218
Views
0
CrossRef citations to date
0
Altmetric
Review

Tachyplesin I and its derivatives: A pharmaco-chemical perspective on their antimicrobial and antitumor potential

, , , , , , , & show all
Pages 1407-1423 | Received 18 Sep 2022, Accepted 07 Dec 2022, Published online: 27 Dec 2022

References

  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.
  • Zhen X, Stålsby Lundborg C, Sun X, et al. Economic burden of antibiotic resistance in China: a national level estimate for inpatients. Antimicrob Resist Infect Control. 2021;10(1):5.
  • Assaraf YG, Brozovic A, Gonçalves AC, et al. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat. 2019;46:100645.
  • Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol. 2017;14(9):527–539.
  • Garrett WS. Cancer and the microbiota. Science. 2015;348(6230):80–86.
  • Fu A, Yao B, Dong T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell. 2022;185(8):1356–1372.
  • Geller LT, Barzily-Rokni M, Danino T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 2017;357(6356):1156–1160.
  • Alam A, Levanduski E, Denz P, et al. Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell. 2022;40(2):153–167.
  • Murota Y, Jobin C. Bacteria break barrier to promote metastasis. Cancer Cell. 2021;39(5):598–600.
  • Avci FG, Akbulut BS, Ozkirimli E. Membrane active peptides and their biophysical characterization. Biomolecules. 2018;8(3):77.
  • Walls EA, Berkson J, Smith SA. The horseshoe crab, Limulus polyphemus: 200 million years of existence, 100 years of study. Rev Fish Sci. 2010;10(1):39–73.
  • Marggraf MB, Panteleev PV, Emelianova AA, et al. Cytotoxic potential of the novel horseshoe crab peptide Polyphemusin III. Mar Drugs. 2018;16(12):466.
  • Miyata T, Tokunaga F, Yoneya T, et al. Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity. J Biochem. 1989;106(4):663–668.
  • Ohta M, Ito H, Masuda K, et al. Mechanisms of antibacterial action of tachyplesins and polyphemusins, a group of antimicrobial peptides isolated from horseshoe crab hemocytes. Antimicrob Agents Chemother. 1992;36(7):1460–1465.
  • Nakamura T, Furunaka H, Miyata T, et al. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J Biol Chem. 1988;263(32):16709–16713.
  • Masuda K, Ohta M, Ito M, et al. Bactericidal action of tachyplesin I against oral streptococci. Oral Microbiol Immunol. 1994;9(2):77–80.
  • Hong J, Guan W, Jin G, et al. Mechanism of tachyplesin I injury to bacterial membranes and intracellular enzymes,0 determined by laser confocal scanning microscopy and flow cytometry. Microbiol Res. 2015;170:69–77.
  • Liu C, Qi J, Shan B, et al. Tachyplesin causes membrane instability that kills multidrug-resistant bacteria by inhibiting the 3-ketoacyl carrier protein reductase FabG. Front Microbiol. 2018;9:825.
  • Kumar V, Chugh A. Peptide-mediated leishmaniasis management strategy: tachyplesin emerges as an effective anti-leishmanial peptide against Leishmania donovani. Biochim Biophys Acta Biomembr. 2021;1863(8):183629.
  • Murakami T, Niwa M, Tokunaga F, et al. Direct virus inactivation of tachyplesin I and its isopeptides from horseshoe crab hemocytes. Chemotherapy. 1991;37(5):327–334.
  • Xie H, Wei J, Qin Q. Antiviral function of Tachyplesin I against iridovirus and nodavirus. Fish Shellfish Immunol. 2016;58:96–102.
  • Vernen F, Harvey PJ, Dias SA, et al. Characterization of Tachyplesin peptides and their cyclized analogues to improve antimicrobial and anticancer properties. Int J Mol Sci. 2019;20(17):4184.
  • Ding H, Jin G, Zhang L, et al. Effects of tachyplesin I on human U251 glioma stem cells. Mol Med Rep. 2015;11(4):2953–2958.
  • Ouyang GL, Li Q-F, Peng XX, et al. Effects of tachyplesin on proliferation and differentiation of human hepatocellular carcinoma SMMC-7721 cells. World J Gastroenterol. 2002;8(6):1053–1058.
  • Vernen F, Craik DJ, Lawrence N, et al. Cyclic analogues of horseshoe crab peptide Tachyplesin I with anticancer and cell penetrating properties. ACS Chem Biol. 2019;14(12):2895–2908.
  • Rady I, Siddiqui IA, Rady M, et al. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 2017;402:16–31.
  • Wu Y, Lu D, Jiang YX, et al. Stapled wasp venom-derived oncolytic peptides with side chains induce rapid membrane lysis and prolonged immune responses in melanoma. J Med Chem. 2021;64(9):5802–5815.
  • Lu L, Zhang H, Zhou YD, et al. Polymer chimera of stapled oncolytic peptide coupled with anti-PD-L1 peptide boosts immunotherapy of colorectal cancer. Theranostics. 2022;12(7):3456–3473.
  • Ting DSJ, Beuerman RW, Dua HS, et al. Strategies in translating the therapeutic potentials of host defense peptides. Front Immunol. 2020;11:983.
  • Luong HX, Bui HTP, Tung TT. Application of the all-hydrocarbon stapling technique in the design of membrane-active peptides. J Med Chem. 2022;65(4):3026–3045.
  • Tamamura H, Ikoma R, Niwa M, et al. Antimicrobial activity and conformation of tachyplesin I and its analogs. Chem Pharm Bull. 1993;41(5):978–980.
  • Edwards IA, Elliott AG, Kavanagh AM, et al. Structure-activity and -toxicity relationships of the antimicrobial peptide Tachyplesin-1. ACS Infect Dis. 2017;3(12):917–926.
  • Jain A, Yadav BK, Chugh A. Marine antimicrobial peptide tachyplesin as an efficient nanocarrier for macromolecule delivery in plant and mammalian cells. FEBS J. 2015;282(4):732–745.
  • Colgrave ML, Craik DJ. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry. 2004;43(20):5965–5975.
  • Sharma R, Nisakar D, Shivpuri S, et al. Contrasting effects of cysteine modification on the transfection efficiency of amphipathic peptides. Biomaterials. 2014;35(24):6563–6575.
  • Schmidtchen A, Pasupuleti M, Mörgelin M, et al. Boosting antimicrobial peptides by hydrophobic oligopeptide end tags. J Biol Chem. 2009;284(26):17584–17594.
  • Wang G, Epand RF, Mishra B, et al. Decoding the functional roles of cationic side chains of the major antimicrobial region of human cathelicidin LL-37. Antimicrob Agents Chemother. 2012;56(2):845–856.
  • Panteleev PV, Ovchinnikova TV. Improved strategy for recombinant production and purification of antimicrobial peptide tachyplesin I and its analogs with high cell selectivity. Biotechnol Appl Biochem. 2017;64(1):35–42.
  • Amiss AS, von Pein JB, Webb JR, et al. Modified horseshoe crab peptides target and kill bacteria inside host cells. Cell Mol Life Sci. 2021;79(1):38.
  • Li Y, Cao X, Tian C, et al. Chemical protein synthesis-assisted high-throughput screening strategies for d-peptides in drug discovery. Chin Chem Lett. 2020;31(9):2365–2374.
  • Garton M, Nim S, Stone TA, et al. Method to generate highly stable D-amino acid analogs of bioactive helical peptides using a mirror image of the entire PDB. Proc Natl Acad Sci U S A. 2018;115(7):1505–1510.
  • Yu R, Wang J, So LY, et al. Enhanced activity against multidrug-resistant bacteria through coapplication of an analogue of Tachyplesin I and an inhibitor of the QseC/B signaling pathway. J Med Chem. 2020;63(7):3475–3484.
  • Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2(3):214–221.
  • Imura Y, Nishida M, Ogawa Y, et al. Action mechanism of tachyplesin I and effects of PEGylation. Biochim Biophys Acta. 2007;1768(5):1160–1169.
  • Kuzmin DV, Emelianova AA, Kalashnikova MB, et al. Effect of N- and C-terminal modifications on cytotoxic properties of antimicrobial peptide Tachyplesin I. Bull Exp Biol Med. 2017;162(6):754–757.
  • Morrison C. Constrained peptides’ time to shine? Nat Rev Drug Discov. 2018;17(8):531–533.
  • Chow HY, Zhang Y, Matheson E, et al. Ligation technologies for the synthesis of cyclic peptides. Chem Rev. 2019;119(17):9971–10001.
  • Usmani SS, Bedi G, Samuel JS, et al. THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One. 2017;12(7):e0181748.
  • Zhang H, Chen S. Cyclic peptide drugs approved in the last two decades (2001-2021). RSC Chem Biol. 2022;3(1):18–31.
  • Patil NA, Tailhades J, Hughes RA, et al. Cellular disulfide bond formation in bioactive peptides and proteins. Int J Mol Sci. 2015;16(1):1791–1805.
  • Gamcsik MP, Kasibhatla MS, Teeter SD, et al. Glutathione levels in human tumors. Biomarkers. 2012;17(8):671–691.
  • Qi YK, Qu Q, Bierer D, et al. A Diaminodiacid (DADA) strategy for the development of disulfide surrogate peptides. Chem Asian J. 2020;15(18):2793–2802.
  • Zhao R, Shi P, Chen J, et al. Chemical synthesis and biological activity of peptides incorporating an ether bridge as a surrogate for a disulfide bond. Chem Sci. 2020;11(30):7927–7932.
  • Cui HK, Guo Y, He Y, et al. Diaminodiacid-based solid-phase synthesis of peptide disulfide bond mimics. Angew Chem Int Ed In. 2013;52(36): 9558–9562
  • Holland-Nell K, Meldal M. Maintaining biological activity by using triazoles as disulfide bond mimetics. Angew Chem Int Ed. 2011;50(22):5204–5206.
  • Marc MA, Kincses A, Rácz B, et al. Antimicrobial, anticancer and multidrug-resistant reversing activity of novel oxygen-, sulfur- and selenoflavones and bioisosteric analogues. Pharmaceuticals. 2020;13(12):453.
  • Schneider T, Baldauf A, Ba LA, et al. Selective antimicrobial activity associated with sulfur nanoparticles. J Biomed Nanotechnol. 2011;7(3):395–405.
  • Fjell CD, Hiss JA, Hancock REW, et al. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov. 2011;11(1):37–51.
  • Spohn R, Daruka L, Lázár V, et al. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat Commun. 2019;10(1):4538.
  • Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19(3):491–511.
  • Bevers EM, Comfurius P, Zwaal RF. Regulatory mechanisms in maintenance and modulation of transmembrane lipid asymmetry: pathophysiological implications. Lupus. 1996;5(5):480–487.
  • Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010;2(5):a000414.
  • Zwaal RFA, Comfurius P, Bevers EM. Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci. 2005;62(9):971–988.
  • Buri MV, Sperandio LP, de Souza KFS, et al. Endocytosis and the participation of glycosaminoglycans are important to the mechanism of cell death induced by ß-hairpin antimicrobial peptides. ACS Appl Bio Mater. 2021;4(8):6488–6501.
  • Walrant A, Bauzá A, Girardet C, et al. Ionpair-p interactions favor cell penetration of arginine/tryptophan-rich cell-penetrating peptides. Biochim Biophys Acta Biomembr. 2020;1862(2):183098.
  • Bobone S, Stella L. (2019). Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. Adv Exp Med Biol, 1117 175–214. 10.1007/978-981-13-3588-4_11
  • Baxter AA, Lay FT, Poon IKH, et al. Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects. Cell Mol Life Sci. 2017;74(20):3809–3825.
  • Li J, Lu X, Ma W, et al. Cholesterols work as a molecular regulator of the antimicrobial peptide-membrane interactions. Front Mol.Biosci. 2021;8. 638988.
  • Buri M V, Torquato H F, Barros C Castilho, Ide J S, Miranda A, Paredes-Gamero E J. (2017). Comparison of Cytotoxic Activity in Leukemic Lineages Reveals Important Features of β-Hairpin Antimicrobial Peptides. J Cell Biochem, 118(7), 1764–1773. 10.1002/jcb.25844
  • Ramamoorthy A, Thennarasu S, Tan A, et al. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Biochemistry. 2006;45(20):6529–6540.
  • Rao A G. (1999). Conformation and antimicrobial activity of linear derivatives of tachyplesin lacking disulfide bonds. Arch Biochem Biophys, 361(1), 127–34. 10.1006/abbi.1998.0962
  • Shi J, So L, Chen F, Liang J, Chow H, Wong K, Wan S, Jiang T, Yu R. (2018). Influences of disulfide connectivity on structure and antimicrobial activity of tachyplesin I. J Pept Sci, 24(6), e3087 10.1002/psc.3087
  • Kwun M Seok, Lee D Gun. (2021). Apoptosis-like death-inducing property of tachyplesin I in Escherichia coli. J Basic Microbiol, 61(9), 795–807. 10.1002/jobm.202100133
  • Li W, Li Y, Sun P, Zhang N, Zhao Y, Qin S, Zhao Y. (2020). Antimicrobial peptide-modified silver nanoparticles for enhancing the antibacterial efficacy. RSC Adv, 10(64), 38746–38754. 10.1039/d0ra05640e
  • Safronova V N, Panteleev P V, Sukhanov S V, Toropygin I Y, Bolosov I A, Ovchinnikova T V. (2022). Mechanism of Action and Therapeutic Potential of the β-Hairpin Antimicrobial Peptide Capitellacin from the Marine Polychaeta Capitella teleta. Mar Drugs, 20(3),– 10.3390/md20030167
  • Panteleev P V, Tsarev A V, Safronova V N, Reznikova O V, Bolosov I A, Sychev S V, Shenkarev Z O, Ovchinnikova T V. (2020). Structure Elucidation and Functional Studies of a Novel β-hairpin Antimicrobial Peptide from the Marine Polychaeta Capitella teleta. Mar Drugs, 18(12),– 10.3390/md18120620
  • Miao F, Tai Z, Wang Y, Zhu Q, Fang J Kar-Hei, Hu M. (2022). Tachyplesin I Analogue Peptide as an Effective Antimicrobial Agent against Candida albicans-Staphylococcus aureus Poly-Biofilm Formation and Mixed Infection. ACS Infect Dis, 8(9), 1839–1850. 10.1021/acsinfecdis.2c00080
  • Priya A, Aditya A, Budagavi D Poornima, Chugh A. (2022). Tachyplesin and CyLoP-1 as efficient anti-mycobacterial peptides: A novel finding. Biochim Biophys Acta Biomembr, 1864(7), 183895 10.1016/j.bbamem.2022.183895
  • Yonezawa A, Kuwahara J, Fujii N, Sugiura Y. (1992). Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. Biochemistry, 31(11), 2998–3004. 10.1021/bi00126a022
  • Miyazaki Y, Aoki M, Yano Y, Matsuzaki K. (2012). Interaction of antimicrobial peptide magainin 2 with gangliosides as a target for human cell binding. Biochemistry, 51(51), 10229–35. 10.1021/bi301470h
  • Matsuzaki K, Yoneyama S, Fujii N, Miyajima K, Yamada K, Kirino Y, Anzai K. (1997). Membrane permeabilization mechanisms of a cyclic antimicrobial peptide, tachyplesin I, and its linear analog. Biochemistry, 36(32), 9799–806. 10.1021/bi970588v
  • Matsuzaki K, Nakayama M, Fukui M, Otaka A, Funakoshi S, Fujii N, Bessho K, Miyajima K. (1993). Role of disulfide linkages in tachyplesin-lipid interactions. Biochemistry, 32(43), 11704–10. 10.1021/bi00094a029
  • Laederach A, Andreotti A H, Fulton D Bruce. (2002). Solution and micelle-bound structures of tachyplesin I and its active aromatic linear derivatives. Biochemistry, 41(41), 12359–68. 10.1021/bi026185z
  • Pang Z, Raudonis R, Glick B R, Lin T, Cheng Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv, 37(1), 177–192. 10.1016/j.biotechadv.2018.11.013
  • Davies D. (2003). Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov, 2(2), 114–22. 10.1038/nrd1008
  • Rather M Ahmad, Gupta K, Mandal M. (2021). Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol, 52(4), 1701–1718. 10.1007/s42770-021-00624-x
  • Dwyer D J, Camacho D M, Kohanski M A, Callura J M, Collins J J. (2012). Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell, 46(5), 561–72. 10.1016/j.molcel.2012.04.027
  • Bayles K W. (2014). Bacterial programmed cell death: making sense of a paradox. Nat Rev Microbiol, 12(1), 63–9. 10.1038/nrmicro3136
  • Benfield A H et al . (2021). Cyclic gomesin, a stable redesigned spider peptide able to enter cancer cells. Biochim Biophys Acta Biomembr, 1863(1), 183480 10.1016/j.bbamem.2020.183480
  • Niu M, Chai S, You X, Wang W, Qin C, Gong Q, Zhang T, Wan P. (2015). Expression of porcine protegrin-1 in Pichia pastoris and its anticancer activity in vitro. Exp Ther Med, 9(3), 1075–1079. 10.3892/etm.2015.2202
  • Kuzmin D V, Emel'yanova A A, Kalashnikova M B, Panteleev P V, Ovchinnikova T V. (2018). In Vitro Study of Antitumor Effect of Antimicrobial Peptide Tachyplesin I in Combination with Cisplatin. Bull Exp Biol Med, 165(2), 220–224. 10.1007/s10517-018-4134-6
  • Li X, Dai J, Tang Y, Li L, Jin G. (2017). Quantitative Proteomic Profiling of Tachyplesin I Targets in U251 Gliomaspheres. Mar Drugs, 15(1),– 10.3390/md15010020
  • Zhang H, Wu J, Zhang H, Zhu Q. (2006). Efflux of potassium ion is an important reason of HL-60 cells apoptosis induced by tachyplesin. Acta Pharmacol Sin, 27(10), 1367–74. 10.1111/j.1745-7254.2006.00377.x
  • Wu J et al . (2021). Tachyplesin induces apoptosis in non-small cell lung cancer cells and enhances the chemosensitivity of A549/DDP cells to cisplatin by activating Fas and necroptosis pathway. Chem Biol Drug Des, 97(4), 809–820. 10.1111/cbdd.13810
  • Paredes-Gamero E J, Martins M N, Cappabianco F A, Ide J S, Miranda A. (2012). Characterization of dual effects induced by antimicrobial peptides: regulated cell death or membrane disruption. Biochim Biophys Acta, 1820(7), 1062–72. 10.1016/j.bbagen.2012.02.015
  • Kuzmin D V, Emelianova A A, Kalashnikova M B, Panteleev P V, Balandin S V, Serebrovskaya E O, Belogurova-Ovchinnikova O Y, Ovchinnikova T V. (2018). Comparative in vitro study on cytotoxicity of recombinant β-hairpin peptides. Chem Biol Drug Des, 91(1), 294–303. 10.1111/cbdd.13081
  • Li Q, Ou-Yang G, Peng X, Hong S. (2003). Effects of tachyplesin on the regulation of cell cycle in human hepatocarcinoma SMMC-7721 cells. World J Gastroenterol, 9(3), 454–8. 10.3748/wjg.v9.i3.454
  • Shi S, Wang Y, Liang Y, Li Q. (2006). Effects of tachyplesin and n-sodium butyrate on proliferation and gene expression of human gastric adenocarcinoma cell line BGC-823. World J Gastroenterol, 12(11), 1694–8. 10.3748/wjg.v12.i11.1694
  • Chen J, Xu X, Underhill C B, Yang S, Wang L, Chen Y, Hong S, Creswell K, Zhang L. (2005). Tachyplesin activates the classic complement pathway to kill tumor cells. Cancer Res, 65(11), 4614–22. 10.1158/0008-5472.CAN-04-2253
  • Ghisaidoobe A B, Chung S J. (2014). Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques. Int J Mol Sci, 15(12), 22518–38. 10.3390/ijms151222518
  • Partida-Hanon A, Maestro-López M, Vitale S, Turrà D, Di Pietro A, Martínez-Del-Pozo Á, Bruix M. (2020). Structure of Fungal α Mating Pheromone in Membrane Mimetics Suggests a Possible Role for Regulation at the Water-Membrane Interface. Front Microbiol, 11 1090 10.3389/fmicb.2020.01090
  • Barbosa S C, Cilli E M, Dias L G, Fuzo C A, Degrève L, Stabeli R G, Itri R, Ciancaglini P. (2015). Interaction of cyclic and linear Labaditin peptides with anionic and zwitterionic micelles. J Colloid Interface Sci, 438 39–46. 10.1016/j.jcis.2014.09.059
  • Bonucci A, Caldaroni E, Balducci E, Pogni R. (2015). A Spectroscopic Study of the Aggregation State of the Human Antimicrobial Peptide LL-37 in Bacterial versus Host Cell Model Membranes. Biochemistry, 54(45), 6760–8. 10.1021/acs.biochem.5b00813
  • Schapira A H. (2012). Mitochondrial diseases. Lancet, 379(9828), 1825–34. 10.1016/S0140-6736(11)61305-6
  • Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N. (2010). VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med, 31(3), 227–85. 10.1016/j.mam.2010.03.002
  • Chen Y, Xu X, Hong S, Chen J, Liu N, Underhill C B, Creswell K, Zhang L. (2001). RGD-Tachyplesin inhibits tumor growth. Cancer Res, 61(6), 2434–8.
  • Bortner C D, Hughes F M, Cidlowski J A. (1997). A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem, 272(51), 32436–42. 10.1074/jbc.272.51.32436
  • Su Z, Yang Z, Xu Y, Chen Y, Yu Q. (2015). Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer, 14 48 10.1186/s12943-015-0321-5
  • Agostinho M, Santos V, Ferreira F, Costa R, Cardoso J, Pinheiro I, Rino J, Jaffray E, Hay R T, Ferreira J. (2008). Conjugation of human topoisomerase 2 alpha with small ubiquitin-like modifiers 2/3 in response to topoisomerase inhibitors: cell cycle stage and chromosome domain specificity. Cancer Res, 68(7), 2409–18. 10.1158/0008-5472.CAN-07-2092
  • Ganapathy-Kanniappan S, Geschwind J H. (2013). Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer, 12 152 10.1186/1476-4598-12-152
  • Fehrenbacher N, Jäättelä M. (2005). Lysosomes as targets for cancer therapy. Cancer Res, 65(8), 2993–5. 10.1158/0008-5472.CAN-05-0476
  • Massagué J. (2004). G1 cell-cycle control and cancer. Nature, 432(7015), 298–306. 10.1038/nature03094
  • Otto T, Sicinski P. (2017). Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer, 17(2), 93–115. 10.1038/nrc.2016.138
  • Yang J Dong, Heimbach J K. (2020). New advances in the diagnosis and management of hepatocellular carcinoma. BMJ, 371 m3544 10.1136/bmj.m3544
  • De Grandi A et al . (2020). Highly Elevated Plasma γ-Glutamyltransferase Elevations: A Trait Caused by γ-Glutamyltransferase 1 Transmembrane Mutations. Hepatology, 71(3), 1124–1127. 10.1002/hep.30944
  • Witko-Sarsat V, Ohayon D. (2016). Proliferating cell nuclear antigen in neutrophil fate. Immunol Rev, 273(1), 344–56. 10.1111/imr.12449
  • El-Deiry W S. (2016). p21(WAF1) Mediates Cell-Cycle Inhibition, Relevant to Cancer Suppression and Therapy. Cancer Res, 76(18), 5189–91. 10.1158/0008-5472.CAN-16-2055
  • Thompson E B. (1998). The many roles of c-Myc in apoptosis. Annu Rev Physiol, 60 575–600. 10.1146/annurev.physiol.60.1.575
  • Bai X, Ni J, Beretov J, Graham P, Li Y. (2018). Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev, 69 152–163. 10.1016/j.ctrv.2018.07.004
  • Zhu H, Yu X, Zhang S, Shu K. (2021). Targeting the Complement Pathway in Malignant Glioma Microenvironments. Front Cell Dev Biol, 9 657472 10.3389/fcell.2021.657472
  • Farkas I, Baranyi L, Ishikawa Y, Okada N, Bohata C, Budai D, Fukuda A, Imai M, Okada H. (2002). CD59 blocks not only the insertion of C9 into MAC but inhibits ion channel formation by homologous C5b-8 as well as C5b-9. J Physiol, 539(Pt 2), 537–45. 10.1113/jphysiol.2001.013381
  • Panyutich A V, Szold O, Poon P H, Tseng Y, Ganz T. (1994). Identification of defensin binding to C1 complement. FEBS Lett, 356(2–3), 169–73. 10.1016/0014-5793(94)01261-x
  • Berlov M N, Umnyakova E S, Leonova T S, Milman B L, Krasnodembskaya A D, Ovchinnikova T V, Kokryakov V N. (2015). [Interaction of Arenicin-1 with C1q Protein]. Bioorg Khim, 41(6), 664–8. 10.1134/s1068162015060035
  • Nauta A J, Daha M R, Tijsma O, van de Water B, Tedesco F, Roos A. (2002). The membrane attack complex of complement induces caspase activation and apoptosis. Eur J Immunol, 32(3), 783–92. 10.1002/1521-4141(200203)32:3<783::AID-IMMU783>3.0.CO;2-Q
  • Posey J Timothy, Soloway M S, Ekici S, Sofer M, Civantos F, Duncan R C, Lokeshwar V B. (2003). Evaluation of the prognostic potential of hyaluronic acid and hyaluronidase (HYAL1) for prostate cancer. Cancer Res, 63(10), 2638–44.
  • Rooney P, Kumar S, Ponting J, Wang M. (1995). The role of hyaluronan in tumour neovascularization (review). Int J Cancer, 60(5), 632–6. 10.1002/ijc.2910600511
  • Cooper B M, Iegre J, O' Donovan D H, Ölwegård Halvarsson M, Spring D R. (2021). Peptides as a platform for targeted therapeutics for cancer: peptide-drug conjugates (PDCs). Chem Soc Rev, 50(3), 1480–1494. 10.1039/d0cs00556h
  • Alas M, Saghaeidehkordi A, Kaur K. (2021). Peptide-Drug Conjugates with Different Linkers for Cancer Therapy. J Med Chem, 64(1), 216–232. 10.1021/acs.jmedchem.0c01530
  • Ruoslahti E. (1996). RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol, 12 697–715. 10.1146/annurev.cellbio.12.1.697
  • Temming K, Schiffelers R M, Molema G, Kok R J. (2005). RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist Updat, 8(6), 381–402. 10.1016/j.drup.2005.10.002
  • Yang B, Gao J, Pei Q, Xu H, Yu H. (2020). Engineering Prodrug Nanomedicine for Cancer Immunotherapy. Adv Sci (Weinh), 7(23), 2002365 10.1002/advs.202002365
  • Zhang C, Wu W, Li R, Qiu W, Zhuang Z, Cheng S and Zhang X. (2018). Peptide‐Based Multifunctional Nanomaterials for Tumor Imaging and Therapy. Adv. Funct. Mater., 28(50), 1804492 10.1002/adfm.201804492
  • Ngambenjawong C, Chan L W, Fleming H E, Bhatia S N. (2022). Conditional Antimicrobial Peptide Therapeutics. ACS Nano, 16(10), 15779–15791. 10.1021/acsnano.2c04162
  • Jana A, Narula P, Chugh A, Kulshreshtha R. (2019). Efficient delivery of anti-miR-210 using Tachyplesin, a cell penetrating peptide, for glioblastoma treatment. Int J Pharm, 572 118789 10.1016/j.ijpharm.2019.118789
  • Grainger D W, van der Mei H C, Jutte P C, van den Dungen J J, Schultz M J, van der Laan B F, Zaat S A, Busscher H J. (2013). Critical factors in the translation of improved antimicrobial strategies for medical implants and devices. Biomaterials, 34(37), 9237–43. 10.1016/j.biomaterials.2013.08.043
  • Xue Q et al . (2018). Anti-infective biomaterials with surface-decorated tachyplesin I. Biomaterials, 178 351–362. 10.1016/j.biomaterials.2018.05.008
  • Shen D, Pouliot L M, Hall M D, Gottesman M M. (2012). Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev, 64(3), 706–21. 10.1124/pr.111.005637
  • Trendowski M R, El Charif O, Dinh P C, Travis L B, Dolan M Eileen. (2019). Genetic and Modifiable Risk Factors Contributing to Cisplatin-induced Toxicities. Clin Cancer Res, 25(4), 1147–1155. 10.1158/1078-0432.CCR-18-2244
  • Wang A, Zheng Y, Zhu W, Yang L, Yang Y, Peng J. (2022). Melittin-Based Nano-Delivery Systems for Cancer Therapy. Biomolecules, 12(1),– 10.3390/biom12010118
  • Greten F R, Grivennikov S I. (2019). Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity, 51(1), 27–41. 10.1016/j.immuni.2019.06.025
  • Karin M, Lawrence T, Nizet V. (2006). Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell, 124(4), 823–35. 10.1016/j.cell.2006.02.016
  • Narunsky-Haziza L et al . (2022). Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell, 185(20), 3789–3806.e17. 10.1016/j.cell.2022.09.005
  • Dohlman A B, Klug J, Mesko M, Gao I H, Lipkin S M, Shen X, Iliev I D. (2022). A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell, 185(20), 3807–3822.e12. 10.1016/j.cell.2022.09.015
  • Muttenthaler M, King G F, Adams D J, Alewood P F. (2021). Trends in peptide drug discovery. Nat Rev Drug Discov, 20(4), 309–325.
  • Ruoslahti E. (1996). RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol, 12 697–715. 10.1146/annurev.cellbio.12.1.697

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.