347
Views
0
CrossRef citations to date
0
Altmetric
Review

Glioblastoma treatment slowly moves toward change: novel druggable targets and translational horizons in 2022

, , , ORCID Icon, & ORCID Icon
Pages 269-286 | Received 10 Aug 2022, Accepted 25 Jan 2023, Published online: 16 Feb 2023

References

  • Wirsching HG, Galanis E, Weller M. Glioblastoma. Handb Clin Neurol. 2016;134:381–397.
  • Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231–1251.
  • Tosoni A, Gatto L, Franceschi E, et al. Association between socioeconomic status and survival in glioblastoma: an Italian single-centre prospective observational study. Eur J Cancer. 2021 Mar;145:171–178.
  • Yan G, Wang Y, Chen J, et al. Advances in drug development for targeted therapies for glioblastoma. Med Res Rev. 2020 Sep;40(5):1950–1972.
  • Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014 Jun 20;344(6190):1396–1401.
  • McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016 Mar 25;351(6280):1463–1469.
  • Touat M, Li YY, Boynton AN, et al. Mechanisms and therapeutic implications of hypermutation in gliomas. Nature. 2020 Apr;580(7804):517–523.
  • Wu W, Klockow JL, Zhang M, et al. Glioblastoma multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol Res. 2021 Sep;171:105780.
  • Brennan CW, Verhaak RG, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462–477.
  • Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008 Oct 23;455(7216):1061–1068.
  • Liu A, Hou C, Chen H, et al. Genetics and Epigenetics of Glioblastoma: applications and Overall Incidence of IDH1 Mutation. Front Oncol. 2016;6:16.
  • Philbrick BD, Adamson DC. Early clinical trials of Toca 511 and Toca FC show a promising novel treatment for recurrent malignant glioma. Expert Opin Investig Drugs. 2019 Mar;28(3):207–216.
  • Jovčevska I. Sequencing the next generation of glioblastomas. Crit Rev Clin Lab Sci. 2018 Jun;55(4):264–282.
  • Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010 Jan 19;17(1):98–110.
  • Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol. 2019 Sep;20(9):1100–1109.
  • Qazi MA, Vora P, Venugopal C, et al. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol. 2017 Jul 1;28(7):1448–1456.
  • Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005 Mar 10;352(10):987–996.
  • Stupp R, Wong ET, Kanner AA, et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer. 2012 Sep;48(14):2192–2202.
  • Stupp R, Taillibert S, Kanner A, et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: a Randomized Clinical Trial. Jama. 2017 Dec 19;318(23):2306–2316.
  • Lazaridis L, Schäfer N, Teuber-Hanselmann S, et al. Tumour Treating Fields (TTFields) in combination with lomustine and temozolomide in patients with newly diagnosed glioblastoma. J Cancer Res Clin Oncol. 2020 Mar;146(3):787–792.
  • Giladi M, Schneiderman RS, Voloshin T, et al. Mitotic Spindle Disruption by Alternating Electric Fields Leads to Improper Chromosome Segregation and Mitotic Catastrophe in Cancer Cells. Sci Rep. 2015 Dec;11(5):18046.
  • Kirson ED, Dbalý V, Tovarys F, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10152–10157.
  • Germano IM, Ziu M, Wen P, et al. Congress of Neurological Surgeons systematic review and evidence-based guidelines update on the role of cytotoxic chemotherapy and other cytotoxic therapies in the management of progressive glioblastoma in adults. J Neurooncol. 2022 Jun;158(2):225–253.
  • Kassubek R, Mathieu R. First Report of Tumor Treating Fields (TTFields) Therapy for Glioblastoma in Comorbidity with Multiple Sclerosis. Brain Sci. 2022 Apr 13;12(4):499.
  • Ram Z, Kim CY, Hottinger AF, et al. Efficacy and Safety of Tumor Treating Fields (TTFields) in Elderly Patients with Newly Diagnosed Glioblastoma: subgroup Analysis of the Phase 3 EF-14 Clinical Trial. Front Oncol. 2021;11:671972.
  • Ahir BK, Engelhard HH, Lakka SS. Tumor Development and Angiogenesis in Adult Brain Tumor: glioblastoma. Mol Neurobiol. 2020 May;57(5):2461–2478.
  • Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009 Oct 1;27(28):4733–4740.
  • Kreisl TN, Kim L, Moore K, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009 Feb 10;27(5):740–745.
  • Taal W, Oosterkamp HM, Walenkamp AM, et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol. 2014 Aug;15(9):943–953.
  • Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014 Feb 20;370(8):709–722.
  • Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014 Feb 20;370(8):699–708.
  • Brandes AA, Gil-Gil M, Saran F, et al. A Randomized Phase II Trial (TAMIGA) Evaluating the Efficacy and Safety of Continuous Bevacizumab Through Multiple Lines of Treatment for Recurrent Glioblastoma. Oncologist. 2019 Apr;24(4):521–528.
  • Shurin GV, Ma Y, Shurin MR. Immunosuppressive mechanisms of regulatory dendritic cells in cancer. Cancer Microenviron. 2013 Aug;6(2):159–167.
  • Dongpo S, Zhengyao Z, Xiaozhuo L, et al. Efficacy and Safety of Bevacizumab Combined with Other Therapeutic Regimens for Treatment of Recurrent Glioblastoma: a Network Meta-analysis. World Neurosurg. 2022 Apr;160:e61–e79.
  • Lombardi G, De Salvo GL, Brandes AA, et al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2019 Jan;20(1):110–119.
  • Carter T, Shaw H, Cohn-Brown D, et al. Ipilimumab and Bevacizumab in Glioblastoma. Clin Oncol (R Coll Radiol). 2016 Oct;28(10):622–626.
  • Preusser M, Lim M, Hafler DA, et al. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol. 2015 Sep;11(9):504–514.
  • Reardon DA, Brandes AA, Omuro A, et al. Effect of Nivolumab vs Bevacizumab in Patients With Recurrent Glioblastoma: the CheckMate 143 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020 Jul 1;6(7):1003–1010.
  • Omuro A, Brandes AA, Carpentier AF, et al. Radiotherapy Combined With Nivolumab or Temozolomide for Newly Diagnosed Glioblastoma With Unmethylated MGMT Promoter: an International Randomized Phase 3 Trial. Neuro Oncol. 2023Apr;25(1):123–134.
  • Lim M, Weller M, Idbaih A, et al. Phase 3 Trial of Chemoradiotherapy With Temozolomide Plus Nivolumab or Placebo for Newly Diagnosed Glioblastoma With Methylated MGMT Promoter. Neuro Oncol. 2022 May;24(11):1935–1949.
  • Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med. 2019 Mar;25(3):470–476.
  • Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019 Mar;25(3):477–486.
  • Rong L, Li N, Zhang Z. Emerging therapies for glioblastoma: current state and future directions. J Exp Clin Cancer Res. 2022 Apr 15;41(1):142.
  • Lukas RV, Rodon J, Becker K, et al. Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma. J Neurooncol. 2018 Nov;140(2):317–328.
  • Chen YP, Zhang Y, Lv JW, et al. Genomic Analysis of Tumor Microenvironment Immune Types across 14 Solid Cancer Types: immunotherapeutic Implications. Theranostics. 2017;7(14):3585–3594.
  • Gatto L, Franceschi E, Tosoni A, et al. Hypermutation as a potential predictive biomarker of immunotherapy efficacy in high-grade gliomas: a broken dream? Immunotherapy. 2022 Jul;14(10):799–813.
  • Chen X, Fan X, Zhao C, et al. Molecular subtyping of glioblastoma based on immune-related genes for prognosis. Sci Rep. 2020 Sep 23;10(1):15495.
  • Desland FA, Hormigo A. The CNS and the Brain Tumor Microenvironment: implications for Glioblastoma Immunotherapy. Int J Mol Sci. 2020 Oct 5;21(19):19.
  • Singh K, Hotchkiss KM, Patel KK, et al. Enhancing T Cell Chemotaxis and Infiltration in Glioblastoma. Cancers (Basel). 2021 Oct 26;13(21):21.
  • Chen Z, Hambardzumyan D. Immune Microenvironment in Glioblastoma Subtypes. Front Immunol. 2018;9:1004.
  • Zhai L, Ladomersky E, Lauing KL, et al. Infiltrating T Cells Increase IDO1 Expression in Glioblastoma and Contribute to Decreased Patient Survival. Clin Cancer Res. 2017 Nov 1;23(21):6650–6660.
  • Han S, Ma E, Wang X, et al. Rescuing defective tumor-infiltrating T-cell proliferation in glioblastoma patients. Oncol Lett. 2016 Oct;12(4):2924–2929.
  • Di Nunno V, Franceschi E, Tosoni A, et al. Glioblastoma Microenvironment: from an Inviolable Defense to a Therapeutic Chance. Front Oncol. 2022;12:852950.
  • Ma T, Hu C, Lal B, et al. Reprogramming Transcription Factors Oct4 and Sox2 Induce a BRD-Dependent Immunosuppressive Transcriptome in GBM-Propagating Cells. Cancer Res. 2021 May 1;81(9):2457–2469.
  • Gieryng A, Pszczolkowska D, Walentynowicz KA, et al. Immune microenvironment of gliomas. Lab Invest. 2017 May;97(5):498–518.
  • Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015 Apr 3;348(6230):74–80.
  • Mantovani A, Marchesi F, Malesci A, et al. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017 Jul;14(7):399–416.
  • Gatto L, Franceschi E, Di Nunno V, et al. and novel CAR-based therapies to fight the immune evasion of glioblastoma: gutta cavat lapidem. Expert Rev Anticancer Ther. 2021 Dec;21(12):1333–1353.
  • Komohara Y, Ohnishi K, Kuratsu J, et al. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol. 2008 Sep;216(1):15–24.
  • Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011 Aug 10;3(95):95ra73.
  • Niedbała M, Malarz K, Sharma G, et al. Glioblastoma: pitfalls and Opportunities of Immunotherapeutic Combinations. Onco Targets Ther. 2022;15:437–468.
  • Brown NF, Carter TJ, Ottaviani D, et al. Harnessing the immune system in glioblastoma. Br J Cancer. 2018 Nov;119(10):1171–1181.
  • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012 Mar 22;12(4):253–268.
  • Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J Med. 2017 Dec 28;377(26):2531–2544.
  • Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018 Feb 1;378(5):439–448.
  • Mullard A. FDA approves first CAR T therapy. Nat Rev Drug Discov. 2017 Sep 29;16(10):669.
  • Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature. 2017 May 24;545(7655):423–431.
  • Soler DC, Kerstetter-Fogle A, McCormick TS, et al. Using chimeric antigen receptor T-cell therapy to fight glioblastoma multiforme: past, present and future developments. J Neurooncol. 2022 Jan;156(1):81–96.
  • Golinelli G, Grisendi G, Prapa M, et al. Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors. Cancer Gene Ther. 2020 Aug;27(7–8):558–570.
  • Prapa M, Caldrer S, Spano C, et al. A novel anti-GD2/4-1BB chimeric antigen receptor triggers neuroblastoma cell killing. Oncotarget. 2015 Sep 22;6(28):24884–24894.
  • Prapa M, Chiavelli C, Golinelli G, et al. GD2 CAR T cells against human glioblastoma. NPJ Precis Oncol. 2021 Oct 27;5(1):93.
  • Zhao Z, Condomines M, van der Stegen SJC, et al. Structural Design of Engineered Costimulation Determines Tumor Rejection Kinetics and Persistence of CAR T Cells. Cancer Cell. 2015 Oct 12;28(4):415–428.
  • Hombach A, Wieczarkowiecz A, Marquardt T, et al. Tumor-specific T cell activation by recombinant immunoreceptors: CD3 zeta signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 zeta signaling receptor molecule. J Immunol. 2001 Dec 1;167(11):6123–6131.
  • van der Stegen SJ, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 2015 Jul;14(7):499–509.
  • Chen D, Yang J. Development of novel antigen receptors for CAR T-cell therapy directed toward solid malignancies. Transl Res. 2017 Sep;187:11–21.
  • Newick K, O’Brien S, Moon E, et al. CAR T Cell Therapy for Solid Tumors. Annu Rev Med. 2017 Jan;14(68):139–152.
  • Guedan S, Ruella M, June CH. Emerging Cellular Therapies for Cancer. Annu Rev Immunol. 2019 Apr;26(37):145–171.
  • Bagley SJ, Desai AS, Linette GP, et al. CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro Oncol. 2018 Oct 9;20(11):1429–1438.
  • O’Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017 Jul 19;9(399):399.
  • Goff SL, Morgan RA, Yang JC, et al. Pilot Trial of Adoptive Transfer of Chimeric Antigen Receptor-transduced T Cells Targeting EGFRvIII in Patients With Glioblastoma. J Immunother. 2019 May;42(4):126–135.
  • Brown CE, Badie B, Barish ME, et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015 Sep 15;21(18):4062–4072.
  • Ahmed N, Salsman VS, Kew Y, et al. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res. 2010 Jan 15;16(2):474–485.
  • Brown CE, Alizadeh D, Starr R, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016 Dec 29;375(26):2561–2569.
  • Ahmed N, Brawley V, Hegde M, et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 2017 Aug 1;3(8):1094–1101.
  • Choi BD, Yu X, Castano AP, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. 2019 Sep;37(9):1049–1058.
  • Abbott RC, Verdon DJ, Gracey FM, et al. Novel high-affinity EGFRvIII-specific chimeric antigen receptor T cells effectively eliminate human glioblastoma. Clin Transl Immunology. 2021;10(5):e1283.
  • Majzner RG, Ramakrishna S, Yeom KW, et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature. 2022 Mar;603(7903):934–941.
  • Akhavan D, Alizadeh D, Wang D, et al. CAR T cells for brain tumors: lessons learned and road ahead. Immunol Rev. 2019 Jul;290(1):60–84.
  • Gatto L, Di Nunno V, Franceschi E, et al. Pharmacotherapeutic treatment of glioblastoma: where are we to date? Drugs. 2022 Apr;82(5):491–510.
  • Georgiadis C, Preece R, Nickolay L, et al. Long terminal repeat CRISPR-CAR-coupled “universal” t cells mediate potent anti-leukemic effects. Mol Ther. 2018 May 2;26(5):1215–1227.
  • Zhao J, Lin Q, Song Y, et al. CARs, universal T cells, and universal CAR T cells. J Hematol Oncol. 2018 Nov 27;11(1):132.
  • Sutherland AR, Owens MN, Geyer CR. Modular Chimeric Antigen Receptor Systems for Universal CAR T cell retargeting. Int J Mol Sci. 2020 Sep 30;21:19.
  • Li L, Zhu X, Qian Y, et al. Chimeric Antigen Receptor T-Cell Therapy in Glioblastoma: current and Future. Front Immunol. 2020;11:594271.
  • Lucas A, Eberwine JH, Bagley SJ, et al. “Zooming in” on Glioblastoma: understanding Tumor Heterogeneity and Its Clinical Implications in the Era of Single-Cell Ribonucleic Acid Sequencing. Neurosurgery. 2021 Oct 13;89(5):E262–e263.
  • Majzner RG, Mackall CL. Tumor Antigen Escape from CAR T-cell Therapy. Cancer Discov. 2018 Oct;8(10):1219–1226.
  • Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018 Jan;24(1):20–28.
  • Cozzi S, Najafi M, Gomar M, et al. Delayed Effect of Dendritic Cells Vaccination on Survival in Glioblastoma: a Systematic Review and Meta-Analysis. Curr Oncol. 2022 Feb 4;29(2):881–891.
  • Liau LM, Ashkan K, Tran DD, et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018 May 29;16(1):142.
  • Zhang Q, Liu F. Advances and potential pitfalls of oncolytic viruses expressing immunomodulatory transgene therapy for malignant gliomas. Cell Death Dis. 2020 Jun 25;11(6):485.
  • Patel DM, Foreman PM, Nabors LB, et al. Design of a phase I clinical trial to evaluate M032, a genetically engineered HSV-1 expressing IL-12, in patients with recurrent/progressive glioblastoma multiforme, anaplastic astrocytoma, or gliosarcoma. Hum Gene Ther Clin Dev. 2016 Jun;27(2):69–78.
  • Bin Umair M, Akusa FN, Kashif H, et al. Viruses as tools in gene therapy, vaccine development, and cancer treatment. Arch Virol. 2022 Jun;167(6):1387–1404.
  • Sheridan C. First oncolytic virus edges towards approval in Surprise vote. Nat Biotechnol. 2015 Jun;33(6):569–570.
  • Cloughesy TF, Landolfi J, Vogelbaum MA, et al. Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC. Neuro Oncol. 2018 Sep 3;20(10):1383–1392.
  • Lang FF, Conrad C, Gomez-Manzano C, et al. Phase I Study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol. 2018 May 10;36(14):1419–1427.
  • Cloughesy TF, Landolfi J, Hogan DJ, et al. Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci Transl Med. 2016 Jun 1;8(341):341ra75.
  • Forsyth P, Roldán G, George D, et al. A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas. Mol Ther. 2008 Mar;16(3):627–632.
  • Singh B, Coffey RJ. Trafficking of epidermal growth factor receptor ligands in polarized epithelial cells. Annu Rev Physiol. 2014;76(1):275–300.
  • Bolcaen J, Nair S, Driver CHS, et al. Novel receptor tyrosine kinase pathway inhibitors for targeted radionuclide therapy of glioblastoma. Pharmaceuticals (Basel). 2021 Jun 29;14(7):626.
  • Mayer BJ. The discovery of modular binding domains: building blocks of cell signalling. Nat Rev Mol Cell Biol. 2015 Nov;16(11):691–698.
  • Oprita A, Baloi SC, Staicu GA, et al. Updated insights on EGFR signaling pathways in glioma. Int J Mol Sci. 2021 Jan 8;22(2):587.
  • Lau SC, Chooback N, Ho C, et al. Outcome differences between first- and second-generation EGFR inhibitors in advanced egfr mutated NSCLC in a large population-based cohort. Clin Lung Cancer. 2019 Sep;20(5):e576–e583.
  • Brown CE, Badie B, Barish ME, et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015 Sep 15;21(18):4062–4072.
  • Rich JN, Reardon DA, Peery T, et al. Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol. 2004 Jan 1;22(1):133–142.
  • Karpel-Massler G, Westhoff MA, Kast RE, et al. Erlotinib in glioblastoma: lost in translation? Anticancer Agents Med Chem. 2011 Oct;11(8):748–755.
  • Thiessen B, Stewart C, Tsao M, et al. A phase I/II trial of GW572016 (lapatinib) in recurrent glioblastoma multiforme: clinical outcomes, pharmacokinetics and molecular correlation. Cancer Chemother Pharmacol. 2010 Jan;65(2):353–361.
  • Brandes AA, Franceschi E, Tosoni A, et al. Epidermal growth factor receptor inhibitors in neuro-oncology: hopes and disappointments. Clin Cancer Res. 2008 Feb 15;14(4):957–960.
  • Reardon DA, Nabors LB, Mason WP, et al. Phase I/randomized phase II study of Afatinib, an irreversible ErbB family blocker, with or without protracted temozolomide in adults with recurrent glioblastoma. Neuro Oncol. 2015 Mar;17(3):430–439.
  • Makhlin I, Salinas RD, Zhang D, et al. Clinical activity of the EGFR tyrosine kinase inhibitor osimertinib in EGFR-mutant glioblastoma. CNS Oncol. 2019 Nov 1;8(3):Cns43.
  • Chagoya G, Kwatra SG, Nanni CW, et al. Efficacy of osimertinib against EGFRvIII+ glioblastoma. Oncotarget. 2020 Jun 2;11(22):2074–2082.
  • Subbiah V, Khawaja MR, Hong DS, et al. First-in-human trial of multikinase VEGF inhibitor regorafenib and anti-EGFR antibody cetuximab in advanced cancer patients. JCI Insight. 2017 Apr 20;2(8). DOI:10.1172/jci.insight.90380.
  • Du XJ, Li XM, Cai LB, et al. Efficacy and safety of nimotuzumab in addition to radiotherapy and temozolomide for cerebral glioblastoma: a phase II multicenter clinical trial. J Cancer. 2019;10(14):3214–3223.
  • Narita Y, Muragaki Y, Kagawa N, et al. Safety and efficacy of depatuxizumab mafodotin in Japanese patients with malignant glioma: a nonrandomized, phase 1/2 trial. Cancer Sci. 2021 Dec;112(12):5020–5033.
  • Reardon DA, Desjardins A, Vredenburgh JJ, et al. Rindopepimut with bevacizumab for patients with relapsed EGFRvIII-expressing glioblastoma (react): results of a double-blind randomized phase II Trial. Clin Cancer Res. 2020 Apr 1;26(7):1586–1594.
  • Weller M, Butowski N, Tran DD, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017 Oct;18(10):1373–1385.
  • Zhao HF, Wang J, Shao W, et al. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Mol Cancer. 2017 Jun 7;16(1):100.
  • Tanaka S, Batchelor TT, Iafrate AJ, et al. PIK3CA activating mutations are associated with more disseminated disease at presentation and earlier recurrence in glioblastoma. Acta Neuropathol Commun. 2019 Apr 29;7(1):66.
  • Kim H, Zheng S, Amini SS, et al. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res. 2015 Mar;25(3):316–327.
  • Wang J, Cazzato E, Ladewig E, et al. Clonal evolution of glioblastoma under therapy. Nat Genet. 2016 Jul;48(7):768–776.
  • Colardo M, Segatto M, Di Bartolomeo S. Targeting RTK-PI3K-mTOR axis in gliomas: an update. Int J Mol Sci. 2021 May 5;22(9):9.
  • Koul D, Fu J, Shen R, et al. Antitumor activity of NVP-BKM120–a selective pan class I PI3 kinase inhibitor showed differential forms of cell death based on p53 status of glioma cells. Clin Cancer Res. 2012 Jan 1;18(1):184–195.
  • Wen PY, Touat M, Alexander BM, et al. Buparlisib in patients with recurrent glioblastoma harboring phosphatidylinositol 3-kinase pathway activation: an open-label, multicenter, multi-arm, phase II Trial. J Clin Oncol. 2019 Mar 20;37(9):741–750.
  • McNeill RS, Canoutas DA, Stuhlmiller TJ, et al. Combination therapy with potent PI3K and MAPK inhibitors overcomes adaptive kinome resistance to single agents in preclinical models of glioblastoma. Neuro Oncol. 2017 Oct 19;19(11):1469–1480.
  • Omeljaniuk WJ, Krętowski R, Ratajczak-Wrona W, et al. PI3K/mTOR inhibitor, apitolisib (GDC-0980), inhibits growth and induces apoptosis in human glioblastoma cells. Int J Mol Sci. 2021 Oct 26;22(21):21.
  • Bouchè V, Aldegheri G, Donofrio CA, et al. BRAF signaling inhibition in glioblastoma: which clinical perspectives? Front Oncol. 2021;11:772052.
  • Schreck KC, Grossman SA, Pratilas CABRAF. Mutations and the utility of RAF and MEK inhibitors in primary brain tumors. Cancers (Basel). 2019 Aug 28;11(9):1262.
  • Kaley T, Touat M, Subbiah V, et al. BRAF Inhibition in BRAF(V600)-mutant gliomas: results from the VE-BASKET Study. J Clin Oncol. 2018 Dec 10;36(35):3477–3484.
  • Wen PY, Stein A, van den Bent M, et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 2022 Jan;23(1):53–64.
  • Amatu A, Sartore-Bianchi A, Bencardino K, et al. Tropomyosin receptor kinase (TRK) biology and the role of NTRK gene fusions in cancer. Ann Oncol. 2019 Nov 1;30(Suppl_8):viii5–viii15.
  • Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015 Jan;5(1):25–34.
  • Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018 Dec;15(12):731–747.
  • Tognon CE, Martin MJ, Moradian A, et al. A tripartite complex composed of ETV6-NTRK3, IRS1 and IGF1R is required for ETV6-NTRK3-mediated membrane localization and transformation. Oncogene. 2012 Mar 8;31(10):1334–1340.
  • Vaishnavi A, Schubert L, Rix U, et al. EGFR mediates responses to small-molecule drugs targeting oncogenic fusion kinases. Cancer Res. 2017 Jul 1;77(13):3551–3563.
  • Chen S, Nagel S, Schneider B, et al. A new ETV6-NTRK3 cell line model reveals MALAT1 as a novel therapeutic target - a short report. Cell Oncol (Dordr). 2018 Feb;41(1):93–101.
  • Eguchi M, Eguchi-Ishimae M, Tojo A, et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood. 1999 Feb 15;93(4):1355–1363.
  • Cook PJ, Thomas R, Kannan R, et al. Somatic chromosomal engineering identifies BCAN-NTRK1 as a potent glioma driver and therapeutic target. Nat Commun. 2017 Jul 11;8(1):15987.
  • Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018 Feb 22;378(8):731–739.
  • Doz F, van Tilburg CM, Geoerger B, et al. Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors. Neuro Oncol. 2022 Jun 1;24(6):997–1007.
  • Torrisi F, Minafra L, Cammarata FP, et al. SRC tyrosine kinase inhibitor and X-rays combined effect on glioblastoma cell lines. Int J Mol Sci. 2020 May 30;21(11):3917.
  • Cirotti C, Contadini C, SRC BD. Kinase in glioblastoma news from an old acquaintance. Cancers (Basel). 2020 Jun 12;12(6):1558.
  • Lassman AB, Pugh SL, Gilbert MR, et al. Phase 2 trial of dasatinib in target-selected patients with recurrent glioblastoma (RTOG 0627). Neuro Oncol. 2015 Jul;17(7):992–998.
  • Schiff D, Sarkaria J. Dasatinib in recurrent glioblastoma: failure as a teacher. Neuro Oncol. 2015 Jul;17(7):910–911.
  • Fallacara AL, Zamperini C, Podolski-Renić A, et al. A new strategy for glioblastoma treatment: in vitro and in vivo preclinical characterization of Si306, a pyrazolo[3,4-d]pyrimidine dual Src/P-glycoprotein inhibitor. Cancers (Basel). 2019 Jun 19;11(6):848.
  • Cammarata FP, Torrisi F, Forte GI, et al. Proton therapy and src family kinase inhibitor combined treatments on U87 human glioblastoma multiforme cell line. Int J Mol Sci. 2019 Sep 24;20(19):19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.