107
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Challenges with the discovery of RNA-based therapeutics for flaviviruses

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 371-383 | Received 14 Dec 2021, Accepted 21 Mar 2023, Published online: 30 Mar 2023

References

  • Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol. 2020;5(6):796–812.
  • Pierson TC, Diamond MS. The emergence of Zika virus and its new clinical syndromes. Nature. 2018;560:573–581.
  • Zhao R, Wang M, Cao J, et al. Flavivirus: from structure to therapeutics development. Life (Basel). 2021;11:615.
  • Blahove MR, Carter JR. Flavivirus persistence in wildlife populations. Viruses. 2021;13:2099.
  • Tompa DR, Immanuel A, Srikanth S, et al. Trends and strategies to combat viral infections: a review on FDA approved antiviral drugs. Int j biol macromol. 2021;172:524–541.
  • Kausar S, Said Khan F, Ishaq Mujeeb Ur Rehman M, et al. A review: mechanism of action of antiviral drugs. Int J Immunopathol Pharmacol. 2021;35:20587384211002621.
  • Damase TR, Sukhovershin R, Boada C, et al. The limitless future of RNA therapeutics. Front Bioeng Biotechnol. 2021;9:628137.
  • Meganck RM, Baric RS Developing therapeutic approaches for twenty-first-century emerging infectious viral diseases. Nat Med 2021;27:401–410. 3 10.1038/s41591-021-01282-0
  • Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med. 2017;9(1):60.
  • Winkle M, El-Daly SM, Fabbri M, et al. Noncoding RNA therapeutics — challenges and potential solutions. Nat Rev Drug Discov 2021;20:629–651. 8 10.1038/s41573-021-00219-z
  • Anderson KP, Fox MC, Brown-Driver V, et al. Inhibition of human cytomegalovirus immediate-early gene expression by an antisense oligonucleotide complementary to immediate-early RNA. Antimicrob Agents Chemother. 1996;40(9):2004–2011. DOI:10.1128/AAC.40.9.2004
  • Hua Y, Sahashi K, Hung G, et al. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev. 2010;24(15):1634–1644. DOI:10.1101/gad.1941310
  • Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327:198–201.
  • Zhang L, Li Q, Ding X, et al. Antisense oligonucleotides targeting raf-1 block Japanese encephalitis virus in vitro and in vivo. Nucleic Acid Ther. 2017;27(2):78–86. DOI:10.1089/nat.2016.0626
  • Phumesin P, Junking M, Panya A, et al. Vivo-morpholino oligomers strongly inhibit dengue virus replication and production. Arch Virol. 2018;163(4):867–876. DOI:10.1007/s00705-017-3666-9
  • Jellinek D, Green LS, Bell C, et al. Inhibition of receptor binding by high-affinity RNA ligands to vascular endothelial growth factor. Biochemistry. 1994;33:10450–10456.
  • Jung JI, Han SR, Lee SW. Development of RNA aptamer that inhibits methyltransferase activity of dengue virus. Biotechnol Lett. 2018;40(2):315–324.
  • Han SR, Lee SW. Inhibition of Japanese encephalitis virus (JEV) replication by specific RNA aptamer against JEV methyltransferase. Biochem Biophys Res Commun. 2017;483(1):687–693.
  • Falk SP, Weisblum B. Aptamer displacement screen for flaviviral RNA methyltransferase inhibitors. J Biomol Screen. 2014;19(8):1147–1153.
  • Mello CC, Conte D Jr. Revealing the world of RNA interference. Nature. 2004;431:338–342.
  • Haasnoot J, Westerhout EM, Berkhout B RNA interference against viruses: strike and counterstrike. Nat Biotechnol 2007;25:1435–1443. 12 10.1038/nbt1369
  • Lee HY, Zhou K, Smith AM, et al. Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing. Nucleic Acids Res. 2013;41(13):6568–6576. DOI:10.1093/nar/gkt361
  • Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–366.
  • Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–498.
  • Caplen NJ, Parrish S, Imani F, et al. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A. 2001;98(17):9742–9747. DOI:10.1073/pnas.171251798
  • Bai F, Wang T, Pal U, et al. Use of RNA interference to prevent lethal murine west nile virus infection. J Infect Dis. 2005;191(7):1148–1154. DOI:10.1086/428507
  • Beloor J, Maes N, Ullah I, et al. Small interfering RNA-Mediated control of virus replication in the CNS is therapeutic and enables natural immunity to west nile virus. Cell Host Microbe 2018;23:549–56.e3. 4 10.1016/j.chom.2018.03.001
  • Zhang R, Fu Y, Cheng M, et al. sEvsrvg selectively delivers antiviral siRNA to fetus brain, inhibits ZIKV infection and mitigates ZIKV-induced microcephaly in mouse model. Mol Ther 2022;30:2078–2091. 5 10.1016/j.ymthe.2021.10.009
  • Giulietti M, Righetti A, Cianfruglia L, et al. To accelerate the Zika beat: candidate design for RNA interference-based therapy. Virus Res. 2018;255:133–140.
  • Perez-Mendez M, Zárate-Segura P, Salas-Benito J, et al. Sirna design to silence the 3‘UTR Region of Zika Virus. BioMed Res Int. 2020;2020:6759346.
  • Ong SP, Choo BG, Chu JJ, et al. Expression of vector-based small interfering RNA against West Nile virus effectively inhibits virus replication. Antiviral Res. 2006;72(3):216–223. DOI:10.1016/j.antiviral.2006.06.005
  • Korrapati AB, Swaminathan G, Singh A, et al. Adenovirus Delivered Short Hairpin RNA targeting a conserved site in the 5′ non-translated region inhibits all four serotypes of dengue viruses. PLoS Negl Trop Dis. 2012;6(7):e1735. DOI:10.1371/journal.pntd.0001735
  • Karothia D, Kumar Dash P, Parida M, et al. Vector derived artificial miRNA mediated inhibition of West Nile virus replication and protein expression. Gene. 2020;729:144300.
  • Pacca CC, Severino AA, Mondini A, et al. RNA interference inhibits yellow fever virus replication in vitro and in vivo. Virus Genes. 2009;38:224–231.
  • Karothia D, Dash PK, Parida M, et al. Inhibition of west nile virus replication by bifunctional sirna targeting the NS2A and NS5 conserved region. Curr Gene Ther 2018;18:180–190. 3 10.2174/1566523218666180607091311
  • Nawtaisong P, Keith J, Fraser T, et al. Effective suppression of Dengue fever virus in mosquito cell cultures using retroviral transduction of hammerhead ribozymes targeting the viral genome. Virol J. 2009;6(1):73. DOI:10.1186/1743-422X-6-73
  • Carter JR, Keith JH, Barde PV, et al. Targeting of highly conserved Dengue virus sequences with anti-Dengue virus trans-splicing group I introns. BMC Mol Biol. 2010;11(1):84. DOI:10.1186/1471-2199-11-84
  • Soucek L, Whitfield JR, Sodir NM, et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev. 2013;27(5):504–513. DOI:10.1101/gad.205542.112
  • Janas MM, Schlegel MK, Harbison CE, et al. Selection of GalNAc-conjugated siRnas with limited off-target-driven rat hepatotoxicity. Nat Commun. 2018;9(1):723. DOI:10.1038/s41467-018-02989-4
  • Setten RL, Rossi JJ, Han SP The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 2019;18:421–446. 6 10.1038/s41573-019-0017-4
  • Canton I, Battaglia G. Endocytosis at the nanoscale. Chem Soc Rev. 2012;41(7):2718–2739.
  • Gilleron J, Querbes W, Zeigerer A, et al. Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. 2013;31(7):638–646. DOI:10.1038/nbt.2612
  • Lönn P, Kacsinta AD, Cui XS, et al. Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics. Sci Rep. 2016;6(1):32301. DOI:10.1038/srep32301
  • Wittrup A, Ai A, Liu X, et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat Biotechnol. 2015;33(8):870–876. DOI:10.1038/nbt.3298
  • Sahay G, Querbes W, Alabi C, et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol. 2013;31(7):653–658. DOI:10.1038/nbt.2614
  • Barouch-Bentov R, Einav S. Turning up your nose for a flaviviral encephalitis cure. Cell Host Microbe. 2018;23(4):427–429.
  • Zimmermann TS, Lee AC, Akinc A, et al. Rnai-mediated gene silencing in non-human primates. Nature. 2006;441(7089):111–114. DOI:10.1038/nature04688
  • Nakamura Y, Kogure K, Futaki S, et al. Octaarginine-modified multifunctional envelope-type nano device for siRNA. J Control Release. 2007;119:360–367.
  • Akita H, Noguchi Y, Hatakeyama H, et al. Molecular tuning of a vitamin E-Scaffold pH-Sensitive and reductive cleavable lipid-like material for accelerated in vivo hepatic siRNA Delivery. ACS Biomater Sci Eng. 2015;1(9):834–844. DOI:10.1021/acsbiomaterials.5b00203
  • Akinc A, Zumbuehl A, Goldberg M, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. 2008;26(5):561–569. DOI:10.1038/nbt1402
  • Martins S, Costa-Lima S, Carneiro T, et al. Solid lipid nanoparticles as intracellular drug transporters: an investigation of the uptake mechanism and pathway. Int J Pharm. 2012;430(1–2):216–227. DOI:10.1016/j.ijpharm.2012.03.032
  • Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–345. DOI:10.1038/nbt.1807
  • Garrelfs SF, Frishberg Y, Hulton SA, et al. Lumasiran, an RNAi Therapeutic for Primary Hyperoxaluria Type 1. N Engl J Med. 2021;384(13):1216–1226. DOI:10.1056/NEJMoa2021712
  • Adams D, Gonzalez-Duarte A, O’riordan WD, et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med. 2018;379(1):11–21. DOI:10.1056/NEJMoa1716153
  • Suhr OB, Coelho T, Buades J, et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet J Rare Dis. 2015;10(1):109. DOI:10.1186/s13023-015-0326-6
  • Ma D, Tian S, Baryza J, et al. Reductively Responsive Hydrogel Nanoparticles with Uniform Size, Shape, and Tunable Composition for Systemic siRNA Delivery in vivo. Mol Pharm. 2015;12(10):3518–3526. DOI:10.1021/acs.molpharmaceut.5b00054
  • Ray RM, Hansen AH, Taskova M, et al. Enhanced target cell specificity and uptake of lipid nanoparticles using RNA aptamers and peptides. Beilstein J Org Chem. 2021;17:891–907.
  • Torrecilla J, Del Pozo-Rodríguez A, Apaolaza PS, et al. Solid lipid nanoparticles as non-viral vector for the treatment of chronic hepatitis C by RNA interference. Int J Pharm. 2015;479(1):181–188. DOI:10.1016/j.ijpharm.2014.12.047
  • Tao W, Davide JP, Cai M, et al. Noninvasive imaging of lipid nanoparticle-mediated systemic delivery of small-interfering RNA to the liver. Mol Ther. 2010;18:1657–1666.
  • Zhang C, Ren W, Liu Q, et al. Transportan-derived cell-penetrating peptide delivers siRNA to inhibit replication of influenza virus in vivo. Drug Des Devel Ther. 2019;13:1059–1068.
  • Kulkarni JA, Darjuan MM, Mercer JE, et al. On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA. ACS Nano. 2018;12:4787–4795.
  • Semple SC, Akinc A, Chen J, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28:172–176.
  • Jayaraman M, Ansell SM, Mui BL, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl. 2012;51:8529–8533.
  • Ly S, Navaroli DM, Didiot MC, et al. Visualization of self-delivering hydrophobically modified siRNA cellular internalization. Nucleic Acids Res. 2017;45(1):15–25. DOI:10.1093/nar/gkw1005
  • Belliveau NM, Huft J, Lin PJ, et al. Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for in vivo Delivery of siRNA. Mol Ther Nucleic Acids. 2012;1:e37.
  • Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30(1):16–34.
  • Sledz CA, Holko M, de Veer MJ, et al. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol. 2003;5(9):834–839. DOI:10.1038/ncb1038
  • Sioud M. Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2′-hydroxyl uridines in immune responses. Eur J Immunol. 2006;36(5):1222–1230.
  • Morrissey DV, Lockridge JA, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRnas. Nat Biotechnol. 2005;23(8):1002–1007. DOI:10.1038/nbt1122
  • Judge AD, Bola G, Lee AC, et al. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther. 2006;13(3):494–505. DOI:10.1016/j.ymthe.2005.11.002
  • Mendell JR, Rodino-Klapac LR, Sahenk Z, et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol. 2013;74(5):637–647. DOI:10.1002/ana.23982
  • Cirak S, Arechavala-Gomeza V, Guglieri M, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet. 2011;378(9791):595–605. DOI:10.1016/S0140-6736(11)60756-3
  • Hong DS, Kang YK, Borad M, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 2020;122(11):1630–1637. DOI:10.1038/s41416-020-0802-1
  • Wu Q, Wang X, Ding SW. Viral suppressors of RNA-based viral immunity: host targets. Cell Host Microbe. 2010;8(1):12–15.
  • Li F, Ding SW. Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol. 2006;60(1):503–531.
  • Schnettler E, Sterken MG, Leung JY, et al. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells. J Virol. 2012;86(24):13486–13500. DOI:10.1128/JVI.01104-12
  • Kakumani PK, Ponia SS, Rk S, et al. Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor. J Virol. 2013;87(16):8870–8883. DOI:10.1128/JVI.02774-12
  • Samuel GH, Wiley MR, Badawi A, et al. Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA. Proc Natl Acad Sci U S A. 2016;113(48):13863–13868. DOI:10.1073/pnas.1600544113
  • Kakumani PK, Rajgokul KS, Ponia SS, et al. Dengue NS3, an RNAi suppressor, modulates the human miRNA pathways through its interacting partner. Biochem J. 2015;471(1):89–99. DOI:10.1042/BJ20150445
  • Funk A, Truong K, Nagasaki T, et al. RNA structures required for production of subgenomic flavivirus RNA. J Virol. 2010;84(21):11407–11417. DOI:10.1128/JVI.01159-10
  • Lin KC, Chang HL, Chang RY. Accumulation of a 3′-Terminal Genome Fragment in Japanese Encephalitis Virus-Infected Mammalian and Mosquito Cells. J Virol. 2004;78(10):5133–5138.
  • Pijlman GP, Funk A, Kondratieva N, et al. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe. 2008;4(6):579–591. DOI:10.1016/j.chom.2008.10.007
  • Schuessler A, Funk A, Lazear HM, et al. West Nile virus noncoding subgenomic RNA contributes to viral evasion of the type I interferon-mediated antiviral response. J Virol. 2012;86(10):5708–5718. DOI:10.1128/JVI.00207-12
  • Muñoz-Jordan JL, Sánchez-Burgos GG, Laurent-Rolle M, et al. Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A. 2003;100(24):14333–14338. DOI:10.1073/pnas.2335168100
  • Qiu Y, Xu YP, Wang M, et al. Flavivirus induces and antagonizes antiviral RNA interference in both mammals and mosquitoes. Sci Adv 2020;6:eaax7989. 6 10.1126/sciadv.aax7989
  • Hu WY, Myers CP, Kilzer JM, et al. Inhibition of retroviral pathogenesis by RNA interference. Curr Biol. 2002;12(15):1301–1311. DOI:10.1016/S0960-9822(02)00975-2
  • Westerhout EM, Ter Brake O, Berkhout B. The virion-associated incoming HIV-1 RNA genome is not targeted by RNA interference. Retrovirology. 2006;3:57.
  • Geiss BJ, Pierson TC, Diamond MS. Actively replicating West Nile virus is resistant to cytoplasmic delivery of siRNA. Virol J. 2005;2(1):53.
  • Matzen K, Elzaouk L, Matskevich AA, et al. Rnase H-mediated retrovirus destruction in vivo triggered by oligodeoxynucleotides. Nat Biotechnol. 2007;25(6):669–674. DOI:10.1038/nbt1311
  • Gitlin L, Stone JK, Andino R. Poliovirus escape from RNA interference: short interfering RNA-target recognition and implications for therapeutic approaches. J Virol. 2005;79:1027–1035.
  • Westerhout EM, Ooms M, Vink M, et al. HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res. 2005;33(2):796–804. DOI:10.1093/nar/gki220
  • Boden D, Pusch O, Lee F, et al. Human immunodeficiency virus type 1 escape from RNA interference. J Virol. 2003;77(21):11531–11535. DOI:10.1128/JVI.77.21.11531-11535.2003
  • Wu Z, Xue Y, Wang B, et al. Broad-spectrum antiviral activity of RNA interference against four genotypes of Japanese encephalitis virus based on single microRNA polycistrons. PLoS ONE. 2011;6:e26304.
  • Xie PW, Xie Y, Zhang XJ, et al. Inhibition of Dengue virus 2 replication by artificial micrornas targeting the conserved regions. Nucleic Acid Ther. 2013;23(4):244–252. DOI:10.1089/nat.2012.0405
  • Gubler DJ. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 2002;10(2):100–103.
  • Kauffman EB, Kramer LD. Zika Virus Mosquito Vectors: competence, Biology, and Vector Control. J Infect Dis. 2017;216(suppl_10):S976–s90.
  • Monath TP, Vasconcelos PF. Yellow fever. J Clin Virol. 2015;64:160–173.
  • Ball RL, Bajaj P, Whitehead KA. Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Int J Nanomedicine. 2017;12:305–315.
  • Shirane D, Tanaka H, Nakai Y, et al. Development of an Alcohol Dilution–Lyophilization Method for Preparing Lipid Nanoparticles Containing Encapsulated siRNA. Biol Pharm Bull. 2018;41(8):1291–1294. DOI:10.1248/bpb.b18-00208
  • Muramatsu H, Lam K, Bajusz C, et al. Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine. Mol Ther. 2022;30(5):1941–1951. DOI:10.1016/j.ymthe.2022.02.001
  • Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23(5):1–16.
  • Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med. 2017;377(18):1723–1732. DOI:10.1056/NEJMoa1702752
  • Mercuri E, Darras BT, Chiriboga CA, et al. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. N Engl J Med. 2018;378(7):625–635. DOI:10.1056/NEJMoa1710504
  • Charleston JS, Schnell FJ, Dworzak J, et al. Eteplirsen treatment for Duchenne muscular dystrophy: exon skipping and dystrophin production. Neurology. 2018;90:e2146–54.
  • Cui L, Pereira S, Sonzini S, et al. Development of a high-throughput platform for screening lipid nanoparticles for mRNA delivery. Nanoscale. 2022;14:1480–1491.
  • Abbott TR, Dhamdhere G, Liu Y, et al. Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza. Cell. 2020;181(4):865–76.e12. DOI:10.1016/j.cell.2020.04.020
  • Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications. BMC Bioinf. 2009;10:421.
  • Fakhr E, Zare F, Teimoori-Toolabi L. Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther. 2016;23(4):73–82.
  • Zhou Z, Kennell C, Lee JY, et al. Calcium phosphate-polymer hybrid nanoparticles for enhanced triple negative breast cancer treatment via co-delivery of paclitaxel and miR-221/222 inhibitors. Nanomedicine. 2017;13(2):403–410. DOI:10.1016/j.nano.2016.07.016
  • Nair JK, Attarwala H, Sehgal A, et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc–siRNA conjugates. Nucleic Acids Res. 2017;45(19):10969–10977. DOI:10.1093/nar/gkx818
  • Ahn DG, Lee W, Choi JK, et al. Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication. Antiviral Res. 2011;91(1):1–10. DOI:10.1016/j.antiviral.2011.04.009
  • Zhou J, Lazar D, Li H, et al. Receptor-targeted aptamer-siRNA conjugate-directed transcriptional regulation of HIV-1. Theranostics. 2018;8:1575–1590.
  • Sugo T, Terada M, Oikawa T, et al. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J Control Release. 2016;237:1–13.
  • Modhiran N, Song H, Liu L, et al. A broadly protective antibody that targets the flavivirus NS1 protein. Science. 2021;371:190–194.
  • Miller JL, Lachica R, Sayce AC, et al. Liposome-mediated delivery of iminosugars enhances efficacy against dengue virus in vivo. Antimicrob Agents Chemother. 2012;56(12):6379–6386. DOI:10.1128/AAC.01554-12
  • Liu Y, Wang X, Li J, et al. Sphingosine 1-Phosphate Liposomes for Targeted Nitric Oxide Delivery to Mediate Anticancer Effects against Brain Glioma Tumors. Adv Mater. 2021;33(30):e2101701. DOI:10.1002/adma.202101701
  • Ding Y, Jiang Z, Saha K, et al. Gold nanoparticles for nucleic acid delivery. Mol Ther. 2014;22(6):1075–1083. DOI:10.1038/mt.2014.30
  • Komatsu Y, Tanaka C, Komorizono R, et al. In vivo biodistribution analysis of transmission competent and defective RNA virus-based episomal vector. Sci Rep. 2020;10(1):5890. DOI:10.1038/s41598-020-62630-7
  • Yeung JC, Wagnetz D, Cypel M, et al. Ex Vivo Adenoviral Vector Gene Delivery Results in Decreased Vector-associated Inflammation Pre- and Post–lung Transplantation in the Pig. Mol Ther. 2012;20(6):1204–1211. DOI:10.1038/mt.2012.57
  • Suzuki Y, Hyodo K, Suzuki T, et al. Biodegradable lipid nanoparticles induce a prolonged RNA interference-mediated protein knockdown and show rapid hepatic clearance in mice and nonhuman primates. Int J Pharm. 2017;519(1–2):34–43. DOI:10.1016/j.ijpharm.2017.01.016
  • Nguyen K, Dang PN, Alsberg E. Functionalized, biodegradable hydrogels for control over sustained and localized siRNA delivery to incorporated and surrounding cells. Acta Biomater. 2013;9(1):4487–4495.
  • Borgheti-Cardoso LN, Kooijmans SAA, Fens M, et al. In Situ Gelling Liquid Crystalline System as Local siRNA Delivery System. Mol Pharm. 2017;14(5):1681–1690. DOI:10.1021/acs.molpharmaceut.6b01141
  • Wang LL, Chung JJ, Li EC, et al. Injectable and protease-degradable hydrogel for siRNA sequestration and triggered delivery to the heart. J Control Release. 2018;285:152–161.
  • Castleberry SA, Almquist BD, Li W, et al. Self-Assembled Wound Dressings Silence MMP-9 and Improve Diabetic Wound Healing in vivo. Adv Mater. 2016;28(9):1809–1817. DOI:10.1002/adma.201503565
  • Castleberry SA, Golberg A, Sharkh MA, et al. Nanolayered siRNA delivery platforms for local silencing of CTGF reduce cutaneous scar contraction in third-degree burns. Biomaterials. 2016;95:22–34.
  • Benam KH, Dauth S, Hassell B, et al. Engineered in vitro disease models. Annu Rev Pathol. 2015;10(1):195–262. DOI:10.1146/annurev-pathol-012414-040418
  • Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014;345:1247125.
  • Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22(3):326–330. DOI:10.1038/nbt936
  • Zimmermann TS, Karsten V, Chan A, et al. Clinical Proof of Concept for a Novel Hepatocyte-Targeting GalNAc-siRNA Conjugate. Mol Ther. 2017;25(1):71–78. DOI:10.1016/j.ymthe.2016.10.019
  • DeVincenzo J, Lambkin-Williams R, Wilkinson T, et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci U S A. 2010;107(19):8800–8805. DOI:10.1073/pnas.0912186107
  • Kleinman ME, Yamada K, Takeda A, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature. 2008;452:591–597.
  • Djupesland PG, Skretting A, Winderen M, et al. Breath actuated device improves delivery to target sites beyond the nasal valve. Laryngoscope. 2006;116(3):466–472. DOI:10.1097/01.MLG.0000199741.08517.99
  • Miyake MM, Bleier BS. The blood-brain barrier and nasal drug delivery to the central nervous system. Am J Rhinol Allergy. 2015;29(2):124–127.
  • Ter Brake O, Konstantinova P, Ceylan M, et al. Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther. 2006;14(6):883–892. DOI:10.1016/j.ymthe.2006.07.007
  • Bullard-Feibelman KM, Govero J, Zhu Z, et al. The FDA-approved drug sofosbuvir inhibits Zika virus infection. Antiviral Res. 2017;137:134–140.
  • Julander JG, Siddharthan V, Evans J, et al. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antiviral Res. 2017;137:14–22.
  • Felicetti T, Burali MS, Gwee CP, et al. Sustainable, three-component, one-pot procedure to obtain active anti-flavivirus agents. Eur J Med Chem. 2021;210:112992.
  • Felicetti T, Manfroni G, Cecchetti V, et al. Broad-Spectrum Flavivirus Inhibitors: a Medicinal Chemistry Point of View. ChemMedchem. 2020;15:2391–2419.
  • Cannalire R, Ki Chan KW, Burali MS, et al. Pyridobenzothiazolones Exert Potent Anti-Dengue Activity by Hampering Multiple Functions of NS5 Polymerase. ACS Med Chem Lett. 2020;11(5):773–782. DOI:10.1021/acsmedchemlett.9b00619
  • Yuan S, Chan JF, den-Haan H, et al. Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo. Antiviral Res. 2017;145:33–43.
  • Li Z, Brecher M, Deng YQ, et al. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res. 2017;27:1046–1064.
  • Luo D, Vasudevan SG, Lescar J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res. 2015;118:148–158.
  • Poh MK, Yip A, Zhang S, et al. A small molecule fusion inhibitor of dengue virus. Antiviral Res. 2009;84(3):260–266. DOI:10.1016/j.antiviral.2009.09.011
  • Schmidt AG, Lee K, Yang PL, et al. Small-molecule inhibitors of dengue-virus entry. PLOS Pathog. 2012;8(4):e1002627. DOI:10.1371/journal.ppat.1002627
  • Byrd CM, Dai D, Grosenbach DW, et al. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob Agents Chemother. 2013;57(1):15–25. DOI:10.1128/AAC.01429-12
  • Scaturro P, Trist IM, Paul D, et al. Characterization of the mode of action of a potent dengue virus capsid inhibitor. J Virol. 2014;88(19):11540–11555. DOI:10.1128/JVI.01745-14
  • Smith JL, Sheridan K, Parkins CJ, et al. Characterization and structure-activity relationship analysis of a class of antiviral compounds that directly bind dengue virus capsid protein and are incorporated into virions. Antiviral Res. 2018;155:12–19.
  • Kaptein SJF, Goethals O, Kiemel D, et al. A pan-serotype dengue virus inhibitor targeting the NS3–NS4B interaction. Nature. 2021;598(7881):504–509. DOI:10.1038/s41586-021-03990-6
  • Lyu B, Wang C, Bie Y, et al. Enoxacin Shows Broad-Spectrum Antiviral Activity against Diverse Viruses by Enhancing Antiviral RNA Interference in Insects. J Virol 2022;96:e0177821. 4 10.1128/jvi.01778-21
  • Lee E, Bujalowski PJ, Teramoto T, et al. Structures of flavivirus RNA promoters suggest two binding modes with NS5 polymerase. Nat Commun. 2021;12(1):2530. DOI:10.1038/s41467-021-22846-1
  • Ooi YS, Majzoub K, Flynn RA, et al. An RNA-centric dissection of host complexes controlling flavivirus infection. Nat Microbiol. 2019;4(12):2369–2382. DOI:10.1038/s41564-019-0518-2
  • Hoffmann HH, Schneider WM, Rozen-Gagnon K, et al. TMEM41B is a Pan-flavivirus Host Factor. Cell. 2021;184(1):133–48.e20. DOI:10.1016/j.cell.2020.12.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.