176
Views
0
CrossRef citations to date
0
Altmetric
Review

Approaches for development of LAG-3 inhibitors and the promise they hold as anticancer agents

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1341-1355 | Received 17 May 2022, Accepted 14 Nov 2022, Published online: 24 Nov 2022

References

  • Du N, Guo F, Wang Y, et al. NK cell therapy: a rising star in cancer treatment. Cancers (Basel). 2021;13(16):4129.
  • Pandya PH, Murray ME, Pollok KE, et al. The immune system in cancer pathogenesis: potential therapeutic approaches. J Immunol Res. 2016;2016:4273943.
  • Zhang H, Dai Z, Wu W, et al. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res. 2021;40(1):184.
  • Munari E, Mariotti FR, Quatrini L, et al. PD-1/PD-L1 in cancer: pathophysiological, diagnostic and therapeutic aspects. Int J Mol Sci. 2021;22(10):5123.
  • Chocarro L, Blanco E, Zuazo M, et al. Understanding LAG-3 signaling. Int J Mol Sci. 2021;22(10): 5282.
  • Annese T, Tamma R, Ribatti D. Update in TIGIT immune-checkpoint role in cancer. Front Oncol. 2022;12:871085.
  • Zeidan AM, Komrokji RS, Brunner AM. TIM-3 pathway dysregulation and targeting in cancer. Expert Rev Anticancer Ther. 2021;21(5):523–534.
  • Yi M, Zheng X, Niu M, et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21(1):1–27.
  • Liu M, Gao Y, Yuan Y, et al. An evidence mapping and scientometric analysis of the top-100 most cited clinical trials of anti-PD-1/PD-L1 drugs to treat cancers. Biomed Pharmacother. 2021;143:112238.
  • De Silva P, Aiello M, Gu-Trantien C, et al. Targeting CTLA-4 in cancer: is it the ideal companion for PD-1 blockade immunotherapy combinations? Int J Cancer. 2021;149(1):31–41.
  • Pandey P, Khan F, Qari HA, et al. Revolutionization in cancer therapeutics via targeting major immune checkpoints PD-1, PD-L1 and CTLA-4. Pharmaceuticals. 2022;15(3):335.
  • Yu Y. Multi-target combinatory strategy to overcome tumor immune escape. Front Med. 2022;16(2):208–215.
  • Lythgoe MP, Liu DSK, Annels NE, et al. Gene of the month: lymphocyte-activation gene 3 (LAG-3). J Clin Pathol. 2021;74(9):543–547.
  • Tian D, Yang L, Wang S, et al. Double negative T cells mediate Lag3-dependent antigen- specific protection in allergic asthma. Nat Commun. 2019;10(1):1–3.
  • Kisielow M, Kisielow J, Capoferri-Sollami G, et al. Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. Eur J Immunol. 2005;35(7):2081–2088.
  • Maruhashi T, Okazaki IM, Sugiura D, et al. LAG-3 inhibits the activation of CD4+ T cells that recognize stable pMHCII through its conformation-dependent recognition of pMHCII. Nat Immunol. 2018;19(12):1415–1426.
  • Wang J, Sanmamed MF, Datar I. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell. 2019;176(1–2):334–347.
  • Kouo T, Huang L, Pucsek AB, et al. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res. 2015;3(4):412–423.
  • Xu F, Liu J, Liu D, et al. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res. 2014;74(13):3418–3428.
  • Mao X, Ou MT, Karuppagounder SS, et al. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science. 2016;353(6307):aah3374.
  • Workman CJ, Dugger KJ, Vignali DAA. Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol. 2002;169(10):5392–5395.
  • Workman CJ, Vignali DAA. The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur J Immunol. 2003;33(4):970–979.
  • Workman CJ, Vignali DAA. Negative regulation of T cell Homeostasis by lymphocyte activation gene-3 (CD223). J Immunol. 2005;174(2):688–695.
  • Wang Y, Dong T, Xuan Q, et al. Lymphocyte-activation gene-3 expression and prognostic value in neoadjuvant-treated triple-negative breast cancer. J Breast Cancer. 2018;21(2):124–133.
  • Lee S, Kim JY, Lee SJ, et al. Lymphocyte-activating gene-3 expression is associated with tumor-infiltrating lymphocyte levels in HER2-positive breast cancers. Medicine (Baltimore). 2021;100(50):e28057.
  • Ma C, Sun X, Shen D, et al. Ectopic expression of LAG-3 in non-small-cell lung cancer cells and its clinical significance. J Clin Lab Anal. 2020;34(6):e23244.
  • Que Y, Fang Z, Guan Y, et al. LAG-3 expression on tumor-infiltrating T cells in soft tissue sarcoma correlates with poor survival. Cancer Biol Med. 2019;16(2):331–340.
  • Guo M, Yuan F, Qi F, et al. Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8+T cells in hepatocellular carcinoma using multiplex quantitative analysis. J Transl Med. 2020;18(1):1–13.
  • Li FJ, Zhang Y, Jin GX, et al. Expression of LAG-3 is coincident with the impaired effector function of HBV-specific CD8(+) T cell in HCC patients. Immunol Lett. 2013;150(1–2):116–122.
  • Burnell SEA, Capitani L, MacLachlan BJ, et al. Seven mysteries of LAG-3: a multi-faceted immune receptor of increasing complexity. Immunother Adv. 2021; 2(1) ltab025.
  • Maruhashi T, Sugiura D, Okazaki IM, et al. LAG-3: from molecular functions to clinical applications. J Immunother Cancer. 2020;8(2):e001014.
  • Shan C, Li X, Zhang J. Progress of immune checkpoint LAG-3 in immunotherapy. Oncol Lett. 2020;20(5):207.
  • Lecocq Q, Keyaerts M, Devoogdt N, et al. The next-generation immune checkpoint LAG-3 and its therapeutic potential in oncology: third time’s a charm. Int J Mol Sci. 2020;22(1):75.
  • Perez-Santos M, Anaya-Ruiz M, Cebada J, et al. LAG-3 antagonists by cancer treatment: a patent review. Expert Opin Ther Pat. 2019;29(8): 643–651.
  • Huard B, Prigent P, Pagès F, et al. T cell major histocompatibility complex class II molecules down-regulate CD4+ T cell clone responses following LAG-3 binding. Eur J Immunol. 1996;26(5):1180–1186.
  • Fougeray S, Brignone C, Triebel F. 2006 A soluble LAG-3 protein as an immunopotentiator for therapeutic vaccines: preclinical evaluation of IMP321. Vaccine. 2006;24(26):5426–5433.
  • Brignone C, Grygar C, Marcu M, et al. A soluble form of lymphocyte activation gene-3 (IMP321) induces activation of a large range of human effector cytotoxic cells. J Immunol. 2007;179(6):4202–4211.
  • Friedel F. Immutep, France. Vaccine composition comprising a class II MHC ligand coupled with an antigen, method for the preparation and the use thereof. European patent EP 1,735,344. 2011 Dec 14.
  • Friedel F. Immutep, France LAG-3 dosage regime for use in the treatment of cancer. European patent EP 2,601,962 B1. 2019 Aug 21.
  • Fougeray S, Brignone C, Triebel F. A soluble LAG-3 protein as an immunopotentiator for therapeutic vaccines: preclinical evaluation of IMP321. Vaccine. 2006;24(26):5426–5433.
  • Brignone C, Escudier B, Grygar C, et al. A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin Cancer Res. 2009;15(19):6225–6231.
  • Friedel F. Immutep, France use of recombinant LAG-3 or the derivatives thereof for eliciting monocyte immune response. European patent EP 2,792,365. 2014 Oct 22.
  • Brignone C, Gutierrez M, Mefti F. First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. J Transl Med. 2010;8(1):71.
  • Dirix L, Triebel F. AIPAC: a Phase IIb study of eftilagimod alpha (IMP321 or LAG-3Ig) added to weekly paclitaxel in patients with metastatic breast cancer. Future Oncol. 2019;15(17):1963–1973.
  • Duhoux FP, Jager A, Dirix L, et al. Combination of paclitaxel and LAG3-Ig (IMP321), a novel MHC class II agonist, as a first-line chemoimmunotherapy in patients with metastatic breast carcinoma (MBC): interim results from the run-in phase of a placebo controlled randomized phase II. J Clin Oncol. 2017;35(15):1062.
  • Wildiers H, Dirix L, Armstrong A, et al. 948 Final results from AIPAC: a phase IIb comparing eftilagimod alpha (a soluble LAG-3 protein) vs. placebo in combination with weekly paclitaxel in HR+ HER2-MBC. J Immunother Cancer. 2021;9(Suppl 2):A997–A997.
  • Triedel F. Immutep, France plurality of doses of recombinant LAG-3 for use in eliciting a monocyte immune response. European patent EP 2,604,275 B1. 2017 Nov 22.
  • Wang-Gillam A, Plambeck-Suess S, Goedegebuure P, et al. A phase I study of IMP321 and gemcitabine as the front-line therapy in patients with advanced pancreatic adenocarcinoma. Invest New Drugs. 2013;31(3):707–713.
  • Legat A, Maby-El Hajjami H, Baumgaertner P, et al. Vaccination with LAG-3Ig (IMP321) and peptides induces specific CD4 and CD8 T-cell responses in metastatic melanoma patients-report of a Phase I/IIa clinical trial. Clin Cancer Res. 2016;22(6):1330–1340.
  • Triebel F, Brignone C. Immutep, France combined preparations for the treatment of cancer or infection. United States patent US 10,874,713 B2. 2020 Dec 29.
  • Atkinson V, Khattak A, Haydon A, et al. Eftilagimod alpha, a soluble lymphocyte activation gene-3 (LAG-3) protein plus pembrolizumab in patients with metastatic melanoma. J Immunother Cancer. 2020;8(2):e001681.
  • Krebs M, Majem M, Felip E, et al. 790 A phase II study (TACTI-002) of eftilagimod alpha (a soluble LAG-3 protein) with pembrolizumab in PD-L1 unselected patients with metastatic non-small cell lung (NSCLC) or head and neck carcinoma (HNSCC). J Immunother Cancer. 2020;8(Suppl 3):A839–A.
  • Goetze TO, Mueller DW, Rafiyan MR, et al. Phase I INSIGHT platform trial: advanced safety and efficacy data from stratum D evaluating feasibility and safety of eftilagimod alpha (soluble LAG-3 protein) combined with avelumab in advanced solid tumors. J Clin Oncol. 2021;39(15 suppl):2518.
  • Goetze TO, Müller DE, Rafiyan M-R, et al. 1032P safety data from stratum D of the phase I INSIGHT platform trial evaluating feasibility of IMP321 (LAG-3Ig protein, eftilagimod alpha) combined with avelumab in advanced stage solid tumour entities. Annals Oncol. 2020;31(4):S712.
  • Al-Batran S-E, Müller DW, Rafiyan M-R, et al. 1033P the phase I INSIGHT platform trial: strata A and B evaluating feasibility of intratumoral and intraperitoneal IMP321 (soluble LAG-3 protein, eftilagimod alpha) in advanced solid tumours. Annals Oncol. 2020;31(4):S712.
  • MetricsGutierrez GM P, Kotraiah V, Phares TW. Leidos Inc. United States. LAG3 binding peptides. United States patent US2020369766. 2020 Nov 26.
  • Rothe C, Olwill S, Allersdorfer A, et al. Pieris pharmaceuticals, Germany. Lipocalin muteins with binding affinity for LAG-3. United States patent US2022098253. 2022 Mar 31.
  • Rothe C, Allersdorfer A, Wiedenmann A, et al. Pieris pharmaceuticals, Germany. Novel proteins specific for LAG-3. United States patent US2020048317. 2020 Feb 13.
  • Rothe C, Allersdorfer A, Wiedenmann A, et al. Pieris pharmaceuticals, Germany. Novel proteins specific for LAG-3. United States patent US2019031729. 2019 Jan 31.
  • Triebel F, Brignone C, Blatter WA, et al. Novartis and Immunep, Switzerland, France. Antibody molecules to LAG3 and uses thereof. European patent EP3116909B1. 2019 Nov 13.
  • Schöffski P, Tan DSW, Martín M, et al. Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies. J Immunother Cancer. 2022;10(2):e003776.
  • Uboha NV, Milhem MM, Kovacs C. Phase II study of spartalizumab (PDR001) and LAG525 in advanced solid tumors and hematologic malignancies. J Clin Oncol. 2019;37(15):2553.
  • Grandal MM, Melander MC, Bathia VK, et al. Preclinical characterization of Sym022, a novel anti-LAG3 antibody [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res. 2018;78(13 Suppl):5626.
  • Rodon AW SFJJA, Janku F, Rodon JA, et al. 1197P - A phase I study of Sym021, an anti-PD-1 antibody (Ab), alone and in combination with Sym022 (anti-LAG-3) or Sym023 (anti-TIM-3. Annals Oncol. 2019;30(5 suppl):v488–v489.
  • Lakhani N, Spreafico A, Tolcher AW, et al. 1019O Phase I studies of Sym021, an anti-PD-1 antibody, alone and in combination with Sym022 (anti-LAG-3) or Sym023 (anti-TIM-3). Annals Oncol. 2020;31(4 suppl):S704.
  • Ullman E, Hermann A, Ioffe E, et al. Regeneron Pharma. Anti-LAG3 antibodies and uses thereof. United States patent US 10,358,495. 2019 Jul 23.
  • Burova E, Hermann A, Dai J, et al. Preclinical development of the anti-LAG-3 antibody REGN3767: characterization and activity in combination with the anti-PD-1 antibody cemiplimab in human PD-1xLAG-3-knockin mice. Mol Cancer Ther. 2019;18(11):2051–2062.
  • Papadopoulos KP, Lakhani NJ, Johnson ML, et al. First-in-human study of REGN3767 (R3767), a human LAG-3 monoclonal antibody (mAb), ± cemiplimab in patients (pts) with advanced malignancies. J Clin Oncol. 2019;37(15):2508.
  • Kelly M, Ma D, Olson W, et al. Regeneron pharma. Radiolabeled anti-LAG3 antibodies for immuno-PET imaging. United States patent US 10,905,784. 2021 Feb 02.
  • Wilson NS, Savitsky DA, Jennings SM, et al. Agenus, United States. Anti-LAG-3 antibodies and methods of use thereof. United States patent US10844119. 2020 Nov 24.
  • Wilson NS, Savitsky DA, Jennings SM, et al. Agenus, United States. Anti-LAG-3 antibodies and methods of use thereof. United States patent and US10882908. 2021 jan 5.
  • Savitsky D, Ward R, Riordan C, et al. INCAGN02385 is an antagonist antibody targeting the co-inhibitory receptor LAG-3 for the treatment of human malignancies [abstract]. Cancer Res. 2018;78(13 Suppl):3819.
  • Jun HT, Kehry M, Bowers P, et al. Antibody agents directed against lymphocyte gene-3 (LAG-3) and uses thereof. United States patent US2022135670. 2022 May 05.
  • Ghosh S, Sharma G, Travers J, et al. TSR-033, a novel therapeutic antibody targeting LAG-3, enhances T-cell function and the activity of PD-1 blockade in vitro and in vivo. Mol Cancer Ther. 2019;18(3):632–641.
  • Ghosh S, Laken H, Travers J, et al. Abstract A201: discovery of TSR-033, a novel, potent anti-human LAG-3 therapeutic antibody. Mol Cancer Ther. 2018;17(1 Suppl):A201.
  • Kaufmann JK, Flynn B, Morse K, et al. Triple checkpoint blockade targeting PD-1, TIM-3, and LAG-3 reinvigorates ovarian cancer-infiltrating T cells by increasing T cell polyfunctionality and effector function. Cancer Res. 2019;79(13 Suppl):3242.
  • Zettl M, Lorenz I, Schaff O, et al. Antibody molecules for cancer treatment. United States patent US2021095020. 2021 Apr 1.
  • Johnson ML, Patel MR, Cherry M, et al. Safety of BI 754111, an anti-LAG-3 monoclonal antibody (mAb), in combination with BI 754091, an anti-PD-1 mAb, in patients with advanced solid tumors. J Clin Oncol. 2020;38(15 suppl):3063.
  • Bendell J, Ulahannan SV, Chu Q, et al. A phase I study of BI 754111, an anti-LAG-3 monoclonal antibody (mAb), in combination with BI 754091, an anti-PD-1 mAb: biomarker analyses from the microsatellite stable metastatic colorectal cancer (MSS mCRC) cohort. Cancer Res. 2020;80(16 Suppl):779.
  • Liang L, Fayadat-Dilman L, De Waal MR. Anti-LAG3 antibodies and antigen-binding fragments. United States patent US10188730B2. 2019 Jan 29.
  • Liang L, Fayadat-Dilman L, De Waal MR. Anti-LAG3 antibodies and antigen-binding fragments. United States patent US10898571B2. 2021 Jan 26.
  • Liang L, Fayadat-Dilman L, De Waal MR. Anti-LAG3 antibodies and antigen-binding fragments. United States patent US11207406B2. 2021 Dec 28.
  • Liang L, Fayadat-Dilman L, De Waal MR. Anti-LAG3 antibodies and antigen-binding fragments. United States patent US11278620B2. 2022 Mar 22.
  • Bhagwat B, Cherwinski H, Sathe M, et al. Establishment of engineered cell-based assays mediating LAG3 and PD1 immune suppression enables potency measurement of blocking antibodies and assessment of signal transduction. J Immunol Methods. 2018;456:7–14.
  • Garralda E, Sukari A, Lakhani NJ. A phase 1 first-in-human study of the anti-LAG-3 antibody MK4280 (favezelimab) plus pembrolizumab in previously treated, advanced microsatellite stable colorectal cancer. J Clin Oncol. 2021;39(15_suppl):3584.
  • Lonberg N, Srinivasan MBMS, States U. Optimization of antibodies that bind lymphocyte activation gene-3 (LAG-3), and uses thereof. United States patent US9505839B2. 2016 Nov 29.
  • Lonberg N, Srinivasan MBMS, States U. Optimization of antibodies that bind lymphocyte activation gene-3 (LAG-3), and uses thereof. United States patent US10266591B2. 2019 Apr 23.
  • Lonberg N, Srinivasan MBMS, States U. Optimization of antibodies that bind lymphocyte activation gene-3 (LAG-3), and uses thereof. United States patent US10377824B2. 2019 Aug 13.
  • Thudium K, Selby M, Zorn JA, et al. Preclinical characterization of relatlimab, a human LAG-3–blocking antibody, alone or in combination with nivolumab. Cancer Immunol Res. 2022;10(10):1175–1189.
  • Paik J, Oscullo G, García-Ortega A. Nivolumab plus relatlimab: first approval. Drugs. 2022;82(1):1–7.
  • Tawbi HA, Schadendorf D, Lipson EJ, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 2022 Jan 6;386(1):24–34.
  • Sordo-Bahamonde C, Lorenzo-Herrero S, González-Rodríguez AP, et al. LAG-3 blockade with relatlimab (BMS-986016) restores anti-leukemic responses in chronic lymphocytic leukemia. Cancers (Basel). 2021;13(9):2112.
  • Song G, Xiao H, He H, et al. Anti-LAG3 monoclonal antibody, and preparation method thereof and use thereof. Worldwide patent WO2021147837. 2021 Jul 29.
  • Kang X, Lai S, Huang, et al. Antibodies binding LAG-3 and uses thereof. United States patent US10844121. 2020 Nov 24.
  • Yu X, Huang X, Chen X, et al. Characterization of a novel anti-human lymphocyte activation gene 3 (LAG-3) antibody for cancer immunotherapy. MAbs. 2019;11(6):1139–1148.
  • Shi Y, Luo S, Zhou H, et al. Phase I study of LBL-007, a novel anti-human lymphocyte activation gene 3 (LAG-3) antibody in patients with advanced solid tumors. J Clin Oncol. 2021;39(15 suppl):2523.
  • Hah K, Smith DH, La Motte-Mohs R, et al. PD-1 and LAG-3 binding molecules and methods of use thereof. European patent EP3456346B1. 2021 Jul 07.
  • La Motte-Mohs R, Shah K, Smith D, et al. MGD013, a bispecific PD-1 x LAG-3 dual-affinity re-targeting (DART®) protein with T-cell immunomodulatory activity for cancer treatment. Cancer Res. 2016;76(Suppl 14):3217.
  • La Motte-Mohs R, Shah K, Brown JG, et al. Preclinical characterization of MGD013, a PD-1 x LAG-3 bispecific DART® molecule. Lung. 2017;28(10/18):56.
  • Wang J, Asch AS, Hamad N, et al. A phase 1, open-label study of MGD013, a bispecific DART® molecule binding PD-1 and LAG-3 in patients with relapsed or refractory diffuse large B-cell lymphoma. Blood. 2020;136(Supplement 1):21–22.
  • Patel M, Luke J, Hamilton E, et al. 313 A phase 1 evaluation of tebotelimab, a bispecific PD-1 x LAG-3 DART® molecule, in combination with margetuximab in patients with advanced HER2+ neoplasms. J Immunother Cancer. 2020;8(3 suppl):313.
  • Xu R, Lam K, Pan H, et al. P-18 Phase Ib study of niraparib plus tebotelimab in patients with advanced or metastatic gastric cancer after prior treatment failure. Annals Oncol. 2021;32(3 suppl):S102.
  • Codarri-Deak L, Fischer J, Imhof-Jung S, et al. Bispecific antibodies specifically binding to PD1 and LAG3. United States patent US11285207B2. 2022 Mar 29.
  • Campbell J, Sandy N, Tuna M, et al. Binding molecules binding PD-L1 and LAG-3. United States patent US11214620B2. 2022 Jan 04.
  • Morrow M, Germaschewski F, Gliddon D, et al. Dosage regimes for the administration of a LAG-3/PD-L1 bispecific antibody. Worldwide patent WO2020229626. 2020 Nov 19.
  • Kraman M, Faroudi M, Allen NL, et al. FS118, a bispecific antibody targeting LAG-3 and PD-L1, enhances T-cell activation resulting in potent antitumor activity. Clin Cancer Res. 2020;26(13):3333–3344.
  • Yap T, Wong D, Hu-Lieskovan S, et al. 395 A first-in-human study of FS118, a tetravalent bispecific antibody targeting LAG-3 and PD-L1, in patients with advanced cancer and resistance to PD-(L) 1 therapy. J Immunother Cancer. 2020;8(3 suppl):395.
  • Morrow M, Faroudi M, Chakraborty K, et al. 715 FS118, a tetravalent bispecific antibody targeting LAG-3 and PD-L1, induces LAG-3 shedding resulting in receptor downregulation by T cells via a novel mechanism of action. J Immunother Cancer. 2020;8(3 suppl):715.
  • Ni H, Chen B, Liu J. Novel bispecific antibody molecule and bispecific antibody simultaneously binding to PD-L1 and LAG-3. United States patent US2022112284. 2022 Apr 14.
  • Jiang H, Ni H, Zhang P, et al. PD-L1/LAG-3 bispecific antibody enhances tumor-specific immunity. Oncoimmunology. 2021;10(1):1943180.
  • Ni H, Qiu Y, Jing H, et al. Dual blockade of PD-L1 and LAG-3 using a bispecific antibody improves anti-tumor immunity. Cancer Res. 2020;80(16 suppl):3270.
  • Bernett M, Moore G, Desjarlais J, et al. Bispecific checkpoint inhibitor antibodies. United States patent US2019389954. 2019 Dec 26.
  • Hedvat M, Bonzon C, Bernett MJ, et al. Simultaneous checkpoint-checkpoint or checkpoint-costimulatory receptor targeting with bispecific antibodies promotes enhanced human T cell activation. Cancer Res. 2018;78(13 Suppl):2784.
  • Park E, Lee Y P, Jung U, et al. Anti-PD-L1/anti-LAG3 bispecific antibodies and uses thereof. Worldwide patent WO2020038397. 2020 Feb 27.
  • Sung E, Ko M, Won JY, et al. LAG-3xPD-L1 bispecific antibody potentiates antitumor responses of T cells through dendritic cell activation. Mol Ther. 2022;30(8):2800–2816.
  • Park E, Kim H, Sung E, et al. ABL501, PD-L1 x LAG-3, a bispecific antibody promotes enhanced human T cell activation through targeting simultaneously two immune checkpoint inhibitors, LAG-3 and PD-L1. Cancer Res. 2021;81(13 suppl):1633.
  • Wu X, Gong S, Ch W. Shanghai epimab biotherapeutics. high affinity antibodies to PD-1 and LAG-3 and bispecific binding proteins made therefrom. United States US2021188980. 2021 Jun 24.
  • Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–1356.
  • Ayadat-Dilman L, Juan V, Kastelein R. Anti-PD-1/LAG3/TIGIT trispecific antibodies and anti-PD-1/LAG3 bispecific antibodies. Worldwide patent WO2021021767. 2021 Feb 04.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.