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.