571
Views
0
CrossRef citations to date
0
Altmetric
Review

Animal models of systemic lupus erythematosus and their applications in drug discovery

ORCID Icon, , , , & ORCID Icon
Pages 489-500 | Received 15 Nov 2021, Accepted 04 Mar 2022, Published online: 14 Mar 2022

References

  • Nusbaum JS, Mirza I, Shum J, et al. Sex differences in systemic lupus erythematosus: epidemiology, clinical considerations, and disease pathogenesis[J]. Mayo Clin Proc. 2020;95(2):384–394.
  • Rees F, Doherty M, Grainge MJ, et al. The worldwide incidence and prevalence of systemic lupus erythematosus: a systematic review of epidemiological studies[J]. Rheumatology. 2017;56(11):1945–1961. (Oxford, England).
  • Durcan L, O’Dwyer T, Petri M. Management strategies and future directions for systemic lupus erythematosus in adults[J]. Lancet. 2019;393(10188):2332–2343.
  • Adamichou C, Nikolopoulos D, Genitsaridi I, et al. In an early SLE cohort the ACR-1997, SLICC-2012 and EULAR/ACR-2019 criteria classify non-overlapping groups of patients: use of all three criteria ensures optimal capture for clinical studies while their modification earlier classification and treatment[J]. Ann Rheum Dis. 2020;79(2):232–241.
  • Aringer M, Costenbader K, Daikh D, et al. European league against rheumatism/american college of rheumatology classification criteria for systemic lupus erythematosus[J]. Ann Rheum Dis. 2019;78(9):1151–1159.
  • Aringer M, Johnson SR. Classifying and diagnosing systemic lupus erythematosus in the 21st century[J]. Rheumatology. 2020;59(Suppl5):v4–v11. (Oxford, England).
  • Yin X, Kim K, Suetsugu H, et al. Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus[J]. Ann Rheum Dis. 2021;80(5):632–640.
  • Catalina MD, Owen KA, Labonte AC, et al. The pathogenesis of systemic lupus erythematosus: Harnessing big data to understand the molecular basis of lupus[J]. J Autoimmun. 2020;110:102359.
  • Li P, Jiang M, Li K, et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity[J]. Nat Immunol. 2021;22(9):1107–1117
  • Birmingham DJ, Hebert LA. The complement system in lupus nephritis[J]. Semin Nephrol. 2015;35(5):444–454.
  • Parikh SV, Almaani S, Brodsky S, et al. Update on Lupus Nephritis: core Curriculum 2020[J]. Am J Kidney Diseases. 2020;76(2):265–281.
  • Yap DY, Lai KN. Pathogenesis of renal disease in systemic lupus erythematosus–the role of autoantibodies and lymphocytes subset abnormalities[J]. Int J Mol Sci. 2015;16(4):7917–7931.
  • Villanueva E, Yalavarthi S, Berthier CC, et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus[J]. J Iimmunol. 2011;187(1):538–552. (Baltimore, Md: 1950).
  • Clarke AJ, Ellinghaus U, Cortini A, et al. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development[J]. Ann Rheum Dis. 2015;74(5):912–920.
  • Kato H, Perl A. Blockade of treg cell differentiation and function by the interleukin-21-mechanistic target of rapamycin axis via suppression of autophagy in patients with systemic lupus erythematosus[J]. Arthritis Rheumatol. 2018;70(3):427–438
  • Caielli S, Cardenas J, de Jesus AA, et al. Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE[J]. Cell. 2021;184(17):4464–4479. e4419.
  • Lopez-Pedrera C, Villalba JM, Patino-Trives AM, et al. Therapeutic potential and Immunomodulatory role of coenzyme q10 and its analogues in systemic autoimmune diseases[J]. Antioxidants (Basel). 2021;10(4). https://doi.org/10.3390/antiox10040600.
  • Caza TN, Fernandez DR, Talaber G, et al. HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE[J]. Ann Rheum Dis. 2014;73(10):1888–1897.
  • Navarra SV, Guzmán RM, Gallacher AE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial[J]. Lancet. 2011;377(9767):721–731. (London, England).
  • Furie R, Rovin BH, Houssiau F, et al. Two-year, randomized, controlled trial of belimumab in lupus nephritis[J]. N Engl J Med. 2020;383(12):1117–1128.
  • Murphy G, Isenberg DA. New therapies for systemic lupus erythematosus - past imperfect, future tense[J]. Nat Rev Rheumatol. 2019;15(7):403–412.**learnings. from the past failures of clinial trials on SLE.
  • Klavdianou K, Lazarini A, Fanouriakis A. Targeted biologic therapy for systemic lupus erythematosus: emerging pathways and drug pipeline[J]. BioDrugs. 2020;34(2):133–147.**. A detailed review illustrating emerging targeted Biological agents on SLE.
  • Moore E, Putterman C. Are lupus animal models useful for understanding and developing new therapies for human SLE?[J]. J Autoimmun. 2020;112:102490.
  • Helyer BJ, Howie JB. Renal disease associated with positive lupus erythematosus tests in a cross-bred strain of mice[J]. Nature. 1963;197:197.
  • Drake CG, Rozzo SJ, Vyse TJ, et al. Genetic contributions to lupus-like disease in (NZB x NZW)F1 mice[J]. Immunol Rev. 1995;144:51–74.
  • Bagavant H, Michrowska A, Deshmukh US. The NZB/W F1 mouse model for Sjögren’s syndrome: a historical perspective and lessons learned[J]. Autoimmun Rev. 2020;19(12):102686.
  • Thacker SG, Duquaine D, Park J, et al. Lupus-prone New Zealand Black/New Zealand white F1 mice display endothelial dysfunction and abnormal phenotype and function of endothelial progenitor cells[J]. Lupus. 2010;19(3):288–299.
  • Yoshida S, Castles JJ, Gershwin ME. The pathogenesis of autoimmunity in New Zealand mice[J]. Semin Arthritis Rheum. 1990;19(4):224–242.
  • Hashimoto Y, Dorshkind K, Montecino-Rodriguez E, et al. NZB mice exhibit a primary T cell defect in fetal thymic organ culture[J]. J Iimmunol. 2000;164(3):1569–1575. (Baltimore, Md: 1950).
  • Zhan Y, Kong I, Chopin M, et al. Plasmacytoid dendritic cells from parent strains of the NZB/W F1 lupus mouse contribute different characteristics to autoimmune propensity[J]. Immunol Cell Biol. 2020;98(3):203–214.*reveals. the dysregulation of IFN pathway in NZB/W F1 mice.
  • Rudofsky UH, Evans BD, Balaban SL, et al. Differences in expression of lupus nephritis in New Zealand mixed H-2z homozygous inbred strains of mice derived from New Zealand black and New Zealand white mice. origins and initial characterization[J]. Lab Invest. 1993;68(4):419–426.
  • Rudofsky UH, Lawrence DA. New Zealand mixed mice: a genetic systemic lupus erythematosus model for assessing environmental effects[J]. Environ Health Perspect. 1999;107(Suppl 5):713–721.
  • Waters ST, Fu SM, Gaskin F, et al. NZM2328: a new mouse model of systemic lupus erythematosus with unique genetic susceptibility loci[J]. Clin Immunol. 2001;100(3):372–383.
  • Morel L, Rudofsky UH, Longmate JA, et al. Polygenic control of susceptibility to murine systemic lupus erythematosus[J]. Immunity. 1994;1(3):219–229.
  • Morel L, Wakeland EK. Lessons from the NZM2410 model and related strains[J]. Int Rev Immunol. 2000;19(4–5):423–446.
  • Morel L, Croker BP, Blenman KR, et al. Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains[J]. Proceedings of the National Academy of Sciences of the United States of America. 2000;97( 12):6670–6675.
  • Crampton SP, Morawski PA, Bolland S. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus[J]. Dis Model Mech. 2014;7(9):1033–1046.
  • Celhar T, Fairhurst AM. Modelling clinical systemic lupus erythematosus: similarities, differences and success stories[J]. Rheumatology. 2017;56(suppl_1):i88–i99. (Oxford, England).
  • Murphy ED. A single gene model for massive lymphoproliferation with immune complex disease in new mouse strain MRL. Proceedings of the 16th International Congress of Hematology: Excerpta Medica Amsterdam 1976.
  • Andrews BS, Eisenberg RA, Theofilopoulos AN, et al. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains[J]. J Exp Med. 1978;148(5):1198–1215
  • Watanabe-Fukunaga R, Brannan CI, Copeland NG, et al. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis[J]. Nature. 1992;356(6367):314–317.
  • Pawar RD, Ramanjaneyulu A, Kulkarni OP, et al. Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus[J]. J Am Soc Nephrol. 2007;18(6):1721–1731.*shows. the participants of TLR7 and 9 in the pathogenesis of lpr mice.
  • Halkom A, Wu H, Lu Q. Contribution of mouse models in our understanding of lupus[J]. Int Rev Immunol. 2020;39(4):174–187.
  • Cohen PL, Eisenberg RA. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease[J]. Annu Rev Immunol. 1991;9:243–269.
  • Jeltsch-David H, Muller S. Neuropsychiatric systemic lupus erythematosus and cognitive dysfunction: the MRL-lpr mouse strain as a model[J]. Autoimmun Rev. 2014;13(9):963–973.*introduces. the MRL/lpr mice as a model of neuropsychiatric SLE.
  • Murphy ED, Roths JB. A Y chromosome associated factor in strain BXSB producing accelerated autoimmunity and lymphoproliferation[J]. Arthritis Rheumatism. 1979;22(11):1188–1194.
  • Layer T, Steele A, Goeken JA, et al. Engagement of the B cell receptor for antigen differentially affects B cell responses to Toll-like receptor-7 agonists and antagonists in BXSB mice[J]. Clin Exp Immunol. 2011;163(3):392–403.
  • Baccala R, Gonzalez-Quintial R, Schreiber RD, et al. Anti-IFN-α/β receptor antibody treatment ameliorates disease in lupus-predisposed mice[J]. J Iimmunol. 2012;189(12):5976–5984. (Baltimore, Md: 1950).
  • Izui S, Higaki M, Morrow D, et al. The Y chromosome from autoimmune BXSB/MpJ mice induces a lupus-like syndrome in (NZW x C57BL/6)F1 male mice, but not in C57BL/6 male mice[J]. Eur J Immunol. 1988;18(6):911–915.
  • Haywood ME, Hogarth MB, Slingsby JH, et al. Identification of intervals on chromosomes 1, 3, and 13 linked to the development of lupus in BXSB mice[J]. Arthritis Rheumatism. 2000;43(2):349–355.
  • Avigan J, Blumer M. On the origin of pristane in marine organisms[J]. J Lipid Res. 1968;9(3):350–352.
  • Freitas EC, de Oliveira MS, Monticielo OA. Pristane-induced lupus: considerations on this experimental model[J]. Clin Rheumatol. 2017;36(11):2403–2414.
  • Calvani N, Caricchio R, Tucci M, et al. Induction of apoptosis by the hydrocarbon oil pristane: implications for pristane-induced lupus[J]. J Iimmunol. 2005;175(7):4777–4782. (Baltimore, Md: 1950).
  • Lee PY, Kumagai Y, Li Y, et al., TLR7-dependent and FcgammaR-independent production of type I interferon in experimental mouse lupus[J]. J Exp Med. 205(13): 2995–3006. 2008.
  • Satoh M, Kumar A, Kanwar YS, et al. Anti-nuclear antibody production and immune-complex glomerulonephritis in BALB/c mice treated with pristane[J]. Proceedings of the National Academy of Sciences of the United States of America. 1995;92( 24):10934–10938.
  • Giraud S, Leducq S, Kervarrec T, et al. Spectrum of imiquimod-induced lupus-like reactions: report of two cases[J]. Dermatol Ther. 2020;33(1):e13148.
  • Yokogawa M, Takaishi M, Nakajima K, et al. Epicutaneous application of toll-like receptor 7 agonists leads to systemic autoimmunity in wild-type mice: a new model of systemic Lupus erythematosus[J]. Arthritis Rheumatol. 2014;66(3):694–706.
  • Chodisetti SB, Fike AJ, Domeier PP, et al. Type II but not type I IFN Signaling Is Indispensable for TLR7-Promoted development of autoreactive b cells and systemic autoimmunity[J]. The Journal of Immunology. 2020;204(4):796–809. (Baltimore, Md: 1950).
  • Goel RR, Wang X, O’Neil LJ, et al. Interferon lambda promotes immune dysregulation and tissue inflammation in TLR7-induced lupus[J]. Proceedings of the National Academy of Sciences of the United States of America. 2020;117( 10):5409–5419.
  • Wirth JR, Molano I, Ruiz P, et al. TLR7 agonism accelerates disease and causes a fatal myeloproliferative disorder in NZM 2410 lupus mice[J]. Front Immunol. 2020;11:10.
  • Appleby P, Webber DG, Bowen JG. Murine chronic graft-versus-host disease as a model of systemic lupus erythematosus: effect of immunosuppressive drugs on disease development[J]. Clin Exp Immunol. 1989;78(3):449–453.
  • Van Rappard-vander VFM, Radaszkiewicz T, Terraneo L, et al. Attempts at standardization of lupus-like graft-vs-host disease: inadvertent repopulation by DBA/2 spleen cells of H-2-different nonirradiated F1 mice[J]. J Iimmunol. 1983;130(6):2693–2701. (Baltimore, Md: 1950).
  • Eisenberg RA, Via CS. T cells, murine chronic graft-versus-host disease and autoimmunity[J]. J Autoimmun. 2012;39(3):240–247.
  • Li W, Titov AA, Morel L. An update on lupus animal models[J]. Curr Opin Rheumatol. 2017;29(5):434–441.
  • Foster AD, Soloviova K, Puliaeva I, et al. Donor CD8 T cells and IFN-gamma are critical for sex-based differences in donor CD4 T cell engraftment and lupus-like phenotype in short-term chronic graft-versus-host disease mice[J]. J Iimmunol. 2011;186(11):6238–6254. (Baltimore, Md: 1950).
  • Cheung YH, Loh C, Pau E, et al. Insights into the genetic basis and immunopathogenesis of systemic lupus erythematosus from the study of mouse models[J]. Semin Immunol. 2009;21(6):372–382.
  • Deane JA, Pisitkun P, Barrett RS, et al. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation[J]. Immunity. 2007;27(5):801–810.
  • Bolland S, Ravetch JV. Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis[J]. Immunity. 2000;13(2):277–285.
  • Morel L. Genetics of SLE: evidence from mouse models[J]. Nat Rev Rheumatol. 2010;6(6):348–357
  • Allen TM, Brehm MA, Bridges S, et al. Humanized immune system mouse models: progress, challenges and opportunities[J]. Nat Immunol. 2019;20(7):770–774.
  • Duchosal MA, McConahey PJ, Robinson CA, et al. Transfer of human systemic lupus erythematosus in severe combined immunodeficient (SCID) mice[J]. J Exp Med. 1990;172(3):985–988.
  • Sthoeger Z, Zinger H, Dekel B, et al. Lupus manifestations in severe combined immunodeficient (SCID) mice and in human/mouse radiation chimeras[J]. J Clin Immunol. 2003;23(2):91–99.
  • Andrade D, Redecha PB, Vukelic M, et al. Engraftment of peripheral blood mononuclear cells from systemic lupus erythematosus and antiphospholipid syndrome patient donors into BALB-RAG-2-/- IL-2Rgamma-/- mice: a promising model for studying human disease[J]. Arthritis Rheumatism. 2011;63(9):2764–2773.
  • Gunawan M, Her Z, Liu M, et al. A novel human systemic lupus erythematosus model in humanised mice[J]. Sci Rep. 2017;7(1):16642.
  • Zhou S, Li Q, Zhou S, et al. A novel humanized cutaneous lupus erythematosus mouse model mediated by IL-21-induced age-associated B cells[J]. J Autoimmun. 2021;123:102686.
  • Marinov AD, Wang H, Bastacky SI, et al. The type ii Anti-CD20 antibody obinutuzumab (GA101) is more effective than rituximab at depleting b cells and treating disease in a murine lupus model[J]. Arthritis Rheumatol. 2021;73(5):826–836.
  • Kansal R, Richardson N, Neeli I, et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus[J]. Sci Transl Med. 2019;11(482). DOI:https://doi.org/10.1126/scitranslmed.aav1648.
  • Jin X, Xu Q, Pu C, et al. Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus[J]. Cell Mol Immunol. 2021;18(8):1896–1903.
  • Mougiakakos D, Krönke G, Völkl S, et al. CD19-Targeted CAR T cells in refractory systemic lupus erythematosus[J]. N Engl J Med. 2021;385(6):567–569.**shows. great potential of CAR-T therapy targeting B cells in refractory lupus.
  • Morand EF, Furie R, Tanaka Y, et al. Trial of anifrolumab in active systemic lupus erythematosus[J]. N Engl J Med. 2020;382(3):211–221.
  • Richez C, Yasuda K, Bonegio RG, et al. IFN regulatory factor 5 is required for disease development in the Fcgammariib-/-Yaa and FcgammaRIIB-/- mouse models of systemic lupus erythematosus[J. J Iimmunol. 2010;184(2):796–806. (Baltimore, Md: 1950).
  • Tada Y, Kondo S, Aoki S, et al. Interferon regulatory factor 5 is critical for the development of lupus in MRL/lpr mice[J]. Arthritis Rheumatism. 2011;63(3):738–748.
  • Song S, De S, Nelson V, et al. Inhibition of IRF5 hyperactivation protects from lupus onset and severity[J]. J Clin Invest. 2020;130(12):6700–6717.
  • Tocut M, Shoenfeld Y, Zandman-Goddard G. Systemic lupus erythematosus: an expert insight into emerging therapy agents in preclinical and early clinical development[J]. Expert Opin Investig Drugs. 2020;29(10):1151–1162.
  • Kaneko Y, Fukahori H, Yamagami K, et al. Effects of AS2819899, a novel selective PI3Kdelta inhibitor, in a NZB/W F1 mouse lupus-like nephritis model[J]. Int Immunopharmacol. 2020;87:106764.
  • Wang XS, Cao F, Zhang Y, et al. Therapeutic potential of aryl hydrocarbon receptor in autoimmunity[J]. Inflammopharmacology. 2020;28(1):63–81.
  • Shinde R, Hezaveh K, Halaby MJ, et al. Apoptotic cell-induced AhR activity is required for immunological tolerance and suppression of systemic lupus erythematosus in mice and humans[J]. Nat Immunol. 2018;19(6):571–582.*shows. that the AhR could be a new target in the future research of lupus in views of patogenesis and treatment.
  • Sharabi A, Tsokos GC. T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy[J]. Nat Rev Rheumatol. 2020;16(2):100–112.
  • Shi G, Li D, Zhang D, et al. IRF-8/miR-451a regulates M-MDSC differentiation via the AMPK/mTOR signal pathway during lupus development[J]. Cell Death Discov. 2021;7(1):179.
  • Teng X, Brown J, Morel L. Redox homeostasis involvement in the pharmacological effects of metformin in systemic lupus erythematosus[J]. Antioxid Redox Signal. 2021.
  • Yin Y, Choi SC, Xu Z, et al. Normalization of CD4+ T cell metabolism reverses lupus[J]. Sci Transl Med. 2015;7(274):274ra218.
  • Wincup C, Sawford N, Rahman A. Pathological mechanisms of abnormal iron metabolism and mitochondrial dysfunction in systemic lupus erythematosus[J]. Expert Rev Clin Immunol. 2021;17(9):957–967.
  • Marks ES, Bonnemaison ML, Brusnahan SK, et al. Renal iron accumulation occurs in lupus nephritis and iron chelation delays the onset of albuminuria[J]. Sci Rep. 2017;7(1):12821.
  • Zhang X, Jin M, Wu H, et al. Biomarkers of lupus nephritis determined by serial urine proteomics[J]. Kidney Int. 2008;74(6):799–807.
  • Scindia Y, Wlazlo E, Ghias E, et al. Modulation of iron homeostasis with hepcidin ameliorates spontaneous murine lupus nephritis[J]. Kidney Int. 2020;98(1):100–115.
  • Gergely P, Grossman C, Niland B, et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus[J]. Arthritis Rheumatism. 2002;46(1):175–190.
  • Oaks Z, Winans T, Caza T, et al. Mitochondrial dysfunction in the liver and antiphospholipid antibody production precede disease onset and respond to rapamycin in lupus-prone mice[J]. Arthritis Rheumatol. 2016;68(11):2728–2739.
  • Lai ZW, Kelly R, Winans T, et al. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial[J]. Lancet. 2018;391(10126):1186–1196. (London, England).
  • Lai ZW, Hanczko R, Bonilla E, et al. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial[J]. Arthritis Rheumatism. 2012;64(9):2937–2946.
  • Blanco LP, Pedersen HL, Wang X, et al. Improved mitochondrial metabolism and reduced inflammation following attenuation of murine lupus with coenzyme Q10 analog idebenone[J]. Arthritis Rheumatol. 2020;72(3):454–464.
  • Fortner KA, Blanco LP, Buskiewicz I, et al. Targeting mitochondrial oxidative stress with MitoQ reduces NET formation and kidney disease in lupus-prone MRL-lpr mice[J]. Lupus Sci Med. 2020;7(1). DOI:https://doi.org/10.1136/lupus-2020-000387.
  • Pan W, Zhu S, Dai D, et al. MiR-125a targets effector programs to stabilize Treg-mediated immune homeostasis[J]. Nat Commun. 2015;6:7096.
  • Zhang J, Chen C, Fu H, et al. MicroRNA-125a-Loaded polymeric nanoparticles alleviate systemic lupus erythematosus by restoring effector/regulatory t cells balance[J]. ACS Nano. 2020;14(4):4414–4429.
  • Yang YX, Shen HH, Cao F, et al. Therapeutic potential of enhancer of zeste homolog 2 in autoimmune diseases[J]. Expert Opin Ther Targets. 2019;23(12):1015–1030.
  • Wu L, Jiang X, Qi C, et al. EZH2 inhibition interferes with the activation of type i interferon signaling pathway and ameliorates lupus nephritis in NZB/NZW f1 mice[J]. Front Immunol. 2021;12:653989.
  • Zhen Y, Smith RD, Finkelman FD, et al. Ezh2-mediated epigenetic modification is required for allogeneic T cell-induced lupus disease[J]. Arthritis Res Ther. 2020;22(1):133.
  • Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology[J. J Iimmunol. 2004;172(5):2731–2738. Baltimore, Md: 1950).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.