475
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in computer-aided drug design for type 2 diabetes

, &
Pages 461-472 | Received 02 Nov 2021, Accepted 24 Feb 2022, Published online: 07 Mar 2022

References

  • Ogurtsova K, Rfj D, Huang Y, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.
  • Alejandro EU, Mamerto TP, and Chung G, et al. Gestational diabetes mellitus: a harbinger of the vicious cycle of diabetes. Int J Mol Sci. 2020;21(14).
  • Gaal Z, Balogh I. Monogenic forms of diabetes mellitus. Exp Suppl. 2019;111:385–416.
  • Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–188.
  • Zimmermann LM, Baptista MS, Tardivo JP, et al. Type II diabetes patients under sildenafil citrate: case series showing benefits and a side effect. Case Rep Med. 2020;2020:4065452.
  • Tramontana M, Hansel K, Bianchi L, et al. Allergic contact dermatitis caused by a glucose monitoring system: an emerging side-effect of diabetes medical devices. J Eur Acad Dermatol Venereol. 2020;34(5):e223–e225.
  • Kuo C, Foon D, Waters K, et al. Central diabetes insipidus: a rare unreported side effect of temozolomide in pediatrics. Pediatr Blood Cancer. 2020;67(12):e28516.
  • Braunwald E. Diabetes, heart failure, and renal dysfunction: the vicious circles. Prog Cardiovasc Dis. 2019;62(4):298–302.
  • Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.
  • Bodmer M, Meier C, Krahenbuhl S, et al. Metformin, sulfonylureas, or other antidiabetes drugs and the risk of lactic acidosis or hypoglycemia: a nested case-control analysis. Diabetes Care. 2008;31(11):2086–2091.
  • Fuchtenbusch M, Standl E, Schatz H. Clinical efficacy of new thiazolidinediones and glinides in the treatment of type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2000;108(3):151–163.
  • Pfeiffer AF, Klein HH. The treatment of type 2 diabetes. Dtsch Arztebl Int. 2014;111(5):69–81, 82.
  • Padhi S, Nayak AK, Behera A. Type II diabetes mellitus: a review on recent drug based therapeutics. Biomed Pharmacother. 2020;131:110708. *A classic review of diabetes.
  • Lu S, Jiang Y, Lv J, et al. Molecular docking and molecular dynamics simulation studies of GPR40 receptor–agonist interactions. J Mol Graphics Modell. 2010;28(8):766–774.
  • Yuan S, Yu B, Liu HM. New drug approvals for 2019: synthesis and clinical applications. Eur J Med Chem. 2020;205:112667.
  • Fox S, Farr-Jones S, Sopchak L, et al. High-throughput screening: update on practices and success. J Biomol Screen. 2006;11(7):864–869.
  • Basak SC. Recent developments and future directions at current computer aided drug design. Curr Comput Aided Drug Des. 2013;9(1):1.
  • Hurle MR, Yang L, Xie Q, et al. Computational drug repositioning: from data to therapeutics. Clin Pharmacol Ther. 2013;93(4):335–341.
  • Macalino SJ, Gosu V, Hong S, et al. Role of computer-aided drug design in modern drug discovery. Arch Pharm Res. 2015;38(9):1686–1701.
  • Yu W, MacKerell AJ. Computer-aided drug design methods. Methods Mol Biol. 2017;1520:85–106.
  • Edwards G, Winstanley PA, Ward SA. Clinical pharmacokinetics in the treatment of tropical diseases. Some applications and limitations. Clin Pharmacokinet. 1994;27(2):150–165.
  • Scarpino A, Ferenczy GG, Keseru GM. Covalent docking in drug discovery: scope and limitations. Curr Pharm Des. 2020;26(44):5684–5699.
  • Sacan A, Ekins S, Kortagere S. Applications and limitations of in silico models in drug discovery. Methods Mol Biol. 2012;910:87–124.
  • Imai M, Jobo T, Sato R, et al. Medroxyprogesterone acetate therapy for patients with adenocarcinoma of the endometrium who wish to preserve the uterus-usefulness and limitations. Eur J Gynaecol Oncol. 2001;22(3):217–220.
  • Baig MH, Ahmad K, Roy S, et al. Computer aided drug design: success and limitations. Curr Pharm Des. 2016;22(5):572–581.
  • Fukunishi Y. Structure-based drug screening and ligand-based drug screening with machine learning. Comb Chem High Throughput Screen. 2009;12(4):397–408.
  • Aparoy P, Reddy KK, Reddanna P. Structure and ligand based drug design strategies in the development of novel 5- LOX inhibitors. Curr Med Chem. 2012;19(22):3763–3778.
  • Lionta E, Spyrou G, Vassilatis DK, et al. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem. 2014;14(16):1923–1938.
  • Majekova M. Ligand-based drug design of novel aldose reductase inhibitors. Future Med Chem. 2018;10(21):2493–2496.
  • Nandi S, Saxena M, Saxena AK. Identification of therapeutically active molecules against anthrax through structure and ligand based drug design. Curr Top Med Chem. 2018;18(27):2294–2312.
  • Wang X, Song K, Li L, et al. Structure-based drug design strategies and challenges. Curr Top Med Chem. 2018;18(12):998–1006.
  • Ferreira LG, Dos SR, Oliva G, et al. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384–13421.
  • van Montfort R, Workman P. Structure-based drug design: aiming for a perfect fit. Essays Biochem. 2017;61(5):431–437.
  • Yang GF. Structure-based drug design: strategies and challenges. Curr Pharm Des. 2014;20(5):685–686.
  • Matsumoto K, Miyao T, Funatsu K. Ranking-oriented quantitative structure-activity relationship modeling combined with assay-wise data integration. ACS Omega. 2021;6(18):11964–11973.
  • Booth RG, Selassie CD, Hansch C, et al. Quantitative structure-activity relationship of triazine-antifolate inhibition of Leishmania dihydrofolate reductase and cell growth. J Med Chem. 1987;30(7):1218–1224.
  • Hayashi M, Nakamura Y, Higashi K, et al. A quantitative structure-activity relationship study of the skin irritation potential of phenols. Toxicol in Vitro. 1999;13(6):915–922.
  • Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in drug design–a review. Curr Top Med Chem. 2010;10(1):95–115.
  • Hadni H, Elhallaoui M. 3D-QSAR, docking and ADMET properties of aurone analogues as antimalarial agents. Heliyon. 2020;6(4):e3580.
  • Garro MJ, Vega-Hissi EG, Andrada MF, et al. QSAR and 3D-QSAR studies applied to compounds with anticonvulsant activity. Expert Opin Drug Discov. 2015;10(1):37–51.
  • Kitchen DB, Decornez H, Furr JR, et al. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3(11):935–949.
  • Kontoyianni M. Docking and virtual screening in drug discovery. Methods Mol Biol. 2017;1647:255–266.
  • Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):4331.
  • Lin X, Li X, Lin X. A review on applications of computational methods in drug screening and design. Molecules. 2020;25(6):1375.
  • Sivakumar KC, Haixiao J, Naman CB, et al. Prospects of multitarget drug designing strategies by linking molecular docking and molecular dynamics to explore the protein–ligand recognition process. Drug Develop Res. 2020;81(6):685–699.
  • Hildebrand PW, Rose AS, Tiemann J. Bringing molecular dynamics simulation data into view. Trends Biochem Sci. 2019;44(11):902–913.
  • Do PC, Lee EH, Le L. Steered molecular dynamics simulation in rational drug design. J Chem Inf Model. 2018;58(8):1473–1482.
  • Cheng F, Li W, Liu G, et al. In silico admet prediction: recent advances, current challenges and future trends. Curr Top Med Chem. 2013;13(11):1273–1289.
  • Merlot C. Computational toxicology-a tool for early safety evaluation. Drug Discov Today. 2010;15(1–2):16–22.
  • Bharatam PV, Patel DS, Adane L, et al. Modeling and informatics in designing anti-diabetic agents. Curr Pharm Des. 2007;13(34):3518–3530.
  • Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 1999;20(5):649–688.
  • Sundriyal S, Viswanad B, Bharathy E, et al. New PPARgamma ligands based on 2-hydroxy-1,4-naphthoquinone: computer-aided design, synthesis, and receptor-binding studies. Bioorg Med Chem Lett. 2008;18(11):3192–3195.
  • Maltarollo VG, Togashi M, Nascimento AS, et al. Structure-based virtual screening and discovery of new PPARdelta/gamma dual agonist and PPARdelta and gamma agonists. Plos One. 2015;10(3):e118790.
  • Prabitha P, Shanmugarajan D, and Kumar T, et al. Multi-conformational frame from molecular dynamics as a structure-based pharmacophore model for mapping, screening and identifying ligands against PPAR-gamma: a new protocol to develop promising candidates. J Biomol Struct Dyn. 2020;1–11.
  • Feng XY, Jia WQ, Liu X, et al. Identification of novel PPARalpha/gamma dual agonists by pharmacophore screening, docking analysis, ADMET prediction and molecular dynamics simulations. Comput Biol Chem. 2019;78:178–189.
  • Al-Najjar BO, Wahab HA, Tengku MT, et al. Discovery of new nanomolar peroxisome proliferator-activated receptor gamma activators via elaborate ligand-based modeling. Eur J Med Chem. 2011;46(6):2513–2529.
  • Covington DK, Briscoe CA, Brown AJ, et al. The G-protein-coupled receptor 40 family (GPR40-GPR43) and its role in nutrient sensing. Biochem Soc Trans. 2006;34(Pt 5):770–773.
  • Li Z, Qiu Q, Geng X, et al. Free fatty acid receptor agonists for the treatment of type 2 diabetes: drugs in preclinical to phase II clinical development. Expert Opin Inv Drug. 2016;25(8):871–890.
  • Li Z, Xu X, Huang W, et al. Free fatty acid receptor 1 (FFAR1) as an emerging therapeutic target for type 2 diabetes mellitus: recent progress and prevailing challenges. Med Res Rev. 2018;38(2):381–425.
  • Li Z, Zhou Z, Zhang L. Current status of GPR40/FFAR1 modulators in medicinal chemistry (2016-2019): a patent review. Expert Opin Ther Pat. 2020;30(1):27–38.
  • Nath V, Ahuja R, Kumar V. Identification of novel G-protein-coupled receptor 40 (GPR40) agonists by hybrid in silico-screening techniques and molecular dynamics simulations thereof. J Biomol Struct Dyn. 2019;37(14):3764–3787.
  • Takano R, Yoshida M, Inoue M, et al. Discovery of 3-aryl-3-ethoxypropanoic acids as orally active GPR40 agonists. Bioorg Med Chem Lett. 2014;24(13):2949–2953.
  • Negoro N, Sasaki S, Mikami S, et al. Discovery of TAK-875: a potent, selective, and orally bioavailable gpr40 agonist. Acs Med Chem Lett. 2010;1(6):290–294.
  • Gajjar KA, Gajjar AK. Combiphore (structure and ligand based pharmacophore) - approach for the design of gpr40 modulators in the management of diabetes. Curr Drug Discov Technol. 2020;17(2):233–247.
  • Chagas CM, Moss S, Alisaraie L. Drug metabolites and their effects on the development of adverse reactions: revisiting Lipinski’s rule of five. Int J Pharm. 2018;549(1–2):133–149.
  • Chen X, Li H, Tian L, et al. Analysis of the physicochemical properties of acaricides based on Lipinski’s rule of five. J Comput Biol. 2020;27(9):1397–1406.
  • Li Z, Hu L, Wang X, et al. Design, synthesis, and biological evaluation of novel dual FFA1 (GPR40)/PPARdelta agonists as potential anti-diabetic agents. Bioorg Chem. 2019;92:103254.
  • Li Z, Ren Q, Wang X, et al. Discovery of HWL-088: a highly potent FFA1/GPR40 agonist bearing a phenoxyacetic acid scaffold. Bioorg Chem. 2019;92:103209.
  • Li Z, Zhou Z, Deng F, et al. Design, synthesis, and biological evaluation of novel pan agonists of FFA1, PPARgamma and PPARdelta. Eur J Med Chem. 2018;159:267–276.
  • Nongonierma AB, Cadamuro C, Le Gouic A, et al. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation. Food Chem. 2019;279:70–79.
  • Cai J, Li C, Liu Z, et al. Predicting DPP-IV inhibitors with machine learning approaches. J Comput Aided Mol Des. 2017;31(4):393–402.
  • Tanwar O, Tanwar L, Shaquiquzzaman M, et al. Structure based virtual screening of MDPI database: discovery of structurally diverse and novel DPP-IV inhibitors. Bioorg Med Chem Lett. 2014;24(15):3447–3451.
  • Xing J, Li Q, Zhang S, et al. Identification of dipeptidyl peptidase IV inhibitors: virtual screening, synthesis and biological evaluation. Chem Biol Drug Des. 2014;84(3):364–377.
  • Shen J, Deng X, and Sun R, et al. Structural optimization of pyrazolo[1,5-a]pyrimidine derivatives as potent and highly selective DPP-4 inhibitors. Eur J Med Chem. 2020 208 15;112850.
  • Grimshaw CE, Jennings A, Kamran R, et al. Trelagliptin (SYR-472, Zafatek), novel once-weekly treatment for type 2 diabetes, inhibits dipeptidyl peptidase-4 (dpp-4) via a non-covalent mechanism. Plos One. 2016;11(6):e157509.
  • Li S, Qin C, Cui S, et al. Discovery of a natural-product-derived preclinical candidate for once-weekly treatment of type 2 diabetes. J Med Chem. 2019;62(9):4779. (vol 62, pg 2348, 2019).
  • Eleftheriou P, Geronikaki A, Petrou A. PTP1b inhibition, a promising approach for the treatment of diabetes type II. Curr Top Med Chem. 2019;19(4):246–263.
  • Wu J, Ma Y, Zhou H, et al. Identification of protein tyrosine phosphatase 1B (PTP1B) inhibitors through De Novo evoluton, synthesis, biological evaluation and molecular dynamics simulation. Biochem Biophys Res Commun. 2020;526(1):273–280.
  • Gimeno A, Ardid-Ruiz A, Jose Ojeda-Montes M, et al. combined ligand- and receptor-based virtual screening methodology to identify structurally diverse protein tyrosine phosphatase 1b inhibitors. Chemmedchem. 2018;13(18):1939–1948.
  • Manoj A, Das S, Kunnath RA, et al. SGLT-2 inhibitors, an accomplished development in field of medicinal chemistry: an extensive review. Future Med Chem. 2020;12(21):1961–1990.
  • Verma S, McMurray J. SGLT-2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61(10):2108–2117.
  • Zou CY, Liu XK, Sang YQ, et al. Effects of SGLT-2 inhibitors on cardiovascular outcomes and mortality in type 2 diabetes: a meta-analysis. Medicine (Baltimore). 2019;98(49):e18245.
  • McGuire DK, Shih WJ, Cosentino F, et al. Association of SGLT-2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. Jama Cardiol. 2021;6(2):148–158.
  • Liu W, Wang H, and Meng F. In silico modeling of aspalathin and nothofagin against SGLT-2. J Theor Comput Chem. 2015;14(8).
  • Kumar S, Khatik GL, Mittal A. In silico molecular docking study to search new sglt-2 inhibitor based on dioxabicyclo[3.2.1] octane scaffold. Curr Comput Aided Drug Des. 2020;16(2):145–154.
  • Wu JS, Peng YH, Wu JM, et al. Discovery of non-glycoside sodium-dependent glucose co-transporter 2 (SGLT-2) inhibitors by ligand-based virtual screening. J Med Chem. 2010;53(24):8770–8774.
  • Sato S, Takeo J, Aoyama C, et al. Na+-glucose cotransporter (SGLT) inhibitory flavonoids from the roots of sophora flavescens. Bioorg Med Chem. 2007;15(10):3445–3449.
  • Thilagavathi R, Hosseini Zare MS, Malini M, et al. A comprehensive review on glucokinase activators: promising agents for the treatment of type 2 diabetes. Chem Biol Drug Des. 2021;99(2):247–263.
  • Min Q, Cai X, and Sun W, et al. Identification of mangiferin as a potential glucokinase activator by structure-based virtual ligand screening. Sci Rep-Uk. 2017;7(1 44681).
  • Ashton KS, Andrews KL, Bryan MC, et al. Small molecule disruptors of the glucokinase–glucokinase regulatory protein interaction: 1. discovery of a novel tool compound for in vivo proof-of-concept. J Med Chem. 2014;57(2):309–324.
  • Tamayo NA, Norman MH, Bartberger MD, et al. Small molecule disruptors of the glucokinase–glucokinase regulatory protein interaction: 5. a novel aryl sulfone series, optimization through conformational analysis. J Med Chem. 2015;58(11):4462–4482.
  • Villhauer EB, Brinkman JA, Naderi GB, et al. 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J Med Chem. 2003;46(13):2774–2789.
  • Grinter SZ, Zou X. Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design. Molecules. 2014;19(7):10150–10176.
  • Lee Y, Basith S, Choi S. Recent advances in structure-based drug design targeting class a g protein-coupled receptors utilizing crystal structures and computational simulations. J Med Chem. 2018;61(1):1–46.
  • Senior AW, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020;577(7792):706–710.
  • Zhong F, Xing J, Li X, et al., Artificial intelligence in drug design. Sci China Life Sci. 2018;61(10): 1191–1204.
  • Hessler G, Baringhaus KH. Artificial intelligence in drug design. Molecules. 2018;23(10):2520.
  • Rampton V. Artificial intelligence versus clinicians. BMJ. 2020;369:m1326.
  • Richards BA, Lillicrap TP, Beaudoin P, et al. A deep learning framework for neuroscience. Nat Neurosci. 2019;22(11):1761–1770.
  • Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell. 2020;180(4):688–702.
  • Jing Y, Bian Y, Hu Z, et al. Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era. Aaps J. 2018;20(3):58.
  • Langner S, Beller E, Streckenbach F. Artificial intelligence and big data. Klin Monbl Augenheilkd. 2020;237(12):1438–1441.
  • Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019;37(9):1038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.