466
Views
3
CrossRef citations to date
0
Altmetric
Review

Targeting the cytoskeleton and extracellular matrix in cardiovascular disease drug discovery

, , , , &
Pages 443-460 | Received 17 Aug 2021, Accepted 24 Feb 2022, Published online: 08 Mar 2022

References

  • World Health Organization. n.d. About cardiovascular diseases. [Cited 2021 May 16]. Available from: https://www.who.int/cardiovascular_diseases/about_cvd/en
  • World Heart Federation. n.d. CVD Advocacy Toolkit.” cited 2021 May 16. https://www.world-heart-federation.org/wp-content/uploads/2017/05/WHF9421_Advocacy_toolkit__PDF-1.pdf
  • Aspegren K. n.d. “Heart disease and stroke statistics — 2020 update: a report from the American Heart Association: what’s new this year?. 12.
  • Birger M, Kaldjian AS, Roth GA, et al. Spending on cardiovascular disease and cardiovascular risk factors in the United States: 1996-2016. Circulation. 2021 April;144(4):271–282. CIRCULATIONAHA.120.053216.
  • Khomtchouk BB, Tran D-T, Vand KA, et al. Cardioinformatics: the nexus of bioinformatics and precision cardiology. Brief Bioinform. 2020;21(6):2031–2051.
  • Thomas TH, and Advani A. Inflammation in cardiovascular disease and regulation of the actin cytoskeleton in inflammatory cells: the actin cytoskeleton as a target. 2006;18:165–82.
  • Stupack DG, Cheresh DA. Apoptotic cues from the extracellular matrix: regulators of angiogenesis. Oncogene. 2003;22(56):9022–9029.
  • Byron A, Frame MC. Adhesion protein networks reveal functions proximal and distal to cell-matrix contacts. Curr Opin Cell Biol. 2016;39(April):93–100.
  • Calderwood DA, Campbell ID, Critchley DR. Talins and kindlins: partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol. 2013;14(8):503–517.
  • Frangogiannis NG. Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med. February 2019a;65:70–99.
  • Kato S, Saito N, Kirigaya H, et al. Prognostic significance of quantitative assessment of focal myocardial fibrosis in patients with heart failure with preserved ejection fraction. Int J Cardiol. 2015;191(July):314–319.
  • Frangogiannis NG. Matricellular proteins in cardiac adaptation and disease. Physiol Rev. 2012;92(2):635–688.
  • Lampi MC, Reinhart-King CA. targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci Transl Med. 2018;10(422):eaao0475.
  • Ponticos M, Smith BD. Extracellular matrix synthesis in vascular disease: hypertension, and atherosclerosis. J Biomed Res. 2014 January;28(1):25–39.
  • Tayebjee MH, MacFadyen RJ, Lip GYH. Extracellular matrix biology: a new frontier in linking the pathology and therapy of hypertension? J Hypertens. 2003;21(12):2211–2218.
  • Holm Nielsen S, Jonasson L, Kalogeropoulos K, et al. Exploring the role of extracellular matrix proteins to develop biomarkers of plaque vulnerability and outcome. J Intern Med. 2020;287(5):493–513.
  • Schroen B, Heymans S, Umesh Sharma W, et al. Thrombospondin-2 is essential for myocardial matrix integrity: increased expression identifies failure-prone cardiac hypertrophy. Circ Res. 2004;95(5):515–522.
  • Wang D, Oparil S, Feng JA, et al. Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide–null mouse. Hypertension. 2003;42(1):88–95.
  • Belmadani S, Bernal J, Wei C-C, et al. A Thrombospondin-1 antagonist of transforming growth factor-β activation blocks cardiomyopathy in rats with diabetes and elevated Angiotensin II. Am J Pathol. 2007;171(3):777–789.
  • Shimojo N, Hashizume R, Kanayama K, et al. Tenascin-C May accelerate cardiac fibrosis by activating macrophages via the integrin ΑVβ3/nuclear factor–ΚB/interleukin-6 axis. Hypertension. 2015;66(4):757–766.
  • Ma WF, Hodonsky CJ, Turner AW, et al. Enhanced single-cell RNA-seq workflow reveals coronary artery disease cellular cross-talk and candidate drug targets. Atherosclerosis. 2022 January 1;340. 12–22. https://doi.org/https://doi.org/10.1016/j.atherosclerosis.2021.11.025
  • Socha MJ, Manhiani M, Said N, et al. Secreted protein acidic and rich in cysteine deficiency ameliorates renal inflammation and fibrosis in angiotensin hypertension. Am J Pathol. 2007;171(4):1104–1112.
  • Strandjord TP, Madtes DK, Weiss DJ, et al. Collagen accumulation is decreased in SPARC-null mice with bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 1999;277(3):L628–35.
  • Mavroidis M, Capetanaki Y. Extensive induction of important mediators of fibrosis and dystrophic calcification in desmin-deficient cardiomyopathy. Am J Pathol. 2002;160(3):943–952.
  • Abdelaziz Mohamed I, Gadeau A-P, Hasan A, et al. Osteopontin: a promising therapeutic target in cardiac fibrosis. Cells. 2019;8(12):1558.
  • Matsui Y, Jia N, Okamoto H, et al. Role of osteopontin in cardiac fibrosis and remodeling in Angiotensin II-induced cardiac hypertrophy. Hypertension. 2004;43(6):1195–1201.
  • Harvey A, Montezano AC, Lopes RA, et al. Vascular fibrosis in aging and hypertension: molecular mechanisms and clinical implications. Can J Cardiol. 2016;32(5):659–668.
  • Thenappan T, Chan SY, Kenneth Weir E. Role of extracellular matrix in the pathogenesis of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2018;315(5):H1322–31.
  • Lai W-F, Wong W-T, Lai, Wing-Fu, and Wing-Tak Wong. Roles of the actin cytoskeleton in aging and age-associated diseases. Ageing Res Rev. 2020;58(March):101021.
  • Feihl F, Liaudet L, Levy BI, et al. Hypertension and microvascular remodelling. Cardiovasc Res. 2008;78(2):274–285.
  • Cai Z, Gong Z, Zhiqing L, et al. Vascular extracellular matrix remodeling and hypertension. Antioxid Redox Signal. 2021;34(10):765–783.
  • Intengan HD, and Schiffrin EL. Vascular remodeling in hypertension. 2001;7:581–587.
  • Lemarié CA, Tharaux P-L, Lehoux S. Extracellular matrix alterations in hypertensive vascular remodeling. J Mol Cell Cardiol. 2010;48(3):433–439.
  • Tuder RM. Pulmonary vascular remodeling in pulmonary hypertension. Cell Tissue Res. 2017;367(3):643–649.
  • Pang W, Zhang Z, Zhang Y, et al. Extracellular matrix collagen biomarkers levels in patients with chronic thromboembolic pulmonary hypertension. J Thromb Thrombolysis. 2020 November;52(1):48–58.
  • Chelladurai P, Seeger W, Pullamsetti SS. Matrix metalloproteinases and their inhibitors in pulmonary hypertension. Eur Respir J. 2012;40(3):766–782.
  • Zhabyeyev P, Chen X, Vanhaesebroeck B, et al. PI3Kα in cardioprotection: cytoskeleton, Late Na + current, and mechanism of arrhythmias. Channels. 2019;13(1):520–532.
  • Frangogiannis NG. The extracellular matrix in ischemic and nonischemic heart failure. Circ Res. 2019;125(1):117–146.
  • Patel VB, Zhabyeyev P, Chen X, et al. PI3Kα-regulated gelsolin activity is a critical determinant of cardiac cytoskeletal remodeling and heart disease. Nat Commun. 2018;9(1):5390.
  • Lichter JG, Carruth E, Chelsea Mitchell AS, et al. Remodeling of the sarcomeric cytoskeleton in cardiac ventricular myocytes during heart failure and after cardiac resynchronization therapy. J Mol Cell Cardiol. 2014;72(July):186–195.
  • Hein S. The role of the cytoskeleton in heart failure. Cardiovasc Res. 2000;45(2):273–278.
  • Ali H, Braga L, Giacca M. Cardiac regeneration and remodelling of the cardiomyocyte cytoarchitecture. FEBS J. 2020;287(3):417–438.
  • Ramji DP, Davies TS. Cytokines in atherosclerosis: key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev. 2015;26(6):673–685.
  • Fahed AC, Jang I-K. Plaque erosion and acute coronary syndromes: phenotype, molecular characteristics and future directions. Nat Rev Cardiol. 2021 May;18(10):724–734.
  • Quillard T, Franck G, Mawson T, et al. Mechanisms of erosion of atherosclerotic plaques. Curr Opin Lipidol. 2017;28(5):434–441.
  • Nachtigal P, Rathouska J, Strasky Z. The role of endoglin in atherosclerosis. Atherosclerosis. 2012;224(1):4–11.
  • Garzon-Martinez M, Perretta-Tejedor N, Garcia-Ortiz L, et al. Association of Alk1 and endoglin polymorphisms with cardiovascular damage. Sci Rep. 2020;10(1):9383.
  • Saita E, Miura K, Suzuki-Sugihara N, et al. Plasma soluble endoglin levels are inversely associated with the severity of coronary atherosclerosis—brief report. Arterioscler Thromb Vasc Biol. 2017;37(1):49–52.
  • Liu R, Jin J-P. Deletion of Calponin 2 in macrophages alters cytoskeleton-based functions and attenuates the development of atherosclerosis. J Mol Cell Cardiol. 2016;99(October):87–99.
  • Stakhneva EM, Meshcheryakova IA, Demidov EA, et al. A proteomic study of atherosclerotic plaques in men with coronary atherosclerosis. Diagnostics. 2019;9(4):177.
  • Rickel AP, Sanyour HJ, Leyda NA, et al. Extracellular matrix proteins and substrate stiffness synergistically regulate vascular smooth muscle cell migration and cortical cytoskeleton organization. ACS Appl Bio Mater. 2020;3(4):2360–2369.
  • Xie S-A, Zhang T, Wang J, et al. Matrix stiffness determines the phenotype of vascular smooth muscle cell in vitro and in vivo: role of DNA methyltransferase 1. Biomaterials. 2018;155(February):203–216.
  • Lyle AN, Robert Taylor W. The pathophysiological basis of vascular disease. Lab Invest. 2019;99(3):284–289.
  • Xu Q, Huff LP, Fujii M, et al. Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radic Biol Med. 2017;109(August):84–107.
  • Elsafadi M, Manikandan M, Dawud RA, et al. Transgelin is a TGFβ-inducible gene that regulates osteoblastic and adipogenic differentiation of human skeletal stem cells through actin cytoskeleston organization. Cell Death Dis. 2016;7(8):e2321–e2321.
  • Doradla P, Otsuka K, Nadkarni A, et al. Biomechanical stress profiling of coronary atherosclerosis. JACC Cardiovasc Imaging. 2020;13(3):804–816.
  • Wang Z-Q, Jing L-L, Yan J-C, et al. Role of AGEs in the progression and regression of atherosclerotic plaques. Glycoconj J. 2018;35(5):443–450.
  • Soehnlein O, Libby P. Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20(8):589–610.
  • Gillette TG. HDAC Inhibition in the Heart: erasing Hidden Fibrosis. Circulation. 2021;143(19):1891–1893.
  • Hedhli N, Russell KS. Cardiotoxicity of molecularly targeted agents. Curr Cardiol Rev. 2012;7(4):221–233.
  • Lee Y, Gustafsson ÅB. Role of apoptosis in cardiovascular disease. Apoptosis. 2009;14(4):536–548.
  • Kang PM, Yue P, Izumo S. New insights into the role of apoptosis in cardiovascular disease. Circ J. 2002;66(1):1–9.
  • Sayen MR, Gustafsson ÅB, Sussman MA, et al. Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production. Am J Physiol Cell Physiol. 2003;284(2):C562–70.
  • Wang J, Silva JP, Gustafsson CM, et al. Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc Nat Acad Sci. 2001;98(7):4038–4043.
  • Suria H, Chau LA, Negrou E, et al. Cytoskeletal disruption induces T cell apoptosis by a caspase-3 mediated mechanism. Life Sci. 1999;65(25):2697–2707.
  • Richter M, Kostin S. The failing human heart is characterized by decreased numbers of telocytes as result of apoptosis and altered extracellular matrix composition. J Cell Mol Med. 2015;19(11):2597–2606.
  • Nataatmadja M, West M, West J. Abnormal extracellular matrix protein transport associated with increased apoptosis of vascular smooth muscle cells in marfan syndrome and bicuspid aortic valve thoracic aortic aneurysm. Circulation. 2003;108(90101):329II–334.
  • Fan Z, Chunyu L, Qin C, et al. Role of the PI3K/AKT pathway in modulating cytoskeleton rearrangements and phenotype switching in rat pulmonary arterial vascular smooth muscle cells. DNA Cell Biol. 2014;33(1):12–19.
  • Myers DL, Harmon KJ, Lindner V, et al. Alterations of arterial physiology in osteopontin-null mice. Arterioscler Thromb Vasc Biol. 2003;23(6):1021–1028.
  • Singh M, Foster CR, Dalal S, et al. Osteopontin: role in extracellular matrix deposition and myocardial remodeling Post-MI. J Mol Cell Cardiol. 2010;48(3):538–543.
  • Vetrone SA, Montecino-Rodriguez E, Kudryashova E, et al. Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-β. J Clin Investig. 2009;119(6):1583–1594.
  • Plazyo O, Rong Liu M, Hossain M, et al. Deletion of Calponin 2 attenuates the development of calcific aortic valve disease in ApoE−/− mice. J Mol Cell Cardiol. 2018;121(August):233–241.
  • Moazzem HM, Crish JF, Eckert RL, et al. H2-Calponin is regulated by mechanical tension and modifies the function of actin cytoskeleton. J Biol Chem. 2005;280(51):42442–42453.
  • Kapur N, Morine K, Letarte M. Endoglin: a critical mediator of cardiovascular health. Vasc Health Risk Manag. 2013 May;195. DOI:https://doi.org/10.2147/VHRM.S29144.
  • Sanz-Rodriguez F, Guerrero-Esteo M, Botella L-M, et al. Endoglin regulates cytoskeletal organization through binding to ZRP-1, a member of the lim family of proteins. J Biol Chem. 2004;279(31):32858–32868.
  • Africa F-L, Sanz-Rodriguez F, and Zarrabeitia R, et al. Blood outgrowth endothelial cells from hereditary haemorrhagic telangiectasia patients reveal abnormalities compatible with vascular lesions. Cardiovasc Res. 2005;235–48.
  • Obreo J, Díez-Marques L, Lamas S, et al. Endoglin expression regulates basal and TGF-Β1-induced extracellular matrix synthesis in cultured L6E9 myoblasts. Cell Physiol Biochem. 2004;14(4–6):301–310.
  • Shimazaki M, Nakamura K, Kii I, et al. Periostin is essential for cardiac healingafter acute myocardial infarction. J Exp Med. 2008;205(2):295–303.
  • Oka T, Jian X, Kaiser RA, et al. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res. 2007;101(3):313–321.
  • Nie X, Shen C, Tan J, et al. Periostin: a potential therapeutic target for pulmonary hypertension? Circ Res. 2020;127(9):1138–1152.
  • Snider P, Hinton RB, Moreno-Rodriguez RA, et al. Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ Res. 2008;102(7):752–760.
  • Li H, Bao M, Nie Y. Extracellular matrix–based biomaterials for cardiac regeneration and repair. Heart Fail Rev. April 2020. DOI:https://doi.org/10.1007/s10741-020-09953-9.
  • Kühn B, Del Monte F, Hajjar RJ, et al. Periostin Induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13(8):962–969.
  • Bayomy AF, Bauer M, Qiu Y, et al. Regeneration in heart disease—is ECM the key? Life Sci. 2012;91(17–18):823–827.
  • Qiu Y, Bayomy AF, Gomez MV, et al. A role for matrix stiffness in the regulation of cardiac side population cell function. Am J Physiol Heart Circ Physiol. 2015;308(9):H990–97.
  • Derrick CJ, Noël ES. The ECM as a driver of heart development and repair. Development. 2021;148(5): dev191320. DOI:https://doi.org/10.1242/dev.191320.
  • Steenman M, Lande G. Cardiac aging and heart disease in humans. Biophys Rev. 2017;9(2):131–137.
  • Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin. 2012;8(1):143–164.
  • Gulberk OS, Bahcecioglu G, Yue XS, et al. Effect of cellular and ECM aging on human IPSC-derived cardiomyocyte performance, maturity and senescence. Biomaterials. 2021;268(January):120554.
  • Ma Z, Mao C, Jia Y, et al. Extracellular matrix dynamics in vascular remodeling. Am J Physiol Cell Physiol. 2020;319(3):C481–99.
  • Xia Y, Dobaczewski M, Gonzalez-Quesada C, et al. Endogenous Thrombospondin 1 protects the pressure-overloaded myocardium by modulating fibroblast phenotype and matrix metabolism. Hypertension. 2011;58(5):902–911.
  • Frangogiannis NG, Ren G, Dewald O, et al. Critical role of endogenous Thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation. 2005;111(22):2935–2942.
  • Midwood KS, Orend G. The role of Tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal. 2009;3(3–4):287–310.
  • Gellen B, Thorin-Trescases N, Thorin E, et al.; on behalf of the SURDIAGENE Study group. Serum Tenascin-C is independently associated with increased major adverse cardiovascular events and death in individuals with type 2 diabetes: a french prospective cohort. Diabetologia. 2020;63(5):915–923.
  • Imanaka-Yoshida K, Tawara I, Yoshida T. Tenascin-C in cardiac disease: a sophisticated controller of inflammation, repair, and fibrosis. Am J Physiol Cell Physiol. 2020;319(5):C781–96.
  • Wenk MB, Midwood KS, Schwarzbauer JE. Tenascin-C suppresses Rho activation. J Cell Biol. 2000;150(4):913–920.
  • Sato A, Aonuma K, Imanaka-Yoshida K, et al. Serum Tenascin-C might be a novel predictor of left ventricular remodeling and prognosis after acute myocardial infarction. J Am Coll Cardiol. 2006;47(11):2319–2325.
  • Martin-Lorenzo M, Laura Gonzalez-Calero AS, Maroto PJ, et al. Cytoskeleton deregulation and impairment in amino acids and energy metabolism in early atherosclerosis at aortic tissue with reflection in plasma. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2016;1862(4):725–732.
  • Mao Z, Fen W, Shan Y. Identification of key genes and MiRNAs associated with carotid atherosclerosis based on MRNA-seq data:. Medicine (Baltimore). 2018;97(13):e9832.
  • Eslava-Alcon S, Extremera-García MJ, González-Rovira A, et al. Molecular signatures of atherosclerotic plaques: an up-dated panel of protein related markers. J Proteomics. 2020;221(June):103757.
  • Hsu J, Gore-Panter S, Tchou G, et al. Genetic control of left atrial gene expression yields insights into the genetic susceptibility for atrial fibrillation. Circ Genomic Precis Med. 2018;11(3). DOI:https://doi.org/10.1161/CIRCGEN.118.002107
  • Wain LV. Rare variants and cardiovascular disease. Brief Funct Genomics. 2014;13(5):384–391.
  • Sequeira V, Nijenkamp LLAM, Regan JA, et al. The physiological role of cardiac cytoskeleton and its alterations in heart failure. Biochim Biophys Acta - Biomembr. 2014;1838(2):700–722.
  • Chen J, Chien KR. Complexity in simplicity: monogenic disorders and complex cardiomyopathies. J Clin Investig. 1999;103(11):1483–1485.
  • Hafiane A. Vulnerable Plaque, characteristics, detection, and potential therapies. J Cardiovasc Dev Dis. 2019;6(3):26.
  • Johnson KW, Shameer K, Glicksberg BS, et al. Enabling precision cardiology through multiscale biology and systems medicine. JACC. 2017;2(3):311–327.
  • Napoli C, Crudele V, Soricelli A, et al. Primary prevention of atherosclerosis: a clinical challenge for the reversal of epigenetic mechanisms? Circulation. 2012;125(19):2363–2373.
  • Colpaert RMW, Calore M. Epigenetics and MicroRNAs in cardiovascular diseases. Genomics. 2021;113(2):540–551.
  • Rosa-Garrido M, Chapski DJ, Schmitt AD, et al. High-resolution mapping of chromatin conformation in cardiac myocytes reveals structural remodeling of the epigenome in heart failure. Circulation. 2017;136(17):1613–1625.
  • Roberts LB, Kapoor P, Howard JK, et al. An update on the roles of immune system-derived MicroRNAs in cardiovascular diseases. Cardiovasc Res. 2021;117(12):2434–2449.
  • Afonso MS, Sharma M, Schlegel M, et al. MiR-33 silencing reprograms the immune cell landscape in atherosclerotic plaques. Circ Res. 2021;128(8):1122–1138.
  • Liu A, Liu Y, Bin L, et al. Role of MiR‐223‐3p in pulmonary arterial hypertension via targeting ITGB3 in the ECM pathway. Cell Prolif. 2019;52(2):e12550.
  • Li Y, Zhang K, Mao W. Inhibition of MiR‑34a prevents endothelial cell apoptosis by directly targeting HDAC1 in the setting of atherosclerosis. Mol Med Rep. 2018 January;17(3):4645–4650.
  • Yan M, Chen C, Gong W, et al. MiR-21-3p regulates cardiac hypertrophic response by targeting Histone Deacetylase-8. Cardiovasc Res. 2015;105(3):340–352.
  • Cheng H-P, Gong D, Zhao Z-W, et al. MicroRNA-182 promotes lipoprotein lipase expression and atherogenesisby targeting Histone Deacetylase 9 in Apolipoprotein E-knockout mice. Circ J. 2018;82(1):28–38.
  • Souilhol C, Serbanovic-Canic J, Maria Fragiadaki TJ, et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol. 2020;17(1):52–63.
  • Li J, Brundel BJJM, Zhang D. n.d. ESC | ESC CONGRESS 2020 - the digital experience | preservation of the microtubule network to beat atrial fibrillation: role of SR-mitochondrial contacts. ESC2020 - The Digital Experience. [cited 2020 Dec 19]. https://programme.escardio.org/ESC2020/Abstracts/220247-preservation-of-the-microtubule-network-to-beat-atrial-fibrillation-role-of-sr-mitochondrial-contacts?r=/ESC2020/On-Demand?s%3D%24expression%3Dmicrotubule
  • Caporizzo MA, Chen CY, Prosser BL. Cardiac microtubules in health and heart disease. Exp Biol Med. 2019;244(15):1255–1272.
  • Ridker PM. From CANTOS to CIRT to COLCOT to clinic: will all atherosclerosis patients soon be treated with combination lipid-lowering and inflammation-inhibiting agents? Circulation. 2020;141(10):787–789.
  • Imazio M, Nidorf M. Colchicine and the Heart. Eur Heart J. 2021;42(28):2745–2760. no. ehab221 (May).
  • Tardif J-C, Simon Kouz DD, Waters OF, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381(26):2497–2505.
  • Bouabdallaoui N, Tardif J-C, Waters DD, et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur Heart J. 2020;41(42):4092–4099.
  • Opstal TSJ, Hoogeveen RM, Fiolet ATL, et al. Colchicine attenuates inflammation beyond the inflammasome in chronic coronary artery disease: a LoDoCo2 proteomic substudy. Circulation. 2020;142(20):1996–1998.
  • Nidorf SM, Fiolet ATL, Mosterd A, et al. Salem H.K. The. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383(19):1838–1847.
  • Kampourakis T, Zhang X, Sun Y-B, et al. Omecamtiv mercabil and blebbistatin modulate cardiac contractility by perturbing the regulatory state of the myosin filament: myosin filament regulation in heart muscle. J Physiol. 2018;596(1):31–46.
  • Teerlink JR, Diaz R, Felker GM, et al. Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N Engl J Med. November 2020; NEJMoa2025797. doi:https://doi.org/10.1056/NEJMoa2025797.
  • Olivotto I, Oreziak A, Barriales-Villa R, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2020;396(10253):759–769.
  • Bassat E, Mutlak YE, Genzelinakh A, et al. The extracellular matrix protein agrin promotes heart regeneration in mice. Nature. 2017;547(7662):179–184.
  • Zannad F, Alla F, Dousset B, et al. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure,” 7. n.d.
  • Hutchinson KR, Stewart JA, Lucchesi PA. Extracellular matrix remodeling during the progression of volume overload-induced heart failure. J Mol Cell Cardiol. 2010;48(3):564–569.
  • Li Y, Gao S, Han Y, et al. Variants of focal adhesion scaffold genes cause thoracic aortic aneurysm. Circ Res. 2021;128(1):8–23.
  • López-Novoa JM, Bernabeu C. The physiological role of endoglin in the cardiovascular system. Am J Physiol Heart Circ Physiol. 2010;299(4):H959–74.
  • Michaelis M, Seyb K, Ansar S. Cytoskeletal Integrity as a Drug Target. Curr Alzheimer Res. 2005;2(2):227–229.
  • Travers JG, Wennersten SA, Peña B, et al. HDAC inhibition reverses preexisting diastolic dysfunction and blocks covert extracellular matrix remodeling. Circulation. 2021;143(19):1874–1890.
  • Lizardi V, Carlos J, Jerome Baranger MB, et al. A guide for assessment of myocardial stiffness in health and disease. Nature Cardiovascular Research. 2022;1(1):8–22.
  • Li H, Bao M, Nie Y. Extracellular matrix–based biomaterials for cardiac regeneration and repair. Heart Fail Rev. 2021;26(5):1231–1248.
  • Lemon DD, Horn TR, Cavasin MA, et al. Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension. J Mol Cell Cardiol. 2011;51(1):41–50.
  • Markus W, Eaton Deborah M, Berretta Remus M, et al. HDAC inhibition improves cardiopulmonary function in a feline model of diastolic dysfunction. Sci Transl Med. 2020;12(525). eaay7205. doi:https://doi.org/10.1126/scitranslmed.aay7205.
  • Geng Y-J, Azuma T, Tang JX, et al. Caspase-3-induced gelsolin fragmentation contributes to actin cytoskeletal collapse, nucleolysis, and apoptosis of vascular smooth muscle cells exposed to proinflammatory cytokines. Eur J Cell Biol. 1998;77(4):294–302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.