248
Views
5
CrossRef citations to date
0
Altmetric
Review

Advances in nanotechnology-based platforms for survivin-targeted drug discovery

, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 733-754 | Received 03 Jan 2022, Accepted 10 May 2022, Published online: 23 May 2022

References

  • Szakacs G, Paterson JK, Ludwig JA, et al., Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5(3):219–234.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.
  • Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov. 2012;11(2):109–124.
  • Kumar S, Fairmichael C, Longley DB, et al. The multiple roles of the iap super-family in cancer. Pharmacol Ther. 2020;214:107610.
  • Altieri DC. Validating survivin as a cancer therapeutic target. Nat Rev Cancer. 2003;3(1):46–54.
  • Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997;3(8):917–921.
  • Verdecia MA, Huang H, Dutil E, et al. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat Struct Biol. 2000;7(8):602–608.
  • Wheatley SP, Altieri DC. Survivin at a glance. J Cell Sci. 2019;132(7).
  • Singh N, Krishnakumar S, Kanwar RK, et al. Clinical aspects for survivin: a crucial molecule for targeting drug-resistant cancers. Drug Discov Today. 2015;20(5):578–587.
  • Vader G, Kauw JJ, Medema RH, et al. Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Rep. 2006;7(1):85–92.
  • Güllülü O, Hehlgans S, Mayer BE, et al. A Spatial and Functional Interaction of a Heterotetramer Survivin-DNA-PKcs Complex in DNA Damage Response. Cancer Res. 2021;81:2304–2317.
  • Xia F, Altieri DC. Mitosis-independent survivin gene expression in vivo and regulation by p53. Cancer Res. 2006;66(7):3392–3395.
  • Martinez-Garcia D, Manero-Ruperez N, Quesada R, et al., Therapeutic strategies involving survivin inhibition in cancer. Med Res Rev. 2019;39(3):887–909.
  • Sprenger T, Rodel F, Beissbarth T, et al. Failure of downregulation of survivin following neoadjuvant radiochemotherapy in rectal cancer is associated with distant metastases and shortened survival. Clin Cancer Res. 2011;17(6):1623–1631.
  • Mehrotra S, Languino LR, Raskett CM, et al. IAP regulation of metastasis. Cancer Cell. 2010;17(1):53–64.
  • Li F, Aljahdali I, Ling X. Cancer therapeutics using survivin BIRC5 as a target: what can we do after over two decades of study? J Exp Clin Cancer Res. 2019;38(1):368.
  • Meiners A, Backer S, Hadrovic I, et al., Specific inhibition of the Survivin-CRM1 interaction by peptide-modified molecular tweezers. Nat Commun. 2021;12(1):1505.
  • Erba HP, Sayar H, Juckett M, et al. Safety and pharmacokinetics of the antisense oligonucleotide (ASO) LY2181308 as a single-agent or in combination with idarubicin and cytarabine in patients with refractory or relapsed acute myeloid leukemia (AML). Invest New Drugs. 2013;31(4):1023–1034.
  • Wiechno P, Somer BG, Mellado B, et al. A randomised phase 2 study combining LY2181308 sodium (survivin antisense oligonucleotide) with first-line docetaxel/prednisone in patients with castration-resistant prostate cancer. Eur Urol. 2014;65(3):516–520.
  • Natale R, Blackhall F, Kowalski D, et al. Evaluation of antitumor activity using change in tumor size of the survivin antisense oligonucleotide LY2181308 in combination with docetaxel for second-line treatment of patients with non-small-cell lung cancer: a randomized open-label phase II study. J Thorac Oncol. 2014;9(11):1704–1708.
  • Giaccone G, Zatloukal P, Roubec J, et al. Multicenter phase II trial of YM155, a small-molecule suppressor of survivin, in patients with advanced, refractory, non-small-cell lung cancer. J Clin Oncol. 2009;27(27):4481–4486.
  • Kelly RJ, Thomas A, Rajan A, et al. A phase I/II study of sepantronium bromide (YM155, survivin suppressor) with paclitaxel and carboplatin in patients with advanced non-small-cell lung cancer. Ann Oncol. 2013;24(10):2601–2606.
  • Lechler P, Wu X, Bernhardt W, et al. The tumor gene survivin is highly expressed in adult renal tubular cells: implications for a pathophysiological role in the kidney. Am J Pathol. 2007;171(5):1483–1498.
  • Fukuda S, Pelus LM. Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther. 2006;5(5):1087–1098.
  • Tanioka M, Nokihara H, Yamamoto N, et al. Phase I study of LY2181308, an antisense oligonucleotide against survivin, in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2011;68(2):505–511.
  • Zhong Y, Meng F, Deng C, et al. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules. 2014;15(6):1955–1969.
  • Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–284.
  • Wacker M. Nanocarriers for intravenous injection–the long hard road to the market. Int J Pharm. 2013;457(1):50–62.
  • Davis ME, Zuckerman JE, Choi CH, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464(7291):1067–1070.
  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature. 1998;391(6669):806–811.
  • Hutvagner G, McLachlan J, Pasquinelli AE, et al. A cellular function for the rna-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293(5531):834–838.
  • Martinez J, Patkaniowska A, Urlaub H, et al. Single-stranded antisense si RNAs guide target RNA cleavage in RNAI. Cell. 2002;110(5):563–574.
  • Samarasinghe RM, Gibbons J, Kanwar RK, et al. Nanotechnology based platforms for survivin targeted drug discovery. Expert Opin Drug Discov. 2012;7(11):1083–1092.
  • Perez-Herrero E, Fernandez-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.
  • O’Connor DS, Grossman D, Plescia J, et al. Regulation of apoptosis at celldivision by p34 cdc2 phosphorylation of survivin. Proc Natl Acad Sci U S A. 2000;97(24):13103–13107.
  • Aspe JR, Wall NR. Survivin-T34A: molecular mechanism and therapeutic potential. Onco Targets Ther. 2010;3:247–254.
  • Wang T, Liu Z, Zhang Z, et al. Evaluation of antitumor activity of survivin short interfering RNA delivered by lipid nanoparticles in colon cancer in vitro and in vivo. Oncol Lett. 2017;14(2):2001–2008.
  • Feng C, Wang T, Zhang Y, et al. Novel survivin-targeted small interfering rna delivered by nanoparticles. Am J Med Sci. 2017;354(5):506–512.
  • Bi Y, Lee RJ, Wang X, et al. Liposomal codelivery of an SN38 prodrug and a survivin siRNA for tumor therapy. Int J Nanomedicine. 2018;13:5811–5822.
  • Ewe A, Panchal O, Pinnapireddy SR, et al. Liposome-polyethylenimine complexes (DPPC-PEI lipopolyplexes) for therapeutic siRNA delivery in vivo. Nanomedicine. 2017;13(1):209–218.
  • Lee YK, Lee TS, Song IH, et al. Inhibition of pulmonary cancer progression by epidermal growth factor receptor-targeted transfection with Bcl-2 and survivin siRNAs. Cancer Gene Ther. 2015;22(7):335–343.
  • Rodriguez-Gascon A, Del Pozo-Rodriguez A, Solinis MA. Development of nucleic acid vaccines: use of self-amplifying RNA in lipid nanoparticles. Int J Nanomedicine. 2014;9:1833–1843.
  • Zhang X, Men K, Zhang Y, et al. Local and systemic delivery of mRNA encoding survivin-T34A by lipoplex for efficient colon cancer gene therapy. Int J Nanomedicine. 2019;14:2733–2751.
  • Chen H, Fan X, Zhao Y, et al. Stimuli-responsive polysaccharide enveloped liposome for targeting and penetrating delivery of survivin-shrna into breast tumor. ACS Appl Mater Interfaces. 2020;12:22074–22087.
  • Kawano H, Shakushiro K, Nakata M, et al. Antitumor efficacy and biodistribution of liposomal sepantronium bromide (YM155), a novel small-molecule survivin suppressant. Eur J Pharm Biopharm. 2014;88(1):283–289.
  • Shakushiro K, Kawano H, Nakata M, et al. Formulation design and evaluation of liposomal sepantronium bromide (YM155), a small-molecule survivin suppressant, based on pharmacokinetic modeling and simulation. Pharm Res. 2015;32(1):238–247.
  • Gritsko T, Williams A, Turkson J, et al. Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res. 2006;12(1):11–19.
  • Ma Y, Zhang X, Xu X, et al. STAT3 decoy oligodeoxynucleotides-loaded solid lipid nanoparticles induce cell death and inhibit invasion in ovarian cancer cells. PLoS One. 2015;10(4):e0124924.
  • Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1(1):15004.
  • Phatak P, Byrnes KA, Mansour D, et al. Overexpression of miR-214-3p in esophageal squamous cancer cells enhances sensitivity to cisplatin by targeting survivin directly and indirectly through CUG-BP1. Oncogene. 2016;35(16):2087–2097.
  • Wang XP, Yao J, Guan J, et al. MicroRNA-542-3p functions as a tumor suppressor via directly targeting survivin in hepatocellular carcinoma. Biomed Pharmacother. 2018;99:817–824.
  • Althoff K, Lindner S, Odersky A, et al. miR-542-3p exerts tumor suppressive functions in neuroblastoma by downregulating Survivin. Int J Cancer. 2015;136(6):1308–1320.
  • Chen Y, Zhu X, Zhang X, et al. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 2010;18(9):1650–1656.
  • Pedziwiatr-Werbicka E, Horodecka K, Shcharbin D, et al. Nanoparticles in combating cancer: opportunities and limitations. A brief review. Curr Med Chem. 2021;28(2):346–359.
  • Karabasz A, Bzowska M, Szczepanowicz K. Biomedical applications of multifunctional polymeric nanocarriers: a review of current literature. Int J Nanomedicine. 2020;15:8673–8696.
  • Ewe A, Noske S, Karimov M, et al. Polymeric Nanoparticles Based on Tyrosine-Modified, Low Molecular Weight Polyethylenimines for siRNA Delivery. Pharmaceutics. 2019;11(11):600.
  • Xu B, Zhou W, Cheng L, et al. Novel polymeric hybrid nanocarrier for curcumin and survivin shrna co-delivery augments tumor penetration and promotes synergistic tumor suppression. Front Chem. 2020;8:762.
  • He Q, Guo Z, Fu M, et al. Establishment of a hTfR mAb-functionalized HPPS theranostic nanoplatform. Nanotheranostics. 2020;4(3):119–128.
  • Tang Y, Liu Y, Xie Y, et al. Apoptosis of A549 cells by small interfering RNA targeting survivin delivery using poly-beta-amino ester/guanidinylated O-carboxymethyl chitosan nanoparticles. Asian J Pharm Sci. 2020;15(1):121–128.
  • Chen L, Wang S, Liu Q, et al. Reduction sensitive nanocarriers mPEG-g-gamma-PGA/SSBPEI@siRNA for effective targeted delivery of survivin siRNA against NSCLC. Colloids Surf B Biointerfaces. 2020;193:111105.
  • Cheng Y, Ji Y. RGD-modified polymer and liposome nanovehicles: recent research progress for drug delivery in cancer therapeutics. Eur J Pharm Sci. 2019;128:8–17.
  • Yang S, Wang D, Zhang X, et al. cRGD peptide-conjugated polyethylenimine-based lipid nanoparticle for intracellular delivery of siRNA in hepatocarcinoma therapy. Drug Deliv. 2021;28(1):995–1006.
  • Gaca S, Reichert S, Multhoff G, et al., Targeting by cmHsp70.1-antibody coated and survivin miRNA plasmid loaded nanoparticles to radiosensitize glioblastoma cells. J Control Release. 2013;172(1):201–206.
  • Lv T, Li Z, Xu L, et al. Chloroquine in combination with aptamer-modified nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to overcome drug resistance in EGFR-mutated non-small cell lung cancer. Acta Biomater. 2018;76:257–274.
  • Kozielski KL, Ruiz-Valls A, Tzeng SY, et al. Cancer-selective nanoparticles for combinatorial siRNA delivery to primary human GBM in vitro and in vivo. Biomaterials. 2019;209:79–87.
  • Zhang L, Li Q, Chen J, et al. Enhanced antitumor efficacy of glutathione-responsive chitosan based nanoparticles through co-delivery of chemotherapeutics, genes, and immune agents. Carbohydr Polym. 2021;270:118384.
  • Liu X, Chen L, Zhang Y, et al. Enhancing anti-melanoma outcomes in mice using novel chitooligosaccharide nanoparticles loaded with therapeutic survivin-targeted siRNA. Eur J Pharm Sci. 2021;158:105641.
  • Ni S, Xie Y, Tang Y, et al. Nebulized anionic guanidinylated O-carboxymethyl chitosan/N-2-hydroxypropyltimehyl ammonium chloride chitosan nanoparticles for siRNA pulmonary delivery: preparation, characterization and in vitro evaluation. J Drug Target. 2017;25(5):451–462.
  • Nie JJ, Liu Y, Qi Y, et al. Charge-reversal nanocomplexes-based CRISPR/Cas9 delivery system for loss-of-function oncogene editing in hepatocellular carcinoma. J Control Release. 2021;333:362–373.
  • Hu F, Yan T, Guo W, et al. Multiple targeting strategies achieve novel protein drug delivery into proapoptosis lung cancer cells by precisely inhibiting survivin. Nanoscale. 2020;12(19):10623–10638.
  • Lu J, Hu P, Cao L, et al. genetically encoded and biologically produced all-dna nanomedicine based on one-pot assembly of dna dendrimers for targeted gene regulation. Angew Chem Int Ed Engl. 2021;60(10):5377–5385.
  • Heinrich MC, Gobel C, Kluth M, et al. PSCA expression is associated with favorable tumor features and reduced PSA recurrence in operated prostate cancer. BMC Cancer. 2018;18(1):612.
  • Jugel W, Aigner A, Michen S, et al., Targeted RNAi of BIRC5/survivin using antibody-conjugated poly(Propylene Imine)-based polyplexes inhibits growth of PSCA-positive tumors. Pharmaceutics. 2021;13(5):676.
  • Tietze S, Schau I, Michen S, et al. A PoLy(Propyleneimine) dendrimer-based polyplex-system for single-chain antibody-mediated targeted delivery and cellular uptake of siRNA. Small. 2017;13(27):1700072.
  • Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol. 2015;88(1054):20150207.
  • Zhao S, Yu X, Qian Y, et al. Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics. 2020;10(14):6278–6309.
  • van der Meer Sb, Hadrovic I, Meiners A, et al. New tools to probe the protein surface: ultrasmall gold nanoparticles carry amino acid binders. J Phys Chem B. 2021;125(1):115–127.
  • Wang Y, Zhao L, Yuan W, et al. A natural membrane vesicle exosome-based sinomenine delivery platform for hepatic carcinoma therapy. Curr Top Med Chem. 2021;21(14):1224–1234.
  • Bruniaux J, Allard-Vannier E, Aubrey N, et al. Magnetic nanocarriers for the specific delivery of siRNA: contribution of breast cancer cells active targeting for down-regulation efficiency. Int J Pharm. 2019;569:118572.
  • Arami S, Mahdavi M, Rashidi MR, et al. Multifunctional superparamagnetic nanoparticles: from synthesis to siRNA delivery. Curr Pharm Des. 2017;23(16):2400–2409.
  • Arami S, Mahdavi M, Rashidi MR, et al. Apoptosis induction activity and molecular docking studies of survivin siRNA carried by Fe3O4-PEG-LAC-chitosan-PEI nanoparticles in MCF-7 human breast cancer cells. J Pharm Biomed Anal. 2017;142:145–154.
  • Daglioglu C, Okutucu B. Therapeutic effects of AICAR and DOX conjugated multifunctional nanoparticles in sensitization and elimination of cancer cells via survivin targeting. Pharm Res. 2017;34(1):175–184.
  • Plescia J, Salz W, Xia F, et al. Rational design of shepherdin, a novel anticancer agent. Cancer Cell. 2005;7(5):457–468.
  • Kara G, Parlar A, Cakmak MC, et al. Silencing of survivin and cyclin B1 through siRNA-loaded arginine modified calcium phosphate nanoparticles for non-small-cell lung cancer therapy. Colloids Surf B Biointerfaces. 2020;196:111340.
  • Yu S, Zhou Y, Sun Y, et al. Endogenous mRNA triggered dna-au nanomachine for in situ imaging and targeted multimodal synergistic cancer therapy. Angew Chem Int Ed Engl. 2021;60(11):5948–5958.
  • Khachigian LM. Deoxyribozymes as catalytic nanotherapeutic agents. Cancer Res. 2019;79(5):879–888.
  • Nie Y, Li D, Peng Y, et al. Metal organic framework coated MnO2 nanosheets delivering doxorubicin and self-activated DNAzyme for chemo-gene combinatorial treatment of cancer. Int J Pharm. 2020;585:119513.
  • Haque F, Shu D, Shu Y, et al. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today. 2012;7(4):245–257.
  • Ohno H, Akamine S, Saito H. RNA nanostructures and scaffolds for biotechnology applications. Curr Opin Biotechnol. 2019;58:53–61.
  • Hendrix DK, Brenner SE, Holbrook SR. RNA structural motifs: building blocks of a modular biomolecule. Q Rev Biophys. 2005;38(3):221–243.
  • Guo P, Haque F, Hallahan B, et al. Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther. 2012;22(4):226–245.
  • Tinoco I Jr., Bustamante C. How RNA folds. J Mol Biol. 1999;293(2):271–281.
  • Afonin KA, Viard M, Koyfman AY, et al. Multifunctional RNA nanoparticles. Nano Lett. 2014;14(10):5662–5671.
  • Jedrzejczyk D, Gendaszewska-Darmach E, Pawlowska R, et al. Designing synthetic RNA for delivery by nanoparticles. J Phys Condens Matter. 2017;29(12):123001.
  • Li H, Lee T, Dziubla T, et al. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. Nano Today. 2015;10(5):631–655.
  • Guo S, Tschammer N, Mohammed S, et al. Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum Gene Ther.2005;16(9):1097–1109.
  • Li L, Liu J, Diao Z, et al. Evaluation of specific delivery of chimeric phi29 pRNA/siRNA nanoparticles to multiple tumor cells. Mol Biosyst. 2009;5(11):1361–1368.
  • Sajeesh S, Lee TY, Hong SW, et al. Long dsRNA-mediated RNA interference and immunostimulation: a targeted delivery approach using polyethyleneimine based nano-carriers. Mol Pharm. 2014;11(3):872–884.
  • Aubets E, Chillon M, Ciudad CJ, et al. PolyPurine reverse hoogsteen hairpins work as RNA species for gene silencing. Int J Mol Sci. 2021;23(1):22.
  • Liu J, Song L, Liu S, et al. A tailored DNA nanoplatform for synergistic RNAi-/chemotherapy of multidrug-resistant tumors. Angew Chem Int Ed Engl. 2018;57(47):15486–15490.
  • Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32(3–4):623–642.
  • Chen H, Wang L, Zeng X, et al. Exosomes, a new star for targeted delivery. Front Cell Dev Biol. 2021;9:751079.
  • Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–579.
  • Xu S, Liu B, Fan J, et al. Engineered mesenchymal stem cell-derived exosomes with high CXCR4 levels for targeted siRNA gene therapy against cancer. Nanoscale. 2022;14(11):4098–4113.
  • Aspe JR, Diaz Osterman CJ, Jutzy JM, et al. Enhancement of Gemcitabine sensitivity in pancreatic adenocarcinoma by novel exosome-mediated delivery of the Survivin-T34A mutant. J Extracell Vesicles. 2014;3(1):23244.
  • Kok TW, Yue PY, Mak NK, et al. The anti-angiogenic effect of sinomenine. Angiogenesis. 2005;8(1):3–12.
  • Qian L, Xu Z, Zhang W, et al. Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase. J Neuroinflammation. 2007;4(1):23.
  • Wang Q, Li XK. Immunosuppressive and anti-inflammatory activities of sinomenine. Int Immunopharmacol. 2011;11(3):373–376.
  • Zhupanyn P, Ewe A, Buch T, et al. Extracellular vesicle (ECV)-modified polyethylenimine (PEI) complexes for enhanced siRNA delivery in vitro and in vivo. J Control Release. 2020;319:63–76.
  • Li Z, Wang H, Yin H, et al. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression. Sci Rep. 2018;8(1):14644.
  • Wang B, Zhuang X, Deng ZB, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014;22(3):522–534.
  • Li Z, Yang L, Wang H, et al. Non-small-cell lung cancer regression by siRNA delivered through exosomes that display EGFR RNA aptamer. Nucleic Acid Ther. 2021;31(5):364–374.
  • Pi F, Binzel DW, Lee TJ, et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat Nanotechnol. 2018;13(1):82–89.
  • Binzel DW, Guo S, Yin H, et al. Rational design for controlled release of dicer-substrate siRNA harbored in phi29 pRNA-based nanoparticles. Mol Ther Nucleic Acids. 2021;25:524–535.
  • Pivetta TP, Botteon CEA, Ribeiro PA, et al. Nanoparticle systems for cancer phototherapy: an overview. Nanomaterials (Basel). 2021;12(1):11.
  • Jin Y, Wang H, Li X, et al., Multifunctional DNA polymer-assisted upconversion therapeutic nanoplatform for enhanced photodynamic therapy. ACS Appl Mater Interfaces. 2020;12(24):26832–26841.
  • Li C, Yang XQ, Zhang MZ, et al. In vivo imaging-guided nanoplatform for tumor targeting delivery and combined chemo-, gene- and photothermal therapy. Theranostics. 2018;8(20):5662–5675.
  • Li Z, Zhu L, Liu W, et al. Near-infrared/pH dual-responsive nanocomplexes for targeted imaging and chemo/gene/photothermal tri-therapies of non-small cell lung cancer. Acta Biomater. 2020;107:242–259.
  • Wendt MD, Sun C, Kunzer A, et al. Discovery of a novel small molecule binding site of human survivin. Bioorg Med Chem Lett. 2007;17(11):3122–3129.
  • Burdette MK, Jenkins R, Bandera YP, et al. Click-engineered, bioresponsive, and versatile particle-protein-dye system. ACS Appl Bio Mater. 2019;2(8):3183–3193.
  • Andersen MH, thor Sp. Survivin–a universal tumor antigen. Histol Histopathol. 2002;17(2):669–675.
  • Berntsen A, Trepiakas R, Wenandy L, et al. Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma: a clinical phase 1/2 trial. J Immunother. 2008;31(8):771–780.
  • Chen Q, Jia G, Zhao X, et al. Novel survivin peptides screened with computer algorithm induce cytotoxic T lymphocytes with higher cytotoxic efficiency to cancer cells. Front Mol Biosci. 2020;7:570003.
  • Xiang SD, Wilson K, Day S, et al. Methods of effective conjugation of antigens to nanoparticles as non-inflammatory vaccine carriers. Methods. 2013;60(3):232–241.
  • Xiang SD, Wilson KL, Goubier A, et al. Design of peptide-based nanovaccines targeting leading antigens from gynecological cancers to induce HLA-A2.1 restricted CD8(+) T cell responses. Front Immunol. 2018;9:2968.
  • Campbell K, Young VL, Donaldson BC, et al., Delivering two tumour antigens survivin and mucin-1 on virus-like particles enhances anti-tumour immune responses. Vaccines (Basel). 2021;10(1):9.
  • Güllülü O, Hehlgans S, Mayer BE, et al. a spatial and functional interaction of a heterotetramer survivin-DNA-PKcs complex in DNA damage response. Cancer Res. 2021;81(9):2304–2317.
  • Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18(6):421–446.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.