4,022
Views
2
CrossRef citations to date
0
Altmetric
Review

Advances in the design of combination therapies for the treatment of tuberculosis

ORCID Icon & ORCID Icon
Pages 83-97 | Received 07 Feb 2022, Accepted 08 Dec 2022, Published online: 28 Dec 2022

References

  • Fox W, Ellard GA, Mitchison DA. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council Tuberculosis Units, 1946-1986, with relevant subsequent publications. Int J Tuberc Lung Dis. 1999;3(10):S231–S279.
  • Kerantzas CA, Jacobs WR. Origins of combination therapy for tuberculosis: lessons for future antimicrobial development and application. mBio. 2017;8(2):e01586–16.
  • Connolly LE, Edelstein PH, Ramakrishnan L. Why is long-term therapy required to cure tuberculosis? PLoS Med. 2007;4(3):e120.
  • World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization; 2020.
  • Tiberi S, du Plessis N, Walzl G, et al. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect Dis. 2018;18(7):e183–e198.
  • Seung KJ, Keshavjee S, Rich ML. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb Perspect Med. 2015 Apr 27;5(9):a017863.
  • Dorman SE, Nahid P, Kurbatova EV, et al. Four-month rifapentine regimens with or without moxifloxacin for tuberculosis. N Engl J Med. 2021 May 6;384(18):1705–1718.
  • Conradie F, Diacon AH, Ngubane N, et al., Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med. 2020;382(10):893–902. .
  • Riva MA. From milk to rifampicin and back again: history of failures and successes in the treatment for tuberculosis. J Antibiot (Tokyo). 2014;67(9):661–665.
  • Iseman MD. Tuberculosis therapy: past, present and future. Eur Respir J Suppl. 2002 Jul;36(Supplement 36):87s–94s.
  • Sensi P. History of the development of rifampin. Clin Infect Dis. 1983;5(Supplement_3):S402–S406.
  • Furin J, Cox H, Pai M. Tuberculosis. Lancet. 2019;393(10181):1642–1656.
  • Pai M, Behr MA, Dowdy D, et al. Tuberculosis. Nat Rev Dis Primers. 2016;2(1):16076.
  • Hunter RL. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis (Edinb). 2011 Nov;91(6):497–509.
  • Orme IM, Basaraba RJ. The formation of the granuloma in tuberculosis infection. Semin Immunol. 2014;26(6):601–609.
  • Yegian D. Biology of tubercle bacilli in necrotic lesions. Am Rev Tuberc. 1952 Nov;66(5):629–631.
  • Sarathy JP, Dartois V. Caseum: a niche for Mycobacterium tuberculosis drug-tolerant persisters. Clin Microbiol Rev. 2020 Jun 17;33(3). DOI:10.1128/CMR.00159-19.
  • Xie YL, de Jager VR, Chen RY, et al., Fourteen-day PET/CT imaging to monitor drug combination activity in treated individuals with tuberculosis. Sci Transl Med. 2021;13(579):eabd7618. .
  • Strydom N, Gupta SV, Fox WS, et al. Tuberculosis drugs’ distribution and emergence of resistance in patient’s lung lesions: a mechanistic model and tool for regimen and dose optimization. PLoS Med. 2019 Apr;16(4):e1002773.
  • Ernest JP, Sarathy J, Wang N, et al. Lesion penetration and activity limit the utility of second-line injectable agents in pulmonary tuberculosis. Antimicrob Agents Chemother. 2021Jul12; 65(10). AAC0050621. DOI:10.1128/AAC.00506-21.
  • Sarathy J, Blanc L, Alvarez-Cabrera N, et al. Fluoroquinolone Efficacy against tuberculosis is driven by penetration into lesions and activity against resident bacterial populations. Antimicrob Agents Chemother. 2019 May;63(5). DOI:10.1128/AAC.02516-18 .
  • Prideaux B, Via LE, Zimmerman MD, et al. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat Med. 2015;21(10):1223–1227.
  • Sarathy JP, Zuccotto F, Hsinpin H, et al. Prediction of drug penetration in tuberculosis lesions. ACS Infect Dis. 2016;2(8):552–563.
  • Wayne LG, Sohaskey CD. Nonreplicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol. 2001;55(1):139–163.
  • Lenaerts A, Barry CE 3rd, Dartois V. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev. 2015 Mar;264(1):288–307.
  • Hoff DR, Ryan GJ, Driver ER, et al. Location of intra- and extracellular M. tuberculosis populations in lungs of mice and Guinea pigs during disease progression and after drug treatment. PLoS One. 2011 Mar 21;6(3):e17550.
  • Lenaerts AJ, Hoff D, Aly S, et al. Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother. 2007 Sep;51(9):3338–3345.
  • Schrader SM, Vaubourgeix J, Nathan C. Biology of antimicrobial resistance and approaches to combat it. Sci Transl Med. 2020 Jun 24;12(549). DOI:10.1126/scitranslmed.aaz6992.
  • Eoh H, Liu R, Lim J, et al. Central carbon metabolism remodeling as a mechanism to develop drug tolerance and drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol. 2022;12:958240.
  • Iacobino A, Piccaro G, Giannoni F, et al. Fighting tuberculosis by drugs targeting nonreplicating Mycobacterium tuberculosis bacilli. Int J Mycobacteriol. 2017 Jul-Sep;6(3):213–221.
  • Zhang M, Sala C, Dhar N, et al. In vitro and in vivo activities of three oxazolidinones against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014 Jun;58(6):3217–3223.
  • Raghunandanan S, Jose L, Kumar RA. Dormant Mycobacterium tuberculosis converts isoniazid to the active drug in a Wayne’s model of dormancy. J Antibiot (Tokyo). 2018 Nov;71(11):939–949.
  • Betts JC, Lukey PT, Robb LC, et al. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol. 2002 Feb;43(3):717–731.
  • Wayne LG, Hayes LG. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun. 1996 Jun;64(6):2062–2069.
  • Karakousis PC, Williams EP, Bishai WR. Altered expression of isoniazid-regulated genes in drug-treated dormant Mycobacterium tuberculosis. J Antimicrob Chemother. 2008 Feb;61(2):323–331.
  • Iacobino A, Piccaro G, Giannoni F, et al. Activity of drugs against dormant Mycobacterium tuberculosis. Int J Mycobacteriol. 2016 Dec;5(Suppl 1):S94–S95.
  • Fattorini L, Piccaro G, Mustazzolu A, et al. Targeting dormant bacilli to fight tuberculosis. Mediterr J Hematol Infect Dis. 2013 Nov 19;5(1):e2013072.
  • Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005 Jan 14;307(5707):223–227.
  • Singh R, Manjunatha U, Boshoff HI, et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science. 2008 Nov 28;322(5906):1392–1395.
  • Diacon AH, Pym A, Grobusch M, et al. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med. 2009;360(23):2397–2405.
  • Conradie F, Bagdasaryan TR, Borisov S, et al. Bedaquiline–pretomanid–linezolid regimens for drug-resistant tuberculosis. N Engl J Med. 2022;387(9):810–823.
  • Bryk R, Gold B, Venugopal A, et al. Selective killing of nonreplicating mycobacteria. Cell Host Microbe. 2008 Mar 13;3(3):137–145.
  • Darby CM, Nathan CF. Killing of non-replicating Mycobacterium tuberculosis by 8-hydroxyquinoline. J Antimicrob Chemother. 2010;65(7):1424–1427.
  • Grant SS, Kawate T, Nag PP, et al. Identification of novel inhibitors of nonreplicating Mycobacterium tuberculosis using a carbon starvation model. ACS Chem Biol. 2013 Oct 18;8(10):2224–2234.
  • Gold B, Smith R, Nguyen Q, et al. Novel cephalosporins selectively active on nonreplicating Mycobacterium tuberculosis. J Med Chem. 2016;59(13):6027–6044.
  • Chatterjee D, Bonnett SA, Dennison D, et al. A class of hydrazones are active against non-replicating Mycobacterium tuberculosis. PLoS One. 2018;13(10). DOI:10.1371/journal.pone.0196348.
  • Neyrolles O, Flint L, Korkegian A, et al. InhA inhibitors have activity against non-replicating Mycobacterium tuberculosis. PLoS One. 2020;15(11):e0239354.
  • Balaban NQ, Helaine S, Lewis K, et al. Definitions and guidelines for research on antibiotic persistence. Nature Rev Microbiol. 2019;17(7):441–448.
  • Aldridge BB, Fernandez-Suarez M, Heller D, et al. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science. 2012 Jan 6;335(6064):100–104.
  • Schrader SM, Botella H, Jansen R, et al. Multiform antimicrobial resistance from a metabolic mutation. Sci Adv. 2021 Aug;7(35). doi:10.1126/sciadv.abh2037.
  • Levin-Reisman I, Ronin I, Gefen O, et al. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017 Feb 24;355(6327):826–830.
  • Liu J, Gefen O, Ronin I, et al. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science. 2020 Jan 10;367(6474):200–204.
  • McGrath M, Gey van Pittius NC, van Helden PD, et al. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother. 2014 Feb;69(2):292–302.
  • Ford CB, Shah RR, Maeda MK, et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet. 2013 Jul;45(7):784–790.
  • Coelho T, Machado D, Couto I, et al. Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil. Front Microbiol. 2015;6:330.
  • Laws M, Jin P, Rahman KM. Efflux pumps in Mycobacterium tuberculosis and their inhibition to tackle antimicrobial resistance. Trends Microbiol. 2022;30(1):57–68.
  • Pyle MM. Relative numbers of resistant tubercle bacilli in sputa of patients before and during treatment with streptomycin. Proc Staff Meet Mayo Clin. 1947 Oct 15;22(21):465–473.
  • Palaci M, Dietze R, Hadad DJ, et al. Cavitary disease and quantitative sputum bacillary load in cases of pulmonary tuberculosis. J Clin Microbiol. 2007 Dec;45(12):4064–4066.
  • British Medical Journal. Streptomycin treatment of pulmonary tuberculosis: a medical research council investigation. Bmj. 1948;2(4582):769–782.
  • British Medical Journal. Streptomycin in pulmonary tuberculosis. Bmj. 1948;2(4582):790–791.
  • Bahuguna A, Rawat DS. An overview of new antitubercular drugs, drug candidates, and their targets. Med Res Rev. 2020 Jan;40(1):263–292.
  • Campanico A, Moreira R, Lopes F. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. Eur J Med Chem. 2018 Apr 25;150:525–545. DOI:10.1016/j.ejmech.2018.03.020.
  • Working Group on New TB Drugs. Compounds | Working Group for New TB Drugs. 2022. [November 22, 2022]. Available from: https://www.newtbdrugs.org/pipeline/compounds
  • Nuermberger E, Tyagi S, Tasneen R, et al. Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis. Antimicrob Agents Chemother. 2008;52(4):1522–1524.
  • Tasneen R, Li SY, Peloquin CA, et al. Sterilizing activity of novel TMC207- and PA-824-containing regimens in a murine model of tuberculosis. Antimicrob Agents Chemother. 2011 Dec;55(12):5485–5492.
  • Tasneen R, Williams K, Amoabeng O, et al. Contribution of the nitroimidazoles PA-824 and TBA-354 to the activity of novel regimens in murine models of tuberculosis. Antimicrob Agents Chemother. 2015 Jan;59(1):129–135.
  • Tweed CD, Wills GH, Crook AM, et al. A partially randomised trial of pretomanid, moxifloxacin and pyrazinamide for pulmonary TB. Int J Tuberc Lung Dis. 2021 Apr 1;25(4):305–314.
  • Global Alliance for TB Drug Development. Trial to evaluate the efficacy, safety and tolerability of BPaMZ in Drug-Sensitive (DS-TB) adult patients and drug-resistant (DR-TB) adult patients: global alliance for TB drug development. 2020. [updated April 30]. Available from: https://ClinicalTrials.gov/show/NCT03338621
  • University College L, National University Hospital S, Institute SCR. Two-month regimens using novel combinations to augment treatment effectiveness for drug-sensitive tuberculosis. 2018. [updated March 21]. https://ClinicalTrials.gov/show/NCT03474198
  • Williams K, Minkowski A, Amoabeng O, et al. Sterilizing activities of novel combinations lacking first- and second-line drugs in a murine model of tuberculosis. Antimicrob Agents Chemother. 2012 Jun;56(6):3114–3120.
  • Tasneen R, Betoudji F, Tyagi S, et al. Contribution of oxazolidinones to the efficacy of novel regimens containing bedaquiline and pretomanid in a mouse model of tuberculosis. Antimicrob Agents Chemother. 2016 Jan;60(1):270–277.
  • Li SY, Tasneen R, Tyagi S, et al. Bactericidal and sterilizing activity of a novel regimen with bedaquiline, pretomanid, moxifloxacin, and pyrazinamide in a murine model of tuberculosis. Antimicrob Agents Chemother. 2017 Sep;61(9). doi:10.1128/AAC.00913-17.
  • Zhang X, Falagas ME, Vardakas KZ, et al. Systematic review and meta-analysis of the efficacy and safety of therapy with linezolid containing regimens in the treatment of multidrug-resistant and extensively drug-resistant tuberculosis. J Thorac Dis. 2015 Apr;7(4):603–615.
  • Dorman SE, Goldberg S, Stout JE, et al. Substitution of rifapentine for rifampin during intensive phase treatment of pulmonary tuberculosis: study 29 of the tuberculosis trials consortium. J Infect Dis. 2012 Oct 1;206(7):1030–1040.
  • Jindani A, Harrison TS, Nunn AJ, et al. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N Engl J Med. 2014;371(17):1599–1608.
  • Gillespie SH, Crook AM, McHugh TD, et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med. 2014 Oct 23;371(17):1577–1587.
  • Andries K, Gevers T, Lounis N. Bactericidal potencies of new regimens are not predictive of their sterilizing potencies in a murine model of tuberculosis. Antimicrob Agents Chemother. 2010 Nov;54(11):4540–4544.
  • Clemens DL, Lee BY, Silva A, et al. Artificial intelligence enabled parabolic response surface platform identifies ultra-rapid near-universal TB drug treatment regimens comprising approved drugs. PLoS One. 2019;14(5):e0215607.
  • De Groote MA, Gilliland JC, Wells CL, et al. Comparative studies evaluating mouse models used for efficacy testing of experimental drugs against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2011 Mar;55(3):1237–1247.
  • Harper J, Skerry C, Davis SL, et al. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J Infect Dis. 2012 Feb 15;205(4):595–602.
  • Li SY, Irwin SM, Converse PJ, et al. Evaluation of moxifloxacin-containing regimens in pathologically distinct murine tuberculosis models. Antimicrob Agents Chemother. 2015 Jul;59(7):4026–4030.
  • Mourik BC, Svensson RJ, de Knegt GJ, et al. Improving treatment outcome assessment in a mouse tuberculosis model. Sci Rep. 2018 Apr 9;8(1):5714.
  • Nuermberger E. Using animal models to develop new treatments for tuberculosis. Semin Respir Crit Care Med. 2008 Oct;29(5):542–551.
  • Nuermberger EL, Yoshimatsu T, Tyagi S, et al. Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. Am J Respir Crit Care Med. 2004 Feb 1;169(3):421–426.
  • Rosenthal IM, Zhang M, Almeida D, et al. Isoniazid or moxifloxacin in rifapentine-based regimens for experimental tuberculosis? Am J Respir Crit Care Med. 2008 Nov 1;178(9):989–993.
  • Nuermberger EL, Jacobs Jr. WR, McShane H. Preclinical efficacy testing of new drug candidates. Microbiol Spectr. 2017;5(3). DOI:10.1128/microbiolspec.TBTB2-0034-2017
  • Yang H-J, Wang D, Wen X, et al. One size fits all? Not in in vivo modeling of tuberculosis chemotherapeutics. Front Cell Infect Microbiol. 2021;11:613149.
  • Gumbo T, Lenaerts AJ, Hanna D, et al. Nonclinical models for antituberculosis drug development: a landscape analysis. J Infect Dis. 2015;211(suppl_3):S83–S95.
  • Dharmadhikari AS, Nardell EA. What animal models teach humans about tuberculosis. Am J Respir Cell Mol Biol. 2008 Nov;39(5):503–508.
  • Singh AK, Gupta UD. Animal models of tuberculosis: lesson learnt. Indian J Med Res. 2018 May;147(5):456–463.
  • Kramnik I, Beamer G. Mouse models of human TB pathology: roles in the analysis of necrosis and the development of host-directed therapies. Semin Immunopathol. 2016 Mar;38(2):221–237.
  • Franzblau SG, DeGroote MA, Cho SH, et al. Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis. 2012;92(6):453–488.
  • Grosset J. The sterilizing value of rifampicin and pyrazinamide in experimental short-course chemotherapy. Bull Int Union Tuberc. 1978 Mar;53(1):5–12.
  • Xu J, Li SY, Almeida DV, et al. Contribution of pretomanid to novel regimens containing bedaquiline with either linezolid or moxifloxacin and pyrazinamide in murine models of tuberculosis. Antimicrob Agents Chemother. 2019 May;63(5). doi:10.1128/AAC.00021-19.
  • Lanoix JP, Betoudji F, Nuermberger E. Sterilizing activity of pyrazinamide in combination with first-line drugs in a C3HeB/FeJ mouse model of tuberculosis. Antimicrob Agents Chemother. 2016 Feb;60(2):1091–1096.
  • Lanoix JP, Lenaerts AJ, Nuermberger EL. Heterogeneous disease progression and treatment response in a C3HeB/FeJ mouse model of tuberculosis. Dis Model Mech. 2015 Jun;8(6):603–610.
  • Lee BY, Clemens DL, Silva A, et al. Ultra-rapid near universal TB drug regimen identified via parabolic response surface platform cures mice of both conventional and high susceptibility. PLoS One. 2018;13(11):e0207469.
  • Saini V, Ammerman NC, Chang YS, et al. Treatment-shortening effect of a novel regimen combining clofazimine and high-dose rifapentine in pathologically distinct mouse models of tuberculosis. Antimicrob Agents Chemother. 2019 Jun;63(6). doi:10.1128/AAC.00388-19.
  • Chatterji M, Shandil R, Manjunatha MR, et al. 1,4-azaindole, a potential drug candidate for treatment of tuberculosis. Antimicrob Agents Chemother. 2014;58(9):5325–5331.
  • Dartois V. The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. Nat Rev Microbiol. 2014 Mar;12(3):159–167.
  • Irwin SM, Prideaux B, Lyon ER, et al. Bedaquiline and pyrazinamide treatment responses are affected by pulmonary lesion heterogeneity in Mycobacterium tuberculosis infected C3HeB/FeJ mice. ACS Infect Dis. 2016 Apr 8;2(4):251–267.
  • Liu Y, Tan S, Huang L, et al. Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo. J Exp Med. 2016 May 2;213(5):809–825.
  • Via LE, England K, Weiner DM, et al. A sterilizing tuberculosis treatment regimen is associated with faster clearance of bacteria in cavitary lesions in marmosets. Antimicrob Agents Chemother. 2015;59(7):4181–4189.
  • Winchell CG, Mishra BB, Phuah JY, et al. Evaluation of IL-1 blockade as an adjunct to linezolid therapy for tuberculosis in mice and macaques. Front Immunol. 2020;11:11.
  • Beites T, O’Brien K, Tiwari D, et al. Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nat Commun. 2019 Oct 31;10(1):4970.
  • Kim S, Scanga CA, Miranda Silva C, et al. Pharmacokinetics of tedizolid, sutezolid, and sutezolid-M1 in non-human primates. Eur J Pharm Sci. 2020;151:105421.
  • Coleman MT, Chen RY, Lee M, et al. PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Sci Transl Med. 2014 Dec 3;6(265):265ra167.
  • Rajoli RKR, Podany AT, Moss DM, et al. Modelling the long-acting administration of anti-tuberculosis agents using PBPK: a proof of concept study. Int J Tuberc Lung Dis. 2018 Aug 1;22(8):937–944.
  • Fors J, Strydom N, Fox WS, et al. Mathematical model and tool to explore shorter multi-drug therapy options for active pulmonary tuberculosis. PLoS Comput Biol. 2020 Aug;16(8):e1008107.
  • Pienaar E, Cilfone NA, Lin PL, et al. A computational tool integrating host immunity with antibiotic dynamics to study tuberculosis treatment. J Theor Biol. 2015;367:166–179.
  • Bigelow KM, Deitchman AN, S-Y L, et al. Pharmacodynamic correlates of linezolid activity and toxicity in murine models of tuberculosis. J Infect Dis. 2021;223(11):1855–1864.
  • Rifat D, Prideaux B, Savic RM, et al. Pharmacokinetics of rifapentine and rifampin in a rabbit model of tuberculosis and correlation with clinical trial data. Sci Transl Med. 2018;10(435). DOI:10.1126/scitranslmed.aai7786.
  • Lyons MA. Modeling and simulation of pretomanid pharmacodynamics in pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2019 Sep 30;63(12). DOI:10.1128/AAC.00732-19.
  • Lyons MA. Pretomanid dose selection for pulmonary tuberculosis: an application of multi‐objective optimization to dosage regimen design. CPT Pharmacometrics Syst Pharmacol. 2021;10(3):211–219.
  • Gumbo T, Alffenaar JC. Pharmacokinetic/pharmacodynamic background and methods and scientific evidence base for dosing of second-line tuberculosis drugs. Clin Infect Dis. 2018 Nov 28;67(suppl_3):S267–S273.
  • Gumbo T, Pasipanodya JG, Romero K, et al. Forecasting accuracy of the hollow fiber model of tuberculosis for clinical therapeutic outcomes. Clin Infect Dis. 2015 Aug 15;61 Suppl 1(suppl 1):S25–31.
  • Humphries H, Almond L, Berg A, et al. Development of physiologically-based pharmacokinetic models for standard of care and newer tuberculosis drugs. CPT Pharmacometrics Syst Pharmacol. 2021 Nov;10(11):1382–1395.
  • Riccardi N, Canetti D, Rodari P, et al. Tuberculosis and pharmacological interactions: a narrative review. Curr Res Pharmacol Drug Discov. 2021;2:100007.
  • Alffenaar JC, Gumbo T, Dooley KE, et al. Integrating pharmacokinetics and pharmacodynamics in operational research to end tuberculosis. Clin Infect Dis. 2020 Apr 10;70(8):1774–1780.
  • Garcia-Cremades M, Solans BP, Strydom N, et al. Emerging therapeutics, technologies, and drug development strategies to address patient nonadherence and improve tuberculosis treatment. Annu Rev Pharmacol Toxicol. 2022 Jan 6;62(1):197–210.
  • Marino S, Kirschner DE. A multi-compartment hybrid computational model predicts key roles for dendritic cells in tuberculosis infection. Computation (Basel). 2016;4(4). DOI: 10.3390/computation4040039.
  • Warsinske HC, Pienaar E, Linderman JJ, et al. Deletion of TGF-beta1 increases bacterial clearance by cytotoxic T cells in a tuberculosis granuloma model. Front Immunol. 2017;8:1843.
  • Pienaar E, Sarathy J, Prideaux B, et al. Comparing efficacies of moxifloxacin, levofloxacin and gatifloxacin in tuberculosis granulomas using a multi-scale systems pharmacology approach. PLoS Comput Biol. 2017 Aug;13(8):e1005650.
  • Marino S, Hult C, Wolberg P, et al. The role of dimensionality in understanding granuloma formation. Computation (Basel). 2018 Dec;6(4). doi:10.3390/computation6040058
  • Hult C, Mattila JT, Gideon HP, et al. Neutrophil dynamics affect Mycobacterium tuberculosis granuloma outcomes and dissemination. Front Immunol. 2021;12:712457.
  • Cicchese JM, Sambarey A, Kirschner D, et al. A multi-scale pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of tuberculosis drugs. Sci Rep. 2021 Mar 11;11(1):5643.
  • Gumbo T, Pasipanodya JG, Nuermberger E, et al. Correlations between the hollow fiber model of tuberculosis and therapeutic events in tuberculosis patients: learn and confirm. Clin Infect Dis. 2015 Aug 15;61 Suppl 1(suppl 1):S18–24.
  • Parish T. In vitro drug discovery models for Mycobacterium tuberculosis relevant for host infection. Expert Opin Drug Discov. 2020 Mar;15(3):349–358.
  • Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol. 2022 Apr 27;20(11):685–701.
  • Russell DG, VanderVen BC, Lee W, et al. Mycobacterium tuberculosis wears what it eats. Cell Host Microbe. 2010 Jul 22;8(1):68–76.
  • VanderVen BC, Fahey RJ, Lee W, et al. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium’s metabolism is constrained by the intracellular environment. PLoS Pathog. 2015 Feb;11(2):e1004679.
  • Griffin JE, Pandey AK, Gilmore SA, et al. Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol. 2012 Feb 24;19(2):218–227.
  • Guerrini V, Prideaux B, Blanc L, et al. Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathog. 2018 Aug;14(8):e1007223.
  • Lee W, VanderVen BC, Fahey RJ, et al. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem. 2013 Mar 8;288(10):6788–6800.
  • Lovewell RR, Sassetti CM, VanderVen BC. Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection. Curr Opin Microbiol. 2016 Feb;29:30–36.
  • Wilburn KM, Fieweger RA, VanderVen BC. Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis. Pathog Dis. 2018 Mar 1;76(2). DOI:10.1093/femspd/fty021.
  • Miner MD, Chang JC, Pandey AK, et al. Role of cholesterol in Mycobacterium tuberculosis infection. Indian J Exp Biol. 2009 Jun;47(6):407–411.
  • Baker JJ, Dechow SJ, Abramovitch RB. Acid fasting: modulation of Mycobacterium tuberculosis metabolism at acidic pH. Trends Microbiol. 2019 Nov;27(11):942–953.
  • Tarshis MS, Weed WA Jr. Lack of significant in vitro sensitivity of Mycobacterium tuberculosis to pyrazinamide on three different solid media. Am Rev Tuberc. 1953 Mar;67(3):391–395.
  • McDermott W, Tompsett R. Activation of pyrazinamide and nicotinamide in acidic environments in vitro. Am Rev Tuberc. 1954 Oct;70(4):748–754.
  • Lamont EA, Dillon NA, Baughn AD. The bewildering antitubercular action of pyrazinamide. Microbiol Mol Biol Rev. 2020 May 20;84(2). DOI:10.1128/MMBR.00070-19.
  • Daniel J, Maamar H, Deb C, et al. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 2011 Jun;7(6):e1002093.
  • Guirado E, Schlesinger LS, Kaplan G. Macrophages in tuberculosis: friend or foe. Semin Immunopathol. 2013 Sep;35(5):563–583.
  • Giraud-Gatineau A, Coya JM, Maure A, et al. The antibiotic bedaquiline activates host macrophage innate immune resistance to bacterial infection. Elife. 2020 May 4;9. DOI:10.7554/eLife.55692
  • Cole ST. Inhibiting Mycobacterium tuberculosis within and without. Philos Trans R Soc Lond B Biol Sci. 2016 Nov 5;371(1707):20150506.
  • Urtti A, Baik J, Rosania GR. Macrophages sequester clofazimine in an intracellular liquid crystal-like supramolecular organization. PLoS ONE. 2012;7(10). DOI:10.1371/journal.pone.0041410
  • Greenwood DJ, Dos Santos MS, Huang S, et al. Subcellular antibiotic visualization reveals a dynamic drug reservoir in infected macrophages. Science. 2019 Jun 28;364(6447):1279–1282.
  • Silva A, Lee B-Y, Clemens DL, et al. Output-driven feedback system control platform optimizes combinatorial therapy of tuberculosis using a macrophage cell culture model. Proc Nat Acad Sci. 2016;113(15):E2172–E2179.
  • Horwitz MA, Clemens DL, Lee BY. AI‐enabled parabolic response surface approach identifies ultra short‐course near‐universal TB drug regimens. Adv Ther. 2019;3(4):1900086.
  • Lee BY, Clemens DL, Silva A, et al. Drug regimens identified and optimized by output-driven platform markedly reduce tuberculosis treatment time. Nat Commun. 2017 Jan 24;8(1):14183.
  • Lanoix JP, Ioerger T, Ormond A, et al. Selective inactivity of pyrazinamide against tuberculosis in C3HeB/FeJ mice is best explained by neutral pH of caseum. Antimicrob Agents Chemother. 2016 Feb;60(2):735–743.
  • Gold B, Nathan C. Targeting phenotypically tolerant Mycobacterium tuberculosis. Microbiol Spectr. 2017 Jan;5(1). DOI:10.1128/microbiolspec.TBTB2-0031-2016.
  • Gold B, Roberts J, Ling Y, et al. Rapid, semiquantitative assay to discriminate among compounds with activity against replicating or nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2015 Oct;59(10):6521–6538.
  • Gold B, Warrier T, Nathan C. A multi-stress model for high throughput screening against non-replicating Mycobacterium tuberculosis. Methods Mol Biol. 2015;1285:293–315. * Multi. * Multistress model amenable to systematic screening of compounds and combinations.
  • Wayne LG. Dynamics of submerged growth of Mycobacterium tuberculosis under aerobic and microaerophilic conditions. Am Rev Respir Dis. 1976 Oct;114(4):807–811.
  • Sohaskey CD. Nitrate enhances the survival of Mycobacterium tuberculosis during inhibition of respiration. J Bacteriol. 2008;190(8):2981–2986.
  • Cunningham-Bussel A, Zhang T, Nathan CF. Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression. Proc Natl Acad Sci U S A. 2013;110(45):E4256–E4265.
  • Larkins-Ford J, Greenstein T, Van N, et al. Systematic measurement of combination-drug landscapes to predict in vivo treatment outcomes for tuberculosis. Cell Syst. 2021 Nov 17;12(11):1046–1063 e7.
  • Deb C, Lee CM, Dubey VS, et al. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One. 2009 Jun 29;4(6):e6077.
  • Larkins-Ford J, Degefu YN, Van N, et al. Design principles to assemble drug combinations for effective tuberculosis therapy using interpretable pairwise drug response measurements. Cell Rep Med. 2022 Sep 20;3(9):100737.
  • Gumbo T, Louie A, Deziel Mark R, et al. Selection of a moxifloxacin dose that suppresses drug resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling. J Infect Dis. 2004;190(9):1642–1651.
  • Cavaleri M, Manolis E. Hollow fiber system model for tuberculosis: the European medicines agency experience. Clin Infect Dis. 2015;61(suppl 1):S1–S4.
  • Pasipanodya JG, Nuermberger E, Romero K, et al. Systematic analysis of hollow fiber model of tuberculosis experiments. Clin Infect Dis. 2015 Aug 15;61 Suppl 1(suppl 1):S10–7.
  • Mason AB, Dartois V. Drug sensitivity testing of Mycobacterium tuberculosis growing in a hollow fiber bioreactor. Methods Mol Biol. 2021;2314:715–731.
  • Stein C, Makarewicz O, Bohnert JA, et al. Three dimensional checkerboard synergy analysis of colistin, meropenem, tigecycline against multidrug-resistant clinical Klebsiella pneumonia isolates. PLoS One. 2015;10(6):e0126479.
  • Cokol M, Kuru N, Bicak E, et al. Efficient measurement and factorization of high-order drug interactions in Mycobacterium tuberculosis. Sci Adv. 2017;3(10):e1701881.
  • Kehe J, Kulesa A, Ortiz A, et al. Massively parallel screening of synthetic microbial communities. Proc Nat Acad Sci. 2019;116(26):12804–12809.
  • Schön T, Köser CU, Werngren J, et al. What is the role of the EUCAST reference method for MIC testing of the Mycobacterium tuberculosis complex? Clin Microbiol Infect. 2020;26(11):1453–1455.
  • Schön T, Werngren J, Machado D, et al. Multicentre testing of the EUCAST broth microdilution reference method for MIC determination on Mycobacterium tuberculosis. Clin Microbiol Infect. 2021;27(2):288.e1–288.e4.
  • Palomino JC, Martin A, Camacho M, et al. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2002 Aug;46(8):2720–2722.
  • Martin A, Camacho M, Portaels F, et al. Resazurin microtiter assay plate testing of Mycobacterium tuberculosis susceptibilities to second-line drugs: rapid, simple, and inexpensive method. Antimicrob Agents Chemother. 2003;47(11):3616–3619.
  • Taneja NK, Tyagi JS. Resazurin reduction assays for screening of anti-tubercular compounds against dormant and actively growing Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis. J Antimicrob Chemother. 2007;60(2):288–293.
  • Queval CJ, Song OR, Delorme V, et al. A microscopic phenotypic assay for the quantification of intracellular mycobacteria adapted for high-throughput/high-content screening. J Vis Exp. 2014 Jan;17(83):e51114.
  • Stanley SA, Barczak AK, Silvis MR, et al. Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth. PLoS Pathog. 2014 Feb;10(2):e1003946.
  • Sorrentino F, Gonzalez Del Rio R, Zheng X, et al. Development of an intracellular screen for new compounds able to inhibit Mycobacterium tuberculosis growth in human macrophages. Antimicrob Agents Chemother. 2016 Jan;60(1):640–645.
  • Rodrigues Felix C, Gupta R, Geden S, et al. Selective killing of dormant Mycobacterium tuberculosis by marine natural products. Antimicrob Agents Chemother. 2017 Aug;61(8). doi:10.1128/AAC.00743-17.
  • Andreu N, Zelmer A, Fletcher T, et al. Optimisation of bioluminescent reporters for use with mycobacteria. PLoS One. 2010 May 24;5(5):e10777.
  • Early JV, Mullen S, Parish T. A rapid, low pH, nutrient stress, assay to determine the bactericidal activity of compounds against non-replicating Mycobacterium tuberculosis. PLoS One. 2019;14(10):e0222970.
  • Sharma S, Gelman E, Narayan C, et al. Simple and rapid method to determine antimycobacterial potency of compounds by using autoluminescent Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014 Oct;58(10):5801–5808.
  • Zhang T, Li S-Y, Nuermberger EL. Autoluminescent Mycobacterium tuberculosis for rapid, real-time, non-invasive assessment of drug and vaccine efficacy. PLOS ONE. 2012;7(1):e29774.
  • Walter ND, Born SEM, Robertson GT, et al. Mycobacterium tuberculosis precursor rRNA as a measure of treatment-shortening activity of drugs and regimens. Nat Commun. 2021;12(1). DOI:10.1038/s41467-021-22833-6
  • Wayne LG, Sramek HA. Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1994 Sep;38(9):2054–2058.
  • Pethe K, Sequeira PC, Agarwalla S, et al. A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nat Commun. 2010 Aug 24;1(1):57.
  • Drusano GL, Kim S, Almoslem M, et al. The funnel: a screening technique for identifying optimal two-drug combination chemotherapy regimens. Antimicrob Agents Chemother. 2021 Jan 20;65(2). doi:10.1128/AAC.02172-20.
  • Sarathy JP, Liang HH, Weiner D, et al. An in vitro caseum binding assay that predicts drug penetration in tuberculosis lesions. J Vis Exp. 2017 May;8(123):55559.
  • Macalino SJY, Billones JB, Organo VG, et al. In silico strategies in tuberculosis drug discovery. Molecules. 2020 Feb 4;25(3):665.
  • Singh R, Ramachandran V, Shandil R, et al. In silico-based high-throughput screen for discovery of novel combinations for tuberculosis treatment. Antimicrob Agents Chemother. 2015;59(9):5664–5674.
  • Srinivas V, Ruiz RA, Pan M, et al. Transcriptome signature of cell viability predicts drug response and drug interaction in Mycobacterium tuberculosis. Cell Rep Methods. 2021 Dec 20;1(8):None.
  • Rock J, Kline KA. Tuberculosis drug discovery in the CRISPR era. PLoS Pathog. 2019 Sep;15(9):e1007975.
  • Bosch B, DeJesus MA, Poulton NC, et al., Genome-wide gene expression tuning reveals diverse vulnerabilities of M. tuberculosis. Cell. 2021;184(17):4579–4592.e24. .
  • Johnson EO, LaVerriere E, Office E, et al. Large-scale chemical-genetics yields new M. tuberculosis inhibitor classes. Nature. 2019 Jul;571(7763):72–78.
  • Doran JL, Pang Y, Mdluli KE, et al. Mycobacterium tuberculosis efpA encodes an efflux protein of the QacA transporter family. Clin Diagn Lab Immunol. 1997 Jan;4(1):23–32.
  • Johnson EO, Office E, Kawate T, et al. Large-scale chemical-genetic strategy enables the design of antimicrobial combination chemotherapy in mycobacteria. ACS Infect Dis. 2020 Jan 10;6(1):56–63.
  • Rai D, Mehra S. The mycobacterial efflux pump EfpA can induce high drug tolerance to many antituberculosis drugs, including moxifloxacin, in Mycobacterium smegmatis. Antimicrob Agents Chemother. 2021 Oct 18;65(11):e0026221.
  • Ma S, Jaipalli S, Larkins-Ford J, et al. Transcriptomic signatures predict regulators of drug synergy and clinical regimen efficacy against tuberculosis. mBio. 2019 Nov 12;10(6). doi:10.1128/mBio.02627-19.
  • Aldridge BB, Barros-Aguirre D, Barry CE 3rd, et al. The tuberculosis drug accelerator at year 10: what have we learned? Nat Med. 2021 Aug;27(8):1333–1337.