245
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Designing drugs when there is low data availability: one-shot learning and other approaches to face the issues of a long-term concern

, , , , &
Pages 929-947 | Received 31 Jan 2022, Accepted 15 Aug 2022, Published online: 30 Aug 2022

References

  • Butler TC. The introduction of chloral hydrate into medical practice. Bull Hist Med. 1970;44(2):168–172.
  • Miner J, Hoffhines A. The discovery of Aspirin’s antithrombotic effects. Tex Heart Inst J. 2007;34(2):179–186.
  • Bennett JW, Chung KT. Alexander Fleming and the discovery of penicillin. Adv Appl Microbiol. 2001;49:163–184.
  • Garcia CR, Pincus G, Rock J. Effects of certain 19-nor steroids on the normal human menstrual cycle. Science. 1956;124(3227):891–893.
  • Loomer HP, Saunders JC, Kline NS. A clinical and pharmacodynamic evaluation of iproniazid as a psychic energizer. Psychiatr Res Rep Am Psychiatr Assoc. 1957;8:129–141.
  • Ban TA. The role of serendipity in drug discovery. Dialogues Clin Neurosci. 2006;8(3):335–344.
  • Júlia GBP, Lucas SF, Eliezer JB. Chemical intuition in drug design and discovery. Curr Top Med Chem. 2019;19(19):1679–1693.
  • Patrick GL. An introduction to medicinal chemistry. New York (Oxford): Oxford University Press; 2017.
  • Pereira DA, Williams JA. Origin and evolution of high throughput screening. Br J Pharmacol. 2007;152(1):53–61.
  • Macarron R, Banks MN, Bojanic D, et al. Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov. 2011;10(3):188–195.
  • Irwin JJ, Shoichet BK. ZINC − A free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005;45:177–182.
  • Pilon AC, Valli M, Dametto AC, et al. NuBBEDB: an updated database to uncover chemical and biological information from Brazilian biodiversity. Sci Rep. 2017;7(1):7215.
  • Massarotti A, Brunco A, Sorba G, et al. ZINClick: a database of 16 million novel, patentable, and readily synthesizable 1,4-disubstituted triazoles. J Chem Inf Model. 2014;54(2):396–406.
  • Chen -CY-C. TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. Plos One. 2011;6(1):e15939.
  • Gaulton A, Hersey A, Nowotka M, et al. The chEMBL database in 2017. Nucleic Acids Res. 2017;45(D1):D945–D954.
  • Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202–1213.
  • Liu T, Lin Y, Wen X, et al. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 2007;35(Database):D198–201.
  • Sussman JL, Lin D, Jiang J, et al. Protein data bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D Biol Crystallogr. 1998;54(6):1078–1084.
  • Bienert S, Waterhouse A, de Beer TAP, et al. The swiss-model repository-new features and functionality. Nucleic Acids Res. 2017;45(D1):D313–D319.
  • Zhou P, Tian F, Zou J, et al. Rediscovery of halogen bonds in protein-ligand complexes. Mini Rev Med Chem. 2010;10(4):309–314.
  • Veit-Acosta M, de Azevedo Junior WF. The impact of crystallographic data for the development of machine learning models to predict protein-ligand binding affinity. Curr Med Chem. 2021;28(34):7006–7022.
  • Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today. 2015;20(3):318–331.
  • Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–477.
  • Y-C L, Rensi SE, Torng W, et al. Machine learning in chemoinformatics and drug discovery. Drug Discov Today. 2018;23(2):1538–1546.
  • Zhang L, Tan J, Han D, et al. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017;22(11):1680–1685.
  • Lima AN, Philot EA, Trossini GHG, et al. Use of machine learning approaches for novel drug discovery. Expert Opin Drug Discov. 2016;11(3):225–239.
  • Serafim MSM, Kronenberger T, Oliveira PR, et al. The application of machine learning techniques to innovative antibacterial discovery and development. Expert Opin Drug Discov. 2020;15(10):1165–1180.
  • Bian G, Deng Z, Liu T. Strategies for terpenoid overproduction and new terpenoid discovery. Curr Opin Biotechnol. 2017;48:234–241.
  • Tan G-Y, Zhu F, Deng Z, et al. In vitro reconstitution guide for targeted synthetic metabolism of chemicals, nutraceuticals and drug precursors. Synth Syst Biotechnol. 2016;1(1):25–33.
  • Nielsen J, Keasling JD. Engineering cellular metabolism. Cell. 2016;164(6):1185–1197.
  • Zdrazil B, Richter L, Brown N, et al. Moving targets in drug discovery. Sci Rep. 2020;10(1):20213.
  • Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. J Med Chem. 2014;57(19):7874–7887.
  • Chaudhari R, Tan Z, Huang B, et al. Computational polypharmacology: a new paradigm for drug discovery. Expert Opin Drug Discov. 2017;12:279–291.
  • Andersson DI. Persistence of antibiotic resistant bacteria. Curr Opin Microbiol. 2003;6(5):452–456.
  • Mediavilla JR, Patrawalla A, Chen L, et al. Colistin- and carbapenem-resistant Escherichia coli harboring mcr-1 and blaNDM-5, causing a complicated urinary tract infection in a patient from the united states. mBio. 2016;7:e01191–16.
  • Martin L-A, Ribas R, Simigdala N, et al. Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance. Nat Commun. 2017;8(1):1865.
  • Conradie F, Diacon AH, Ngubane N, et al. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med. 2020;382(10):893–902.
  • Altae-Tran H, Ramsundar B, Pappu AS, et al. Low data drug discovery with one-shot learning. ACS Cent Sci. 2017;3(4):283–293.
  • Rask-Andersen M, Almén MS, Schiöth HB. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov. 2011;10(8):579–590.
  • Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017;16(1):19–34.
  • Illuminating the druggable genome (IDG) [Internet]. Natl. Cent. Adv. Transl. Sci. 2015. [cited 2021 Nov 19]. Available from: https://ncats.nih.gov/idg.
  • Oprea TI, Bologa CG, Brunak S, et al. Unexplored therapeutic opportunities in the human genome. Nat Rev Drug Discov. 2018;17(5):317–332.
  • Carter AJ, Kraemer O, Zwick M, et al. Target 2035: probing the human proteome. Drug Discov Today. 2019;24(11):2111–2115.
  • Jones MM, Castle-Clarke S, Brooker D, et al. The structural genomics consortium. Rand Health Q. 2014;4(3):19.
  • Bradley AR, Echalier A, Fairhead M, et al. The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery. Essays Biochem. 2017;61(5):495–503.
  • EUbOPEN [Internet]. cited 2022 Jan 13]. Available from 2022 Jan 13: https://www.eubopen.org/.
  • Nguyen D-T, Mathias S, Bologa C, et al. Pharos: collating protein information to shed light on the druggable genome. Nucleic Acids Res. 2017;45(D1):D995–D1002.
  • Benns HJ, Wincott CJ, Tate EW, et al. Activity- and reactivity-based proteomics: recent technological advances and applications in drug discovery. Curr Opin Chem Biol. 2021;60:20–29.
  • Mitchell BR, Cohen MC, Cohen S. Dealing with multi-dimensional data and the burden of annotation: easing the burden of annotation. Am J Pathol. 2021;191(10):1709–1716.
  • Hassanzadeh P, Atyabi F, Dinarvand R. The significance of artificial intelligence in drug delivery system design. Adv Drug Deliv Rev. 2019;151-152:169–190.
  • Fei-Fei L, Fergus R, Perona P. One-shot learning of object categories. IEEE Trans Pattern Anal Mach Intell. 2006;28(4):594–611.
  • Wan J, Guo G, Li SZ. Explore efficient local features from RGB-D data for one-shot learning gesture recognition. IEEE Trans Pattern Anal Mach Intell. 2016;38(8):1626–1639.
  • Hasford J, Bruchmann F, Lutz M, et al. A patient-centred web-based adverse drug reaction reporting system identifies not yet labelled potential safety issues. Eur J Clin Pharmacol. 2021;77(11):1697–1704.
  • Pernici CD, Mensah JA, Dahle EJ, et al. Development of an antiseizure drug screening platform for Dravet syndrome at the NINDS contract site for the epilepsy therapy screening program. Epilepsia. 2021;62(7):1665–1676.
  • Fernández I. Understanding the reactivity of polycyclic aromatic hydrocarbons and related compounds. Chem Sci. 2020;11(15):3769–3779.
  • Costanzi S, Cohen A, Danfora A, et al. Influence of the structural accuracy of homology models on their applicability to docking-based virtual screening: the β 2 adrenergic receptor as a case study. J Chem Inf Model. 2019. 59(7): 3177–3190.
  • Jaiteh M, Rodríguez-Espigares I, Selent J, et al. Performance of virtual screening against GPCR homology models: impact of template selection and treatment of binding site plasticity. PLoS Comput Biol. 2020;16(3):e1007680.
  • Loo JSE, Emtage AL, Ng KW, et al. Assessing GPCR homology models constructed from templates of various transmembrane sequence identities: binding mode prediction and docking enrichment. J Mol Graph Model. 2018;80:38–47.
  • Lim VJY, Du W, Chen YZ, et al. A benchmarking study on virtual ligand screening against homology models of human GPCRs. Proteins. 2018;86(9):978–989.
  • Bender BJ, Marlow B, Meiler J. Improving homology modeling from low-sequence identity templates in Rosetta: a case study in GPCRs. Plos Comput Biol. 2020;16(10):e1007597.
  • Chen H, Fu W, Wang Z, et al. Reliability of docking-based virtual screening for gpcr ligands with homology modeled structures: a case study of the angiotensin II type I receptor. ACS Chem Neurosci. 2019;10(1):677–689.
  • Kapla J, Rodríguez-Espigares I, Ballante F, et al. Can molecular dynamics simulations improve the structural accuracy and virtual screening performance of GPCR models? Plos Comput Biol. 2021;17(5):e1008936.
  • Gazgalis D, Zaka M, Abbasi BH, et al. Protein binding pocket optimization for virtual high-throughput screening (vHTS) drug discovery. ACS Omega. 2020;5(24):14297–14307.
  • Pal A, Curtin JF, Kinsella GK. In silico and in vitro screening for potential anticancer candidates targeting GPR120. Bioorg Med Chem Lett. 2021;31:127672.
  • Schaller D, Hagenow S, Stark H, et al. Ligand-guided homology modeling drives identification of novel histamine H3 receptor ligands. Plos One. 2019;14(6):e0218820.
  • Chen EC, Khuri N, Liang X, et al. Discovery of competitive and noncompetitive ligands of the organic cation transporter 1 (OCT1; SLC22A1). J Med Chem. 2017;60(7):2685–2696.
  • Wang Y, Gao J, Zhao S, et al. Discovery of 4-arylthiophene-3-carboxylic acid as inhibitor of ANO1 and its effect as analgesic agent. Acta Pharm Sin B. 2021;11(7):1947–1964.
  • Kaczor AA, Targowska-Duda KM, Budzyńska B, et al. vitro, molecular modeling and behavioral studies of 3-{[4-(5-methoxy-1H-indol-3-yl)-1,2,3,6-tetrahydropyridin-1-yl]methyl}-1,2-dihydroquinolin-2-one (D2AAK1) as a potential antipsychotic. Neurochem Int. 2016;96:84–99.
  • Wei C, Bajpai R, Sharma H, et al. Development of GLUT4-selective antagonists for multiple myeloma therapy. Eur J Med Chem. 2017;139:573–586.
  • Maciuszek M, Ortega-Gomez A, Maas SL, et al. Synthesis and evaluation of novel cyclopentane urea FPR2 agonists and their potential application in the treatment of cardiovascular inflammation. Eur J Med Chem. 2021;214:113194.
  • Kumar K, Man-Un Ung P, Wang P, et al. Novel selective thiadiazine DYRK1A inhibitor lead scaffold with human pancreatic β-cell proliferation activity. Eur J Med Chem. 2018;157:1005–1016.
  • Pan Z, Chen Y, Liu J, et al. Design, synthesis, and biological evaluation of polo-like kinase 1/eukaryotic elongation factor 2 kinase (PLK1/EEF2K) dual inhibitors for regulating breast cancer cells apoptosis and autophagy. Eur J Med Chem. 2018;144:517–528.
  • Zhao Y, Chen X, Lyu S, et al. Identification of novel P2X7R antagonists by using structure-based virtual screening and cell-based assays. Chem Biol Drug Des. 2021;98(1):192–205.
  • Zhao Y, Chen X, Ding Z, et al. Identification of novel cd39 inhibitors based on virtual screening and enzymatic assays. J Chem Inf Model [Internet]. 2021. [cited 2021 Nov 19]
  • Hu X, Qie C, Jiang J, et al. M351-0056 is a novel low MW compound modulating the actions of the immune-checkpoint protein Vista. Br J Pharmacol. 2021;178(6):1445–1458.
  • Platonova N, Parravicini C, Sensi C, et al. Identification of small molecules uncoupling the notch::jagged interaction through an integrated high-throughput screening. Plos One. 2017;12(11):e0182640.
  • Si M, Zeng C, Goodluck H, et al. A small molecular inhibitor of LRRK1 identified by homology modeling and virtual screening suppresses osteoclast function, but not osteoclast differentiation, in vitro. Aging (Albany NY). 2019;11(10):3250–3261.
  • Sharma P, Kumar M, Dahiya S, et al. Structure based drug discovery and in vitro activity testing for DNA gyrase inhibitors of Salmonella enterica serovar Typhi. Bioorganic Chemistry. 2020;104:104244.
  • Khedr MA, Massarotti A, Mohamed ME. Rational discovery of (+) (S) abscisic acid as a potential antifungal agent: a repurposing approach. Sci Rep. 2018;8(1):8565.
  • Rodrigues-Vendramini FAV, Marschalk C, Toplak M, et al. Promising new antifungal treatment targeting chorismate synthase from paracoccidioides brasiliensis. Antimicrob Agents Chemother. 2019;63(1):e01097–18.
  • White MA, Lin W, Cheng X. Discovery of COVID-19 inhibitors targeting the SARS-CoV-2 Nsp13 helicase. J Phys Chem Lett. 2020;11(21):9144–9151.
  • Ruiz VG, Czyzyk DJ, Kumar VP, et al. Targeting the TS dimer interface in bifunctional cryptosporidium hominis TS-DHFR from parasitic protozoa: virtual screening identifies novel TS allosteric inhibitors. Bioorg Med Chem Lett. 2020;30(16):127292.
  • Mansuri R, Kumar A, Rana S, et al. Vitro evaluation of antileishmanial activity of computationally screened compounds against ascorbate peroxidase to combat amphotericin b drug resistance. Antimicrob Agents Chemother. 2017;61(7):e02429–16.
  • Weng Z, Xu G, Chen D, et al. Discovery of a potent and selective adenylyl cyclase type 8 agonist by docking-based virtual screening. Bioorg Med Chem Lett. 2020;30(2):126823.
  • Villa SR, Mishra RK, Zapater JL, et al. Homology modeling of FFA2 identifies novel agonists that potentiate insulin secretion. J Investig Med Off Publ Am Fed Clin Res. 2017;65:1116–1124.
  • Kaczor AA, Targowska-Duda KM, Stępnicki P, et al. N-(3-{4-[3-(trifluoromethyl)phenyl]piperazin-1-yl}propyl)-1H-indazole-3-carboxamide (D2AAK3) as a potential antipsychotic: in vitro, in silico and in vivo evaluation of a multi-target ligand. Neurochem Int. 2021;146:105016.
  • Ghamari N, Zarei O, Reiner D, et al. Histamine H 3 receptor ligands by hybrid virtual screening, docking, molecular dynamics simulations, and investigation of their biological effects. Chem Biol Drug Des. 2019;93(5):832–843.
  • De Donato M, Righino B, Filippetti F, et al. Identification and antitumor activity of a novel inhibitor of the NIMA-related kinase NEK6. Sci Rep. 2018;8(1):16047.
  • Tan S, Gong X, Liu H, et al. Virtual screening and biological activity evaluation of new potent inhibitors targeting LRRK2 kinase domain. ACS Chem Neurosci. 2021;12(17):3214–3224.
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with alphafold. Nature. 2021. 596(7873): 583–589.
  • Guedes IA, Barreto AMS, Marinho D, et al. New machine learning and physics-based scoring functions for drug discovery. Sci Rep. 2021;11(1):3198.
  • Ghislat G, Rahman T, Ballester PJ. Recent progress on the prospective application of machine learning to structure-based virtual screening. Curr Opin Chem Biol. 2021;65:28–34.
  • Wang DD, Zhu M, Yan H. Computationally predicting binding affinity in protein-ligand complexes: free energy-based simulations and machine learning-based scoring functions. Brief Bioinform. 2021;22(3):bbaa107.
  • Banegas-Luna AJ, Cerón-Carrasco JP, Puertas-Martín S, et al. BRUSELAS: HPC generic and customizable software architecture for 3D ligand-based virtual screening of large molecular databases. J Chem Inf Model. 2019;59(6):2805–2817.
  • Scardino V, Bollini M, Cavasotto CN. Combination of pose and rank consensus in docking-based virtual screening: the best of both worlds. RSC Adv. 2021;11(56):35383–35391.
  • Shen C, Weng G, Zhang X, et al. Accuracy or novelty: what can we gain from target-specific machine-learning-based scoring functions in virtual screening? Brief Bioinf. 2021;22(5):bbaa410.
  • Cross S, Cruciani G. Molecular fields in drug discovery: getting old or reaching maturity? Drug Discov Today. 2010;15(1–2):23–32.
  • Kozakov D, Grove LE, Hall DR, et al. The FTMap family of web servers for determining and characterizing ligand binding hot spots of proteins. Nat Protoc. 2015;10(5):733–755.
  • Heck GS, Pintro VO, Pereira RR, et al. Supervised machine learning methods applied to predict ligand- binding affinity. Curr Med Chem. 2017;24(23):2459–2470.
  • da Silva AD, Bitencourt-Ferreira G, de Azevedo WF. Taba: a tool to analyze the binding affinity. J Comput Chem. 2020;41(1):69–73.
  • Li Y, Rata I, Jakobsson E Integrating multiple scoring functions to improve protein loop structure conformation space sampling. 2010 IEEE Symp Comput Intell Bioinforma Comput Biol. 2010. Montreal, QC, Canada. p. 1–8.
  • Kothiwale S, Mendenhall JL, Meiler J. BCL::conf: small molecule conformational sampling using a knowledge based rotamer library. J Cheminf. 2015;7(1):47.
  • Smith ST, Meiler J. Assessing multiple score functions in Rosetta for drug discovery. Plos One. 2020;15(10):e0240450.
  • Meiler J, Baker D. ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins. 2006;65(3):538–548.
  • Su M, Yang Q, Du Y, et al. Comparative assessment of scoring functions: the CASF-2016 update. J Chem Inf Model. 2019;59(2):895–913.
  • Xavier MM, Heck GS, de AMB, et al. SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb Chem High Throughput Screen. 2016;19(10):801–812.
  • Bitencourt-Ferreira G, de Azevedo WF. Exploring the scoring function space. Methods Mol Biol Clifton NJ. 2019;2053:275–281.
  • Lee EH, Hsin J, Sotomayor M, et al. Discovery through the computational microscope. Structure. 2009;17(10):1295–1306.
  • Salo-Ahen OMH, Alanko I, Bhadane R, et al. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes. 2020;9(1):71.
  • Henzler-Wildman K, Kern D. Dynamic personalities of proteins. Nature. 2007;450(7172):964–972.
  • Wassman CD, Baronio R, Demir Ö, et al. Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Nat Commun. 2013;4(1):1407.
  • Kronenberger T, Sá Magalhães Serafim M, Kumar Tonduru A, et al. Ligand accessibility insights to the dengue virus NS3-NS2B protease assessed by long-timescale molecular dynamics simulations. ChemMedChem. 2021;16(16):2524–2534.
  • de Almeida H, Bastos IMD, Ribeiro BM, et al. New binding site conformations of the dengue virus NS3 protease accessed by molecular dynamics simulation. Plos One. 2013;8(8):e72402.
  • Meng Y, Gao C, Clawson DK, et al. Predicting the conformational variability of Abl tyrosine kinase using molecular dynamics simulations and Markov state models. J Chem Theory Comput. 2018;14(5):2721–2732.
  • Paul F, Thomas T, Roux B. Diversity of long-lived intermediates along the binding pathway of imatinib to Abl kinase revealed by MD simulations. J Chem Theory Comput. 2020;16(12):7852–7865.
  • Paul F, Meng Y, Roux B. Identification of druggable kinase target conformations using Markov model metastable states analysis of apo-Abl. J Chem Theory Comput. 2020;16(3):1896–1912.
  • Uversky VN. Intrinsically disordered proteins and novel strategies for drug discovery. Expert Opin Drug Discov. 2012;7(6):475–488.
  • Bhattacharya S, Lin X. Recent advances in computational protocols addressing intrinsically disordered proteins. Biomolecules. 2019;9(4):146.
  • Chen Y-C. Beware of docking! Trends Pharmacol Sci. 2015;36(2):78–95.
  • Miller EB, Murphy RB, Sindhikara D, et al. Reliable and accurate solution to the induced fit docking problem for protein–ligand binding. J Chem Theory Comput. 2021. 17(4): 2630–2639.
  • Arroio A, Honório KM, da SABF. Propriedades químico-quânticas empregadas em estudos das relações estrutura-atividade. Quím Nova. 2010;33(3):694–699.
  • Bryce RA. What next for quantum mechanics in structure-based drug discovery? Methods Mol Biol. 2020;2114:339–353.
  • Cruzeiro VWD, Manathunga M, Merz KM, et al. Open-source multi-GPU-accelerated QM/MM simulations with AMBER and QUICK. J Chem Inf Model. 2021;61(5):2109–2115.
  • Wang Y, Murlidaran S, Pearlman DA. Quantum simulations of SARS-CoV-2 main protease Mpro enable high-quality scoring of diverse ligands. J Comput Aided Mol Des. 2021;35(9):963–971.
  • Lu Y, Deng G, Shuai Z. Future directions of chemical theory and computation. Pure Appl Chem. 2021;93(12):1423–1433.
  • Bondanza M, Nottoli M, Cupellini L, et al. Polarizable embedding QM/MM: the future gold standard for complex (bio)systems? Phys Chem Chem Phys. 2020;22(26):14433–14448.
  • Kotev M, Sarrat L, Gonzalez CD. User-friendly quantum mechanics: applications for drug discovery. Methods Mol Biol. 2020;2114:231–255.
  • Guan X, Leven I, Heidar-Zadeh F, et al. Protein C-GeM: a coarse-grained electron model for fast and accurate protein electrostatics prediction. J Chem Inf Model. 2021;61(9):4357–4369.
  • Aucar MG, Cavasotto CN. Molecular docking using quantum mechanical-based methods. Methods Mol Biol. 2020;2114:269–284.
  • Chessari G, Hardcastle IR, Ahn JS, et al. Structure-based design of potent and orally active isoindolinone inhibitors of MDM2-p53 Protein–protein interaction. J Med Chem. 2021;64(7):4071–4088.
  • Mirza SB, Lee RCH, Chu JJH, et al. Discovery of selective dengue virus inhibitors using combination of molecular fingerprint-based virtual screening protocols, structure-based pharmacophore model development, molecular dynamics simulations and in vitro studies. J Mol Graph Model. 2018;79:88–102.
  • Hu Y, Zhou L, Zhu X, et al. Pharmacophore modeling, multiple docking, and molecular dynamics studies on Wee1 kinase inhibitors. J Biomol Struct Dyn. 2019;37(10):2703–2715.
  • Cavasotto CN, Aucar MG. High-throughput docking using quantum mechanical scoring. Front Chem. 2020;8:246.
  • Peng C, Wang J, Xu Z, et al. Accurate prediction of relative binding affinities of a series of HIV-1 protease inhibitors using semi-empirical quantum mechanical charge. J Comput Chem. 2020;41(19):1773–1780.
  • Cole DJ, Horton JT, Nelson L, et al. The future of force fields in computer-aided drug design. Future Med Chem. 2019;11(18):2359–2363.
  • Raha K, Peters MB, Wang B, et al. The role of quantum mechanics in structure-based drug design. Drug Discov Today. 2007;12(17–18):725–731.
  • Liu J, Wang R. Classification of current scoring functions. J Chem Inf Model. 2015;55(3):475–482.
  • Chaskar P, Zoete V, Röhrig UF. Toward on-the-fly quantum mechanical/molecular mechanical (QM/MM) docking: development and Benchmark of a scoring function. J Chem Inf Model. 2014;54(11):3137–3152.
  • Guedes IA, Pereira FSS, Dardenne LE. Empirical scoring functions for structure-based virtual screening: applications, critical aspects, and challenges. Front Pharmacol. [Internet]. 2018;9. [cited 2022 Apr 14]. Available from: https://www.frontiersin.org/article/10.3389/fphar.2018.01089
  • Mucs D, Bryce RA. The application of quantum mechanics in structure-based drug design. Expert Opin Drug Discov. 2013;8(3):263–276.
  • Mehta P, Malik R. Discovery and identification of putative adenosine kinase inhibitors as potential anti-epileptic agents from structural insights. J Biomol Struct Dyn. 2020;38(18):5320–5337.
  • Bouback TA, Pokhrel S, Albeshri A, et al. Pharmacophore-based virtual screening, quantum mechanics calculations, and molecular dynamics simulation approaches identified potential natural antiviral drug candidates against MERS-CoV S1-NTD. Molecules. 2021;26(16):4961.
  • Li L, Zhou Y, Wang Z, et al. Theoretical studies on the mechanism of sugammadex for the reversal of aminosteroid-induced neuromuscular blockade. J Mol Liq. 2018;265:450–456.
  • Sato T, Sekimata K, Sakai N, et al. Structural basis of activin receptor-like kinase 2 (R206H) inhibition by bis-heteroaryl pyrazole-based inhibitors for the treatment of fibrodysplasia ossificans progressiva identified by the Integration of ligand-based and structure-based drug design approaches. ACS Omega. 2020;5(20):11411–11423.
  • Kitaura K, Ikeo E, Asada T, et al. Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett. 1999;313(3–4):701–706.
  • Fedorov DG, Kitaura K. Pair interaction energy decomposition analysis. J Comput Chem. 2007;28(1):222–237.
  • Watanabe C, Watanabe H, Fukuzawa K, et al. Theoretical analysis of activity cliffs among benzofuranone-class Pim1 inhibitors using the fragment molecular orbital method with molecular mechanics Poisson-Boltzmann surface area (FMO+MM-PBSA) approach. J Chem Inf Model. 2017;57(12):2996–3010.
  • Zhang X, Sun Y, Zhang Z, et al. Intermolecular insights into allosteric inhibition of histone lysine-specific demethylase 1. Biochim Biophys Acta Gen Subj. 2021;1865(11):129990.
  • Loganathan L, Muthusamy K, Jayaraj JM, et al. In silico insights on tankyrase protein: a potential target for colorectal cancer. J Biomol Struct Dyn. 2019;37(14):3637–3648.
  • Heifetz A, James T, Southey M, et al. Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach. Curr Opin Struct Biol. 2019;55:85–92.
  • Ul-Haq Z, Khan A, Ashraf S, et al. Quantum mechanics and 3D-QSAR studies on thienopyridine analogues: inhibitors of IKKβ. Heliyon. 2020;6(6):e04125.
  • Sayiner HS, Abdalrahm AAS, Basaran MA, et al. The quantum chemical and QSAR studies on acinetobacter baumannii oxphos inhibitors. Med Chem. 2018;14(3):253–268.
  • Ibrahim IT, Uzairu A, Sagagi B. QSAR, molecular docking approach on the estrogenic activities of persistent organic pollutants using quantum chemical disruptors. SN Appl Sci. 2019;1(12):1599.
  • Said RB, Hanachi R, Rahali S, et al. Evaluation of a new series of pyrazole derivatives as a potent epidermal growth factor receptor inhibitory activity: QSAR modeling using quantum-chemical descriptors. J Comput Chem. 2021;42(32):2306–2320.
  • Piotr K, Leszek B, Tomasz B. Application of QSAR analysis and different quantum chemical calculation methods in activity evaluation of selected fluoroquinolones. Comb Chem High Throughput Screen. 2018;21(7):468–475.
  • Chtita S, Aouidate A, Belhassan A, et al. QSAR study of N-substituted oseltamivir derivatives as potent avian influenza virus H5N1 inhibitors using quantum chemical descriptors and statistical methods. New J Chem. 2020;44(5):1747–1760.
  • Chtita S, Belhassan A, Bakhouch M, et al. QSAR study of unsymmetrical aromatic disulfides as potent avian SARS-CoV main protease inhibitors using quantum chemical descriptors and statistical methods. Chemom Intell Lab Syst Int J Spons Chemom Soc. 2021; 210: 104266.
  • de TRA, Mazo LH, Dos SMC, et al. Estudo eletroquímico e químico-quântico da oxidação do antidepressivo tricíclico amitriptilina. Quím Nova. 2005;28(3):456–461.
  • Weber KC, Honório KM, Bruni AT, et al. The use of classification methods for modeling the antioxidant activity of flavonoid compounds. J Mol Model. 2006;12(6):915–920.
  • Camargo AJ, Honório KM, Mercadante R, et al. A study of neolignan compounds with biological activity against Paracoccidioides brasiliensis by using quantum chemical and chemometric methods. J Braz Chem Soc. 2003;14(5):809–814.
  • Gupta A, Kumar V, Aparoy P. Role of topological, electronic, geometrical, constitutional and quantum chemical based descriptors in QSAR: mPGES-1 as a case study. Curr Top Med Chem. 2018;18(13):1075–1090.
  • Gertrudes JC, Maltarollo VG, Silva RA, et al. Machine learning techniques and drug design. Curr Med Chem. 2012;19(25):4289–4297.
  • Masand VH, Mahajan DT, Nazeruddin GM, et al. Effect of information leakage and method of splitting (rational and random) on external predictive ability and behavior of different statistical parameters of QSAR model. Med Chem Res. 2015;24(3):1241–1264.
  • Ballester PJ. Machine learning for molecular modelling in drug design. Biomolecules. 2019;9(6):216.
  • Yang H, Sun L, Li W, et al. In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Front Chem. 2018;6:30.
  • Burbidge R, Trotter M, Buxton B, et al. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem. 2001;26(1):5–14.
  • Veríssimo GC, Menezes Dutra EF, Teotonio Dias AL, et al. HQSAR and random forest-based QSAR models for anti-T. vaginalis activities of nitroimidazoles derivatives. J Mol Graph Model. 2019;90:180–191.
  • Wójcikowski M, Siedlecki P, Ballester PJ. Building machine-learning scoring functions for structure-based prediction of intermolecular binding affinity. In: de Azevedo Jr WF. editor, Docking Screens Drug Discov. Internet. New York (NY): Springer;2019:[cited 2022 Apr 6]
  • Ballester PJ, Stevens R, Haibe-Kains B, et al. Artificial intelligence for drug response prediction in disease models. Brief Bioinform. 2022;23(1):bbab450.
  • Ballester PJ. Selecting machine-learning scoring functions for structure-based virtual screening. Drug Discov Today Technol. 2019;32-33:81–87.
  • Shmulevich I, Dougherty ER, Kim S, et al. Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinf. 2002;18(2):261–274.
  • Gawriljuk VO, Zin PPK, Puhl AC, et al. Machine learning models identify inhibitors of SARS-CoV-2. J Chem Inf Model. 2021;61(9):4224–4235.
  • Tejera E, Munteanu CR, López-Cortés A, et al. Drugs repurposing using qsar, docking and molecular dynamics for possible inhibitors of the SARS-CoV-2 Mpro protease. Molecules. 2020;25(21):5172.
  • Alves VM, Bobrowski T, Melo-Filho CC, et al. QSAR modeling of SARS-CoV M pro inhibitors identifies sufugolix, cenicriviroc, proglumetacin, and other drugs as candidates for repurposing against SARS-CoV-2. Mol Inf. 2021;40(1):2000113.
  • Yang ZR. In silico prediction of severe acute respiratory syndrome coronavirus 2 main protease cleavage sites. Proteins Struct Funct Bioinforma. 2022;90(3):791–801.
  • Jing Y, Bian Y, Hu Z, et al. Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data Era. AAPS J. 2018;20(3):58.
  • Senior AW, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020;577(7792):706–710.
  • Jiang M, Wei Z, Zhang S, et al. FRSite: protein drug binding site prediction based on faster R–CNN. J Mol Graph Model. 2019;93:107454.
  • Kojima R, Ishida S, Ohta M, et al. kGCN: a graph-based deep learning framework for chemical structures. J Chem inf. 2020;12(1):32.
  • Kumari M, Subbarao N. Deep learning model for virtual screening of novel 3C-like protease enzyme inhibitors against SARS coronavirus diseases. Comput Biol Med. 2021;132:104317.
  • Pereira JC, Caffarena ER, Dos Santos CN. Boosting docking-based virtual screening with deep learning. J Chem Inf Model. 2016;56(12):2495–2506.
  • Skalic M, Martínez-Rosell G, Jiménez J, et al. Play molecule bindscope: large scale CNN-based virtual screening on the web. Bioinf. 2019;35(7):1237–1238.
  • Ragoza M, Hochuli J, Idrobo E, et al. Protein–ligand scoring with convolutional neural networks. J Chem Inf Model. 2017;57(4):942–957.
  • Baskin II. Is one-shot learning a viable option in drug discovery? Expert Opin Drug Discov. 2019;14(7):601–603.
  • Altae-Tran H, Ramsundar B, Pappu AS, et al. Low data drug discovery with one-shot learning. ACS Cent Sci. 2017;3(4):283–293.
  • Kim P. Convolutional neural network. In: Kim P,editor. MATLAB Deep Learn Mach Learn Neural Netw Artif Intell [Internet]. Berkeley, CA:Apress. 2017. 121–147. [cited 2021 Nov 6]
  • Kadam S, Vaidya V. Review and analysis of zero, one and few shot learning approaches. In: Abraham A, Cherukuri AK, Melin P, editors. Intelligent Systems Design and Applications. . Cham: Springer International Publishing; 2020. Vol. 940. p. 100–112.
  • Kadam S, Vaidya VG. Source model selection as a meta-learning technique to learn novel concepts. Proc 2020 12th Int Conf Mach Learn Comput [Internet]. New York, NY, USA. Association for Computing Machinery;2020. cited 2021 Nov 6. 79–83
  • Xia X, Hu J, Wang Y, et al. Graph-based generative models for de Novo drug design. Drug Discov Today Technol. 2019;32-33:45–53.
  • Finn C, Abbeel P, Levine S Model-agnostic meta-learning for fast adaptation of deep networks. ArXiv170303400 Cs [Internet]. 2017 cited 2021 Nov 7]; Available from 2021 Nov 7: http://arxiv.org/abs/1703.03400.
  • Stanley M, Bronskill JF, Maziarz K, et al. FS-Mol: a few-shot learning dataset of molecules. 2021 cited 2021 Nov 9]. Available from: https://openreview.net/forum?id=701FtuyLlAd.
  • Guo Z, Zhang C, Yu W, et al. Few-Shot graph learning for molecular property prediction. Proc Web Conf 2021 [Internet]. New York, NY, USA. Association for Computing Machinery;2021. [cited 2021 Nov 9]
  • Ma J, Fong SH, Luo Y, et al. Few-shot learning creates predictive models of drug response that translate from high-throughput screens to individual patients. Nat Cancer. 2021;2(2):233–244.
  • Barrows NJ, Campos RK, Powell ST, et al. A screen of fda-approved drugs for inhibitors of zika virus infection. Cell Host Microbe. 2016;20(2):259–270.
  • Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–271.
  • Liu R, Yu D, Deng Z, et al. Harnessing in vitro platforms for natural product research: in vitro driven rational engineering and mining (iDREAM). Curr Opin Biotechnol. 2021;69:1–9.
  • Knudsen TB, Keller DA, Sander M, et al. FutureTox II: in vitro data and in silico models for predictive toxicology. Toxicol Sci Off J Soc Toxicol. 2015;143(2):256–267.
  • Yang H, Lou C, Sun L, et al. AdmetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinf. 2019;35(6):1067–1069.
  • Göller AH, Kuhnke L, Montanari F, et al. Bayer’s in silico ADMET platform: a journey of machine learning over the past two decades. Drug Discov Today. 2020;25(9):1702–1709.
  • Wiggers HJ, Rocha JR, Fernandes WB, et al. Non-peptidic cruzain inhibitors with trypanocidal activity discovered by virtual screening and in Vitro Assay. Plos Negl Trop Dis. 2013;7(8):e2370.
  • Ferreira RAA, Pauli I, Sampaio TS, et al. Structure-based and molecular modeling studies for the discovery of cyclic imides as reversible cruzain inhibitors with potent anti-trypanosoma cruzi activity. Front Chem. 2019;7:798.
  • de Souza ML, de Oliveira Rezende Junior C, Ferreira RS, et al. Discovery of potent, reversible, and competitive cruzain inhibitors with trypanocidal activity: a structure-based drug design approach. J Chem Inf Model. 2020;60(2):1028–1041.
  • Medeiros AR, Ferreira LLG, de Souza ML, et al. Chemoinformatics studies on a series of imidazoles as cruzain inhibitors. Biomolecules. 2021;11(4):579.
  • Sajid M, Robertson SA, Brinen LS, et al. Cruzain. In: Robinson MW, Dalton JP. editors, Cysteine Proteases Pathog Org. [Internet]. Boston(MA): Springer US; 2011. p. 100–115. [cited 2021 Nov 22]
  • Njoroge FG, Chen KX, Shih N-Y, et al. Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. Acc Chem Res. 2008;41(1):50–59.
  • Talele TT, Khedkar SA, Rigby AC. Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr Top Med Chem. 2010;10(1):127–141.
  • Ondetti MA, Rubin B, Cushman DW. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science. 1977;196(4288):441–444.
  • Serafim MSM, Dos Santos Júnior VS, Gertrudes JC, et al. Machine learning techniques applied to the drug design and discovery of new antivirals: a brief look over the past decade. Expert Opin Drug Discov. 2021;16(9):961–975.
  • Friedrich L, Cingolani G, Ko Y, et al. Learning from nature: from a marine natural product to synthetic cyclooxygenase‐1 inhibitors by automated de novo design. Adv Sci. 2021;8(16):2100832.
  • Moret M, Helmstädter M, Grisoni F, et al. Beam search for automated design and scoring of novel ror ligands with machine intelligence. Angew Chem Int Ed Engl. 2021;60(35):19477–19482.
  • Forster M, Liang XJ, Schröder M, et al. Discovery of a novel class of covalent dual inhibitors targeting the protein kinases BMX and BTK. Int J Mol Sci. 2020;21(23):E9269.
  • Shen Y, Li F, Szewczyk MM, et al. A First-in-class, highly selective and cell-active allosteric inhibitor of protein arginine methyltransferase 6. J Med Chem. 2021;64(7):3697–3706.
  • Meijer I, Willems S, Ni X, et al. Chemical starting matter for hnf4α ligand discovery and chemogenomics. Int J Mol Sci. 2020;21(21):E7895.
  • Piticchio SG, Martínez-Cartró M, Scaffidi S, et al. Discovery of novel BRD4 ligand scaffolds by automated navigation of the fragment chemical space. J Med Chem. 2021;64(24):17887–17900.
  • Wells CI, Al-Ali H, Andrews DM, et al. The kinase chemogenomic set (KCGS): an open science resource for kinase vulnerability identification. Int J Mol Sci. 2021;22(2):E566.
  • Mélin L, Abdullayev S, Fnaiche A, et al. Development of LM98, a small-molecule TEAD inhibitor derived from flufenamic acid. Chem Med Chem. 2021;16(19):2982–3002.
  • Méndez-Lucio O, Baillif B, Clevert D-A, et al. De novo generation of hit-like molecules from gene expression signatures using artificial intelligence. Nat Commun. 2020;11(1):10.
  • Varadi M, Anyango S, Deshpande M, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2021;50(D1):D439–D444.
  • Laskowski RA, Thornton JM. PDBsum extras: SARS-CoV-2 and alphaFold models. Protein Sci Publ Protein Soc. 2021;31(1):283–289.
  • Bagdonas H, Fogarty CA, Fadda E, et al. The case for post-predictional modifications in the alphafold protein structure database. Nat Struct Mol Biol. 2021;28(11):869–870.
  • Thornton JM, Laskowski RA, Borkakoti N. AlphaFold heralds a data-driven revolution in biology and medicine. Nat Med. 2021;27(10):1666–1669.
  • Higgins MK. Can we alphafold our way out of the next pandemic? J Mol Biol. 2021;433(20):167093.
  • Nowogrodzki A. Eleven tips for working with large data sets. Nature. 2020;577(7790):439–440.
  • PyMOL Molecular Graphics System. South San Francisco, California: DeLano Scientific LLC; 2006
  • Miller M, Schneider J, Sathyanarayana BK, et al. Structure of complex of synthetic hiv-1 protease with a substrate-based inhibitor at 2.3 Å resolution. Science [Internet]. 1989 cited 2022 Jan 30]. Available from: https://www.science.org/doi/abs/10.1126/science.2686029.
  • Burley SK, Bhikadiya C, Bi C, et al. RCSB protein data bank: celebrating 50 years of the PDB with new tools for understanding and visualizing biological macromolecules in 3D. Protein Sci. 2022;31(1):187–208.
  • Stewart JJP. MOPAC: a semiempirical molecular orbital program. J Comput Aided Mol Des. 1990;4:1–103.
  • Stewart JJP. Optimization of parameters for semiempirical methods I. Method J Comput Chem. 1989;10(2):209–220
  • Grillo IB, Urquiza-Carvalho GA, Rocha GB. PRIMoRDiA: a software to explore reactivity and electronic structure in large biomolecules. J Chem Inf Model. 2020;60(12):5885–5890.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.