1,348
Views
27
CrossRef citations to date
0
Altmetric
Review

The importance of sulfur-containing motifs in drug design and discovery

& ORCID Icon
Pages 501-512 | Received 02 Jan 2022, Accepted 17 Feb 2022, Published online: 25 Feb 2022

References

  • Ilardi EA, Vitaku E, Njardarson JT. Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J Med Chem. 2014;57(7):2832–2842.
  • Scott KA, Njardarson JT. Analysis of US FDA-Approved drugs containing sulfur atoms. Top Curr Chem. 2018;376(1):5.
  • Feng M, Tang B, and H Liang S, et al. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr Top Med Chem. 2016;16(11):1200–1216.
  • Wang N, Saidhareddy P, Jiang X. Construction of sulfur-containing moieties in the total synthesis of natural products. Nat Prod Rep. 2020;37(2):246–275.
  • Wang M, Jiang X. Prospects and challenges in organosulfur chemistry. ACS Sustain Chem Eng. 2022;10(2):671–677.
  • Pfaff AR, Beltz J, King E, et al. Medicinal thiols: current status and new perspectives. Mini Rev Med Chem. 2020;20(6):513–529.
  • Kuppast B, Fahmy H. Thiazolo[4,5-d]pyrimidines as a privileged scaffold in drug discovery. Eur J Med Chem. 2016;113:198–213.
  • Su M, Gong X, Liu F. An update on the emerging approaches for histone deacetylase (HDAC) inhibitor drug discovery and future perspectives. Expert Opin Drug Discov. 2021;16(7):745–761.
  • Natesh R, Schwager SL, Evans HR, et al. Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme. Biochemistry. 2004;43(27):8718–8724.
  • Mustafa M, Abd El-Hafeez AA, Abdelhamid D, et al. A first-in-class anticancer dual HDAC2/FAK inhibitors bearing hydroxamates/benzamides capped by pyridinyl-1,2,4-triazoles. Eur J Med Chem. 2021;222:113569.
  • Roshdy E, Mustafa M, Shaltout AE, et al. Selective SIRT2 inhibitors as promising anticancer therapeutics: an update from 2016 to 2020. Eur J Med Chem. 2021;224:113709.
  • Zhu H, Dronamraju V, Xie W, et al. Sulfur-containing therapeutics in the treatment of alzheimer’s disease. Med Chem Res. 2021;30(2):305–352.
  • Ham YH, Jason Chan KK, Chan W. Thioproline serves as an efficient antioxidant protecting human cells from oxidative stress and improves cell viability. Chem Res Toxicol. 2020;33(7):1815–1821.
  • Gim HJ, Park J, Jung ME, et al. Conformational dynamics of androgen receptors bound to agonists and antagonists. Sci Rep. 2021;11(1):15887.
  • Yokoyama T, Kashihara M, Mizuguchi M. Repositioning of the anthelmintic drugs bithionol and triclabendazole as transthyretin amyloidogenesis inhibitors. J Med Chem. 2021;64(19):14344–14357.
  • Singh S, Jaigirdar AA, Mulkey F, et al. FDA approval summary: lurbinectedin for the treatment of metastatic small cell lung cancer. Clin Cancer Res. 2021;27(9):2378–2382.
  • Zasowski EJ, Rybak JM, Rybak MJ. The beta-Lactams strike back: ceftazidime-Avibactam. Pharmacotherapy. 2015;35(8):755–770.
  • Blasi F, Concia E, Del Prato B, et al. The most appropriate therapeutic strategy for acute lower respiratory tract infections: a delphi-based approach. J Chemother. 2017;29(5):274–286.
  • Heo YA. Imipenem/cilastatin/relebactam: a review in Gram-Negative bacterial infections. Drugs. 2021;81(3):377–388.
  • Stewart NK, Smith CA, Frase H, et al. Kinetic and structural requirements for carbapenemase activity in GES-type beta-lactamases. Biochemistry. 2015;54(2):588–597.
  • Caveney NA, Li FK, Strynadka NC. Enzyme structures of the bacterial peptidoglycan and wall teichoic acid biogenesis pathways. Curr Opin Struct Biol. 2018;53:45–58.
  • Mercuro NJ, Veve MP. Clinical utility of lefamulin: if Not Now, When? Curr Infect Dis Rep. 2020;22(9):25.
  • Sato T, Yamawaki K. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin Infect Dis. 2019;69(Suppl 7):S538–S543.
  • Eyal Z, Matzov D, Krupkin M, et al. A novel pleuromutilin antibacterial compound, its binding mode and selectivity mechanism. Sci Rep. 2016 13; 6(1): 39004.
  • Kaiser M, Bray MA, Cal M, et al. Antitrypanosomal activity of fexinidazole, a new oral nitroimidazole drug candidate for treatment of sleeping sickness. Antimicrob Agents Chemother. 2011;55(12):5602–5608.
  • Betu Ku Mesu V K, Mutombo Kalonji W, Bardonneau C, et al. Oral fexinidazole for stage 1 or early stage 2 African Trypanosoma brucei gambiense trypanosomiasis: a prospective, multicentre, open-label, cohort study. Lancet Glob Health. 2021;9(7):e999–e1008.
  • Pathania S, Narang RK, Rawal RK. Role of sulphur-heterocycles in medicinal chemistry: an update. Eur J Med Chem. 2019;180:486–508.
  • Todd B, Tchesnokov EP, Gotte M. The active form of the influenza cap-snatching endonuclease inhibitor baloxavir marboxil is a tight binding inhibitor. J Biol Chem. 2021;296:100486.
  • Omoto S, Speranzini V, Hashimoto T, et al. Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil. Sci Rep. 2018;8(1):9633.
  • Yadav U, Sakla AP, Tokala R, et al. Design and synthesis of 5‐Morpholino‐Thiophene‐Indole/ Oxindole hybrids as cytotoxic agents. ChemistrySelect. 2020;5(14):4356–4363.
  • Aslam R, Toomey S, Hennessy B. P-287 Preclinical evaluation of alpelisib (PI3K inhibitor) and its synergistic effect in combination with ribociclib (CDK 4/6 inhibitor) in colorectal cancer. Ann Oncol. 2021;32:S194–S195.
  • Yoshida M, Tateishi R, Hiroi S, et al. Effects of lusutrombopag on post-invasive procedural bleeding in thrombocytopenic patients with chronic liver disease. Adv Ther. 2022;39(1):379–380.
  • Davenport AJ, Neagoe I, Brauer N, et al. Eliapixant is a selective P2X3 receptor antagonist for the treatment of disorders associated with hypersensitive nerve fibers. Sci Rep. 2021;11(1):19877.
  • Ansari M, Shokrzadeh M, Karima S, et al. New thiazole-2(3H)-thiones containing 4-(3,4,5-trimethoxyphenyl) moiety as anticancer agents. Eur J Med Chem. 2020;185:111784.
  • He X, Hui Z, Xu L, et al. Medicinal chemistry updates of novel HDACs inhibitors (2020 to present). Eur J Med Chem. 2021;227:113946.
  • Sharma PC, Bansal KK, Sharma A, et al. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur J Med Chem. 2020;188:112016.
  • Martin-Acosta P, Xiao X. PROTACs to address the challenges facing small molecule inhibitors. Eur J Med Chem. 2021;210:112993.
  • Konstantinidou M, Li J, Zhang B, et al. PROTACs- a game-changing technology. Expert Opin Drug Discov. 2019;14(12):1255–1268.
  • Szeliga M. Thiadiazole derivatives as anticancer agents. Pharm Rep. 2020;72(5):1–22.
  • Baburajeev CP, Mohan CD, Rangappa S, et al. Identification of novel class of triazolo-Thiadiazoles as potent inhibitors of human heparanase and their anticancer activity. BMC Cancer. 2017;17(1):235.
  • Konno S, Kobayashi K, Senda M, et al. 3CL protease inhibitors with an electrophilic arylketone moiety as anti-SARS-CoV-2 agents. J Med Chem. 2021. DOI:https://doi.org/10.1021/acs.jmedchem.1c00665. in press.
  • Bentley R. Role of sulfur chirality in the chemical processes of biology. Chem Soc Rev. 2005;34(7):609–624.
  • Surur AS, Schulig L, Link A. Interconnection of sulfides and sulfoxides in medicinal chemistry. Arch Pharm (Weinheim). 2019;352(1):e1800248.
  • Liebman SE, Le TH. Eat your broccoli: oxidative stress, NRF2, and sulforaphane in chronic kidney disease. Nutrients. 2021;13(1):266.
  • Li K, Wang M, Jiang X. Full-Spectrum fluoromethyl sulfonation via modularized multicomponent coupling. CCS Chemistry. 2021:1735–1743. DOI: https://doi.org/10.31635/ccschem.021.202100980.
  • Meng Y, Wang M, Jiang X. Multicomponent reductive cross‐Coupling of an inorganic sulfur dioxide surrogate: straightforward construction of diversely functionalized sulfones. Angew Chem Int Ed Engl. 2019;132(3):1362–1369.
  • Li Y, Chen S, Wang M, et al. Sodium dithionite-Mediated decarboxylative sulfonylation: facile access to tertiary sulfones. Angew Chem Int Ed Engl. 2020;59(23):8907–8911.
  • Meng Y, Wang M, and Jiang X. Multicomponent reductive cross‐Coupling of an inorganic sulfur dioxide surrogate: straightforward construction of diversely functionalized sulfones. Angew Chem Int Ed Engl. 2019;132(3):1362–1369.
  • Regueiro-Ren A. Cyclic sulfoxides and sulfones in drug design. Adv Heterocyclic Chem. 2021;134:1–30.
  • Shirley M. Maralixibat: first Approval. Drugs. 2022;82(1):71–76.
  • Jonasch E J, Donskov F, Iliopoulos O, et al. Belzutifan for renal cell carcinoma in von Hippel–Lindau disease. N Engl J Med. 2021;385(22):2036–2046.
  • Rombouts FJR, Kusakabe KI, Alexander R, et al. JNJ-67569762, A 2-Aminotetrahydropyridine-Based selective BACE1 inhibitor targeting the S3 pocket: from discovery to clinical candidate. J Med Chem. 2021;64(19):14175–14191.
  • Zhou M, Luo RH, Hou XY, et al. Synthesis, biological evaluation and molecular docking study of N-(2-methoxyphenyl)-6-((4-nitrophenyl)sulfonyl)benzamide derivatives as potent HIV-1 vif antagonists. Eur J Med Chem. 2017;129:310–324.
  • Medellin B, Yang W, Konduri S, et al. Targeted covalent inhibition of small CTD phosphatase 1 to promote the degradation of the REST transcription factor in human cells. J Med Chem. 2022;65(1):507–519.
  • Lucking U. Sulfoximines: a neglected opportunity in medicinal chemistry. Angew Chem Int Ed Engl. 2013;52(36):9399–9408.
  • Mäder P, Kattner L. Sulfoximines as rising stars in modern drug discovery? Current status and perspective on an emerging functional group in medicinal chemistry. J Med Chem. 2020;63(23):14243–14275.
  • Frings M, Bolm C, Blum A, et al. Sulfoximines from a medicinal chemist’s perspective: physicochemical and in vitro parameters relevant for drug discovery. Eur J Med Chem. 2017;126:225–245.
  • Han Y, Xing K, Zhang J, et al. Application of sulfoximines in medicinal chemistry from 2013 to 2020. Eur J Med Chem. 2021;209:112885.
  • Foote KM, Nissink JWM, McGuire T, et al. Discovery and characterization of AZD6738, a potent inhibitor of ataxia telangiectasia mutated and rad3 related (ATR) kinase with application as an anticancer agent. J Med Chem. 2018;61(22):9889–9907.
  • Altenburg B, Frings M, Schobel JH, et al. Chiral analogues of PFI-1 as BET inhibitors and their functional role in myeloid malignancies. ACS Med Chem Lett. 2020;11(10):1928–1934.
  • Sirvent JA, Lucking U. novel pieces for the emerging picture of sulfoximines in drug discovery: synthesis and evaluation of sulfoximine analogues of marketed drugs and advanced clinical candidates. ChemMedChem. 2017;12(7):487–501.
  • Sowaileh MF, Hazlitt RA, Colby DA. Application of the pentafluorosulfanyl group as a bioisosteric replacement. ChemMedChem. 2017;12(18):1481–1490.
  • Nandi GC, Arvidsson PI. Sulfonimidamides: synthesis and applications in preparative organic chemistry. Adv Synth Catal. 2018;360(16):2976–3001.
  • Teng M, Ficarro SB, Yoon H, et al. Rationally designed covalent BCL6 inhibitor that targets a tyrosine residue in the homodimer interface. ACS Med Chem Lett. 2020;11(6):1269–1273.
  • Udompholkul P, Baggio C, Gambini L, et al. Lysine covalent antagonists of melanoma inhibitors of apoptosis protein. J Med Chem. 2021;64(21):16147–16158.
  • Gambini L, Udompholkul P, Baggio C, et al. Design, synthesis, and structural characterization of lysine covalent BH3 peptides targeting Mcl-1. J Med Chem. 2021;64(8):4903–4912.
  • Christensen SB. Drugs that changed society: history and current status of the early antibiotics: salvarsan, sulfonamides, and beta-Lactams. Molecules. 2021;26(19):6057.
  • Zhao C, Rakesh KP, Ravidar L, et al. Pharmaceutical and medicinal significance of sulfur (S(VI))-Containing motifs for drug discovery: a critical review. Eur J Med Chem. 2019;162:679–734.
  • Wan Y, Fang G, Chen H, et al. Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur J Med Chem. 2021;226:113837.
  • Skudalski L, Waldman R, Kerr PE, et al. Melanoma: an update on systemic therapies. J Am Acad Dermatol. 2021. https://doi.org/10.1016/j.jaad.2021.09.075. in press.
  • Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: a 2022 update. Pharmacol Res. 2021;175:106037.
  • Kovesdy CP, Adebiyi A, Rosenbaum D, et al. Novel treatments from inhibition of the intestinal sodium-Hydrogen exchanger 3. Int J Nephrol Renovasc Dis. 2021;14:411–420.
  • Waksal JA, Tremblay D, Mascarenhas J. Clinical utility of fedratinib in myelofibrosis. Onco Targets Ther. 2021;14:4509–4521.
  • Deeks ED. Odevixibat: first approval. Drugs. 2021;81(15):1781–1786.
  • Supuran CT. Emerging role of carbonic anhydrase inhibitors. Clin Sci (Lond). 2021;135(10):1233–1249.
  • McDonald PC, Chia S, Bedard PL, et al. A phase 1 study of SLC-0111, a novel inhibitor of carbonic anhydrase IX, in patients with advanced solid tumors. Am J Clin Oncol. 2020;43(7):484–490.
  • Angeli A, Carta F, Nocentini A, et al. Carbonic anhydrase inhibitors targeting metabolism and tumor microenvironment. Metabolites. 2020;10(10):412.
  • Supuran CT. Carbonic anhydrase inhibitors: an update on experimental agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs. 2021;30(12):1–12.
  • Moquin SA, Simon O, Karuna R, et al. NITD-688, a pan-serotype inhibitor of the dengue virus NS4B protein, shows favorable pharmacokinetics and efficacy in preclinical animal models. Sci Transl Med. 2021;13(579). https://doi.org/10.1126/scitranslmed.abb2181.
  • Bialer M, Johannessen SI, Koepp MJ, et al. Progress report on new antiepileptic drugs: a summary of the fifteenth Eilat conference on new antiepileptic drugs and devices (EILAT XV). I drugs in preclinical and early clinical development. Epilepsia. 2020;61(11):2340–2364.
  • Aicher TD, Van Huis CA, Hurd AR, et al. Discovery of LYC-55716: a potent, selective, and orally bioavailable retinoic acid receptor-Related Orphan Receptor-gamma (RORgamma) agonist for use in treating cancer. J Med Chem. 2021;64(18):13410–13428.
  • Kang EG, Wu S, Gupta A, et al. A phase I randomized controlled trial to evaluate safety and clinical effect of topically applied GSK2981278 ointment in a psoriasis plaque test. Br J Dermatol. 2018;178(6):1427–1429.
  • Chen L, Su M, Jin Q, et al. Discovery of chromane-6-sulfonamide derivative as a potent, selective, and orally available novel retinoic acid Receptor-Related Orphan Receptor gammat inverse agonist. J Med Chem. 2021;64(21):16106–16131.
  • Chan P, Ding HT, Liederer BM, et al. Translational and pharmacokinetic-pharmacodynamic application for the clinical development of GDC-0334, a novel TRPA1 inhibitor. Clin Transl Sci. 2021;14(5):1945–1954.
  • Zaraei SO, Abduelkarem AR, Anbar HS, et al. Sulfamates in drug design and discovery: pre-clinical and clinical investigations. Eur J Med Chem. 2019;179:257–271.
  • Winum JY, Scozzafava A, Montero JL, et al. Sulfamates and their therapeutic potential. Med Res Rev. 2005;25(2):186–228.
  • Reitz AB, Smith GR, Parker MH. The role of sulfamide derivatives in medicinal chemistry: a patent review (2006–2008). Expert Opin Ther Pat. 2009;19(10):1449–1453.
  • Winum JY, Scozzafava A, Montero JL, et al. Therapeutic potential of sulfamides as enzyme inhibitors. Med Res Rev. 2006;26(6):767–792.
  • Anbar HS, Isa Z, Elounais JJ, et al. Steroid sulfatase inhibitors: the current landscape. Expert Opin Ther Pat. 2021;31(6):453–472.
  • Potter BVL. Sulfation pathways: steroid sulphatase inhibition via aryl sulphamates: clinical progress, mechanism and future prospects. J Mol Endocrinol. 2018;61(2):T233–T252.
  • Foster PA. Steroid sulphatase and its inhibitors: past, present, and future. Molecules. 2021;26(10):2852.
  • Dasko M, Demkowicz S, Biernacki K, et al. Recent progress in the development of steroid sulphatase inhibitors - examples of the novel and most promising compounds from the last decade. J Enzyme Inhib Med Chem. 2020;35(1):1163–1184.
  • Thomas MP, Potter BV. Discovery and development of the aryl O-Sulfamate pharmacophore for oncology and women’s health. J Med Chem. 2015;58(19):7634–7658.
  • Bryant JL, Gieling RG, Meredith SL, et al. Novel carbonic anhydrase IX-targeted therapy enhances the anti-tumour effects of cisplatin in small cell lung cancer. Int J Cancer. 2018;142(1):191–201.
  • Williams KJ, Gieling RG. preclinical evaluation of ureidosulfamate carbonic anhydrase IX/XII inhibitors in the treatment of cancers. Int J Mol Sci. 2019;20(23):6080.
  • Langston SP, Grossman S, England D, et al. Discovery of TAK-981, a first-in-Class inhibitor of SUMO-Activating enzyme for the treatment of cancer. J Med Chem. 2021;64(5):2501–2520.
  • Barrow AS, Smedley CJ, Zheng Q, et al. The growing applications of SuFEx click chemistry. Chem Soc Rev. 2019;48(17):4731–4758.
  • Wei M, Liang D, Cao X, et al. A Broad-Spectrum catalytic amidation of sulfonyl fluorides and fluorosulfates. Angew Chem Int Ed Engl. 2021;60(13):7397–7404.
  • Mahapatra S, Woroch CP, Butler TW, et al. SuFEx activation with ca(NTf2)2: a unified strategy to access sulfamides, sulfamates, and sulfonamides from S(VI) fluorides. Org Lett. 2020;22(11):4389–4394.
  • Sutanto F, Konstantinidou M, Domling A. Covalent inhibitors: a rational approach to drug discovery. RSC medicinal chemistry. 2020;11(8):876–884
  • Wang N, Yang B, Fu C, et al. Genetically Encoding Fluorosulfate-l-tyrosine to react with lysine, histidine, and tyrosine via SuFEx in proteins in vivo. J Am Chem Soc. 2018;140(15):4995–4999.
  • Gehringer M, Laufer SA. Emerging and Re-Emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. J Med Chem. 2019;62(12):5673–5724.
  • Baggio C, Udompholkul P, Gambini L, et al. Aryl-fluorosulfate-based lysine covalent Pan-Inhibitors of Apoptosis Protein (IAP) Antagonists with cellular efficacy. J Med Chem. 2019;62(20):9188–9200.
  • Ippolito JA, Niu H, Bertoletti N, et al. Covalent inhibition of Wild-Type HIV-1 reverse transcriptase using a fluorosulfate warhead. ACS Med Chem Lett. 2021;12(2):249–255.
  • Lücking U. Neglected sulfur(vi) pharmacophores in drug discovery: exploration of novel chemical space by the interplay of drug design and method development. Org Chem Front. 2019;6(8):1319–1324.
  • Tilby MJ, Willis MC. How do we address neglected sulfur pharmacophores in drug discovery? Expert Opin Drug Discov. 2021;16(11):1227–1231.
  • Dalton SE, Campos S. Covalent small molecules as enabling platforms for drug discovery. Chembiochem. 2020;21(8):1080–1100.
  • Lu X, Smaill JB, Patterson AV, et al. Discovery of cysteine-targeting covalent protein kinase inhibitors. J Med Chem. 2022;65(1):58–83.
  • Shultz Z, Scattolin T, Wojtas L, et al. Developing a SARS-CoV-2 Antigen Test Using Engineered Affinity Proteins. ChemRxiv. 2021. https://doi.org/10.26434/chemrxiv.14718603.v2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.