314
Views
5
CrossRef citations to date
0
Altmetric
Review

Antimicrobial peptides: A plausible approach for COVID-19 treatment

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 473-487 | Received 21 Dec 2021, Accepted 04 Mar 2022, Published online: 09 Mar 2022

References

  • Pal M, Berhanu G, Desalegn C, et al. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update. Cureus. 2020;12(3):e7423–e7423.
  • Li FS. Function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3(1):237–261.
  • Chen B, Tian E-K, He B, et al. Overview of lethal human coronaviruses. Signal Transduct Target Ther. 2020 Jun 10;5(1):89.
  • Corman VM, Muth D, Niemeyer D, et al. Hosts and Sources of Endemic Human Coronaviruses. Adv Virus Res. 2018;100:163–188.
  • Swelum AA, Shafi ME, Albaqami NM, et al. COVID-19 in human, animal, and environment: a review [review]. Front Vet Sci. 2020 September 04;7(578). doi:https://doi.org/10.3389/fvets.2020.00578
  • Y-c W, Chen C-S, Chan Y-J. The outbreak of COVID-19: an overview. J Chin Med Assoc. 2020;83(3): 217–220.
  • https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/novel-coronavirus-2019-ncov (Assessed on February 22, 2022).
  • Keni R, Alexander A, Nayak PG, et al. COVID-19: emergence, spread, possible treatments, and global burden [mini review]. Front Public Health. 2020 May 28;8(216). doi:https://doi.org/10.3389/fpubh.2020.00216
  • Kapoor B, Kochhar RS, Gulati M, et al. Triumvirate to treat mucormycosis: interplay of pH, metal ions and antifungal drugs. Med Hypotheses. 2022 Feb 01;159:110748.
  • Mahendran ASK, Lim YS, Fang C-M, et al. The potential of antiviral peptides as COVID-19 therapeutics. Front Pharmacol. 2020;11:575444.*This article describes the potential use of AVPs against COVID19 based on the documented evidence against SARS.*This article describes the potential use of AVPs against COVID19 based on the documented evidence against SARSCoV2, SARS SARSCoV, MERSCoV, SARS MERSCoV, SARSrelated CoVs, and other respiratory viruses.
  • Agarwal G, Gabrani R. Antiviral peptides: identification and validation. Int J Pept Res Ther. 2020;271–20.
  • Marcocci ME, Amatore D, Villa S, et al. The amphibian antimicrobial peptide temporin b inhibits in vitro herpes simplex virus 1 infection. Antimicrob Agents Chemother. 2018 May;62(5). doi:https://doi.org/10.1128/AAC.02367-17
  • De Angelis M, Casciaro B, Genovese A, et al. Temporin G, an amphibian antimicrobial peptide against influenza and parainfluenza respiratory viruses: insights into biological activity and mechanism of action. Faseb J. 2021 Feb;35(2):e21358.
  • Huang Y, Yang C, X-f X, et al. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41(9):1141–1149.
  • Mariano G, Farthing RJ, Lale-Farjat SLM, et al. Structural characterization of SARS-CoV-2: where we are, and where we need to be [review]. Front Mol Biosci. 2020 December 17;7(344). doi:https://doi.org/10.3389/fmolb.2020.605236
  • Al-Qaaneh AM, Alshammari T, Aldahhan R, et al. Genome composition and genetic characterization of SARS-CoV-2. Saudi J Biol Sci. 2021 Mar 01;28(3):1978–1989.
  • Awasthi A, Vishwas S, Corrie L, et al. OUTBREAK of novel corona virus disease (COVID-19): antecedence and aftermath. Eur J Pharmacol. 2020 10 05;884:173381.
  • Mittal A, Manjunath K, Ranjan RK, et al. COVID-19 pandemic: insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathog. 2020;16(8):e1008762.
  • Wang M-Y, Zhao R, Gao L-J, et al. SARS-CoV-2: structure, biology, and structure-based therapeutics development [review]. Front Cell Infect Microbiol. 2020 November 25;10(724). doi:https://doi.org/10.3389/fcimb.2020.587269
  • Arya R, Kumari S, Pandey B, et al. Structural insights into SARS-CoV-2 proteins. J Mol Biol. 2021 01 22; 4332:166725.
  • Yang J, Petitjean SJL, Koehler M, et al. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat Commun. 2020 Sep 11;11(1):4541.
  • Baig MS, Alagumuthu M, Rajpoot S, et al. Identification of a potential peptide inhibitor of sars-Cov-2 targeting its entry into the host cells. Drugs R D. 2020 09 01; 20:161–169
  • Bhalla V, Blish CA, South AM. A historical perspective on ACE2 in the COVID-19 era. J Hum Hypertens. 2020 12 14;35:935–939.
  • Yesudhas D, Srivastava A, Gromiha MM. COVID-19 outbreak: history, mechanism, transmission, structural studies and therapeutics. Infection. 2021 Apr;49(2):199–213.
  • Ghanbari R, Teimoori A, Sadeghi A, et al. Existing antiviral options against SARS-CoV-2 replication in COVID-19 patients. Future Microbiol. 2020;15(18):1747–1758.
  • Habas K, Nganwuchu C, Shahzad F, et al. Resolution of coronavirus disease 2019 (COVID-19). Expert Rev Anti Infect Ther. 2020 Dec;18(12):1201–1211.
  • Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 2013 Nov;4(11):1443–1467.
  • Recio C, Maione F, Iqbal AJ, et al. The potential therapeutic application of peptides and peptidomimetics in cardiovascular disease [review]. Front Pharmacol. 2017 January 06;7(526). doi:https://doi.org/10.3389/fphar.2016.00526
  • Schütz D, Ruiz-Blanco YB, Münch J, et al. Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Adv Drug Deliv Rev. 2020 Dec 01;167:47–65.
  • Rathod SB, Prajapati PB, Punjabi LB, et al. Peptide modelling and screening against human ACE2 and spike glycoprotein RBD of SARS-CoV-2. Silico Pharmacol. 2020 Nov 09;8(1):3.
  • Barh D, Tiwari S, Silva Andrade B, et al. Potential chimeric peptides to block the SARS-CoV-2 spike receptor-binding domain. F1000Res. 2020;9:576.
  • Badhe Y, Gupta R, Rai B. In silico design of peptides with binding to the receptor binding domain (RBD) of the SARS-CoV-2 and their utility in bio-sensor development for SARS-CoV-2 detection. RSC Adv. 2021;11(7):3816–3826.
  • Allam L, Ghrifi F, Mohammed H, et al. Targeting the GRP78-dependant SARS-CoV-2 cell entry by peptides and small molecules. Bioinform Biol Insights. 2020;14:1177932220965505.
  • Jaiswal G, Kumar V, Abel SM. In-silico design of a potential inhibitor of SARS-CoV-2 S protein. PloS one. 2020;15(10):e0240004.
  • Han Y, Král P. Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano. 2020 Apr 28;14(4):5143–5147.
  • Odolczyk N, Marzec E, Winiewska-Szajewska M, et al. Native structure-based peptides as potential protein–protein interaction inhibitors of SARS-CoV-2 spike protein and human ACE2 receptor. Molecules. 2021;26(8):2157.
  • Cao L, Goreshnik I, Coventry B, et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science (New York, NY). 2020;370(6515):426–431.
  • Karoyan P, Vieillard V, Gómez-Morales L, et al. Human ACE2 peptide-mimics block SARS-CoV-2 pulmonary cells infection. Commun Biol. 2021 Feb 12;4(1):197.
  • Morgan DC, Morris C, Mahindra A, et al. Stapled ACE2 peptidomimetics designed to target the SARS-CoV-2 spike protein do not prevent virus internalization.Pept Sci.2021;113:e24217.
  • Belouzard S, Millet JK, Licitra BN, et al. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4(6):1011–1033.
  • Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences. 2020;117:11727–11734.
  • Hunt JS, Romanelli F. Maraviroc, a CCR5 coreceptor antagonist that blocks entry of human immunodeficiency virus type 1. Pharmacother. 2009 Mar;29(3):295–304.
  • Donzella GA, Schols D, Lin SW, et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med. 1998 Jan;4(1):72–77.
  • Buske C, Kirchhoff F, Münch J. EPI-X4, a novel endogenous antagonist of CXCR4. Oncotarget. 2015;6(34):35137–35138.
  • Zhao K, Liu S, Chen Y, et al. Upregulation of HBV transcription by sodium taurocholate cotransporting polypeptide at the postentry step is inhibited by the entry inhibitor myrcludex B. Emerg Microbes Infect. 2018 Nov 21 7(1):186.
  • Niv Y. Defensin 5 for prevention of SARS-CoV-2 invasion and Covid-19 disease. Med Hypotheses. 2020;143:110244.
  • Wang C, Wang S, Li D, et al. Human intestinal defensin 5 inhibits SARS-CoV-2 invasion by cloaking ACE2. Gastroenterology. 2020;159(3):1145–1147.e4.
  • Teralı K, Baddal B, Gülcan HO. Prioritizing potential ACE2 inhibitors in the COVID-19 pandemic: insights from a molecular mechanics-assisted structure-based virtual screening experiment. J Mol Graph Model. 2020;100:107697.
  • Makowski L, Olson-Sidford W, W. Weisel J. Biological and clinical consequences of integrin binding via a rogue rgd motif in the SARS CoV-2 spike protein. Viruses. 2021;13(2):146.
  • Doñate F, Parry GC, Shaked Y, et al. Pharmacology of the novel antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2): observation of a U-shaped dose-response curve in several preclinical models of angiogenesis and tumor growth. Clin Cancer Res off J Am Assoc Cancer Res. 2008 Apr 1 14(7):2137–2144.
  • Edwards DN, Salmeron K, Lukins DE, et al. Integrin α5β1 inhibition by ATN-161 reduces neuroinflammation and is neuroprotective in ischemic stroke. J Cereb Blood Flow and Metab. 2020 Aug;40(8):1695–1708.
  • Beddingfield BJ, Iwanaga N, Chapagain PP, et al. The integrin binding peptide, ATN-161, as a novel therapy for SARS-CoV-2 infection. Jacc. 2021 Jan 01;6(1):1–8.
  • Lv X, Li Z, Guan J, et al. ATN-161 reduces virus proliferation in PHEV-infected mice by inhibiting the integrin α5β1-FAK signaling pathway. Vet Microbiol. 2019 Jun;233:147–153.
  • Wang X, Xia S, Zhu Y, et al. Pan-coronavirus fusion inhibitors as the hope for today and tomorrow. Protein Cell. 2021 Feb 01;12(2):84–88.
  • Xia S, Liu M, Wang C, et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020 Nov 01;30(4):343–355.
  • Xia S, Zhu Y, Liu M, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol. 2020 Jul 01;17(7):765–767.
  • Lu L, Liu Q, Zhu Y, et al. Structure-based discovery of middle east respiratory syndrome coronavirus fusion inhibitor. Nat Commun. 2014;5:3067.
  • Zhu Y, Yu D, Yan H, et al. Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity. J Virol. 2020;94(14):e00635–20.
  • de Vries Rd, Schmitz KS, Bovier FT, et al. Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science (New York, NY). 2021;371(6536):1379–1382.
  • Kandeel M, Yamamoto M, Tani H, et al. Discovery of new fusion inhibitor peptides against SARS-CoV-2 by targeting the spike S2 subunit. Biomol Ther (Seoul). 2021 May 1;29(3):282–289.
  • Sun H, Li Y, Liu P, et al. Structural basis of HCoV-19 fusion core and an effective inhibition peptide against virus entry. Emerg Microbes Infect. 2020 Jan 01;9(1):1238–1241.
  • Gioia M, Ciaccio C, Calligari P, et al. Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches. Biochem Pharmacol. 2020 Dec 01;182:114225.
  • Xia S, Lan Q, Su S, et al. The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduct Target Ther. 2020 Jun 12;5(1):92.
  • Mollica V, Rizzo A, Massari F. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncol. 2020;16(27):2029–2033.
  • Xiu S, Dick A, Ju H, et al. Inhibitors of SARS-CoV-2 entry: current and future opportunities. J Med Chem. 2020 Nov 12;63(21):12256–12274.
  • Imran I, Saleemi S, Chen C, et al. Decanoyl-Arg-Val-Lys-Arg-chloromethylketone: an antiviral compound that acts against flaviviruses through the inhibition of furin-mediated prM cleavage. Viruses. 2019;11(11):1011.
  • Cheng Y-W, Chao T-L, Li C-L, et al. Furin inhibitors block SARS-CoV-2 spike protein cleavage to suppress virus production and cytopathic effects. Cell Rep. 2020 Oct 13;33(2):108254.
  • Tang T, Jaimes JA, Bidon MK, et al. Proteolytic activation of SARS-CoV-2 spike at the S1/S2 boundary: potential role of proteases beyond furin. ACS Infect Dis. 2021 Feb 12;7(2):264–272.
  • Zhou M, Zhang Y, Wei H, et al. Furin inhibitor D6R suppresses epithelial-mesenchymal transition in SW1990 and PaTu8988 cells via the Hippo-YAP signaling pathway. Oncol Lett. 2018;15(3):3192–3196.
  • Bestle D, Heindl MR, Limburg H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020;3(9):e202000786.
  • Faheem F, Kumar BK, Sekhar KVGC, et al. Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19. Bioorg Chem. 2020 Nov 01;104:104269.
  • Thunders M, Delahunt B. Gene of the month: TMPRSS2 (transmembrane serine protease 2). J Clin Pathol. 2020;73(12):773–776.
  • Iwata-Yoshikawa N, Okamura T, Shimizu Y, et al. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol. 2019;93(6):e01815–18.
  • Strope JD, PharmD CHC, Figg WD. TMPRSS2: potential biomarker for COVID-19 outcomes. J Clin Pharmacol. 2020;60(7):801–807.
  • Hoffmann M, Hofmann-Winkler H, Smith JC, et al. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine. 2021 Mar 01;65:103255.
  • Bojkova D, Bechtel M, McLaughlin K-M, et al. Aprotinin inhibits SARS-CoV-2 replication. Cells. 2020;9(11):2377.
  • Vanassche T, Engelen MM, Van Thillo Q, et al. A randomized, open-label, adaptive, proof-of-concept clinical trial of modulation of host thromboinflammatory response in patients with COVID-19: the dawn-antico study. Trials. 2020 Dec 09;21(1):1005.
  • Zhirnov OP, Klenk HD, Wright PF. Aprotinin and similar protease inhibitors as drugs against influenza. Antiviral Res. 2011 Oct 01;92(1):27–36.
  • Yang C, Chapman KR, Wong A, et al. α1-antitrypsin deficiency and the risk of COVID-19: an urgent call to action. Lancet Respir Med. 2021;9(4):337–339.
  • Dutta AK, Goswami K. Host genomics of COVID-19: evidence point towards alpha 1 antitrypsin deficiency as a putative risk factor for higher mortality rate. Med Hypotheses. 2021;147:110485.
  • de Loyola Mb, Dos Reis TTA, de Oliveira Gxlm, et al. Alpha-1-antitrypsin: a possible host protective factor against Covid-19. Rev Med Virol. 2021;31(2):e2157–e2157.
  • https://clinicaltrials.gov/ct2/show/NCT04547140?term=NCT04547140&draw=2&rank=1 (Assessed on February 22, 2022).
  • https://clinicaltrials.gov/ct2/show/NCT04495101?term=NCT04495101&draw=2&rank=1 (Assessed on February 22, 2022).
  • https://clinicaltrials.gov/ct2/show/NCT04385836?term=NCT04385836&draw=2&rank=1 (Assessed on February 22, 2022).
  • Pišlar A, Mitrović A, Sabotič J, et al. The role of cysteine peptidases in coronavirus cell entry and replication: the therapeutic potential of cathepsin inhibitors. PLoS Pathog. 2020;16(11):e1009013.
  • Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020 Mar 27;11(1):1620.
  • Sacco MD, Ma C, Lagarias P, et al. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mpro and cathepsin L. Sci Adv. 2020;6(50):eabe0751.
  • Gomes CP, Fernandes DE, Casimiro F, et al. Cathepsin L in COVID-19: from pharmacological evidences to genetics [review]. Front Cell Infect Microbiol. 2020 December 08;10(777). doi:https://doi.org/10.3389/fcimb.2020.589505
  • Liu T, Luo S, Libby P, et al. Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients. Pharmacol Ther. 2020;213:107587.
  • Zhao H, Zhou J, Zhang K, et al. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses. Sci Rep. 2016 Feb 25;6(1):22008.
  • Zhao H, KKW T, Sze K-H, et al. A broad-spectrum virus- and host-targeting peptide against respiratory viruses including influenza virus and SARS-CoV-2. Nat Commun. 2020;11(1):4252.
  • Zhao H, KKW T, Lam H, et al. Cross-linking peptide and repurposed drugs inhibit both entry pathways of SARS-CoV-2. Nat Commun. 2021 Mar 09;12(1):1517.
  • Baron SA, Devaux C, Colson P, et al. Teicoplanin: an alternative drug for the treatment of COVID-19? Int J Antimicrob Agents. 2020;55(4):105944.
  • Ceccarelli G, Alessandri F, d’Ettorre G, et al. Is teicoplanin a complementary treatment option for COVID-19? The question remains. Int J Antimicrob Agents. 2020;56(2):106029.
  • Wettstein L, Weil T, Conzelmann C, et al. Alpha-1 antitrypsin inhibits TMPRSS2 protease activity and SARS-CoV-2 infection. Nat Commun. 2021 Mar 19;12(1):1726.
  • Heydari H, Golmohammadi R, Mirnejad R, et al. Antiviral peptides against Coronaviridae family: a review. Peptides. 2021 May;139:170526.**This article summarizes data relating to antiviral peptides against Coronaviridae family particularly with respect to their applicability for development as novel treatments.
  • Badani H, Garry RF, Wimley WC. Peptide entry inhibitors of enveloped viruses: the importance of interfacial hydrophobicity. Biochim Biophys Acta - Biomembr. 2014 Sep 01;1838(9):2180–2197.
  • Shi S, Nguyen PK, Cabral HJ, et al. Development of peptide inhibitors of HIV transmission. Bioact Mater. 2016 Dec 01;1(2):109–121.
  • Turon-Lagot V, Saviano A, Schuster C, et al. Targeting the host for new therapeutic perspectives in hepatitis D. J Clin Med. 2020;9(1):222.
  • Chew M-F, Poh K-S, Poh C-L. Peptides as therapeutic agents for dengue virus. Int J Med Sci. 2017;14(13):1342–1359.
  • Mant CT, Kovacs JM, Kim HM, et al. Intrinsic amino acid side-chain hydrophilicity/hydrophobicity coefficients determined by reversed-phase high-performance liquid chromatography of model peptides: comparison with other hydrophilicity/hydrophobicity scales. Biopolymers. 2009;92(6):573–595.
  • Wu SJ, Luo J, O’Neil KT, et al. Structure-based engineering of a monoclonal antibody for improved solubility. Protein Eng Des Sel. 2010 Aug;23(8):643–651.
  • Lee AC, Harris JL, Khanna KK, et al. A comprehensive review on current advances in peptide drug development and design. Int J Mol Sci. 2019 May 14;20(10). doi:https://doi.org/10.3390/ijms20102383

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.