657
Views
0
CrossRef citations to date
0
Altmetric
Review

3D bioprinting for organ and organoid models and disease modeling

, , , , ORCID Icon, , , & ORCID Icon show all
Pages 1043-1059 | Received 24 Feb 2023, Accepted 05 Jul 2023, Published online: 11 Jul 2023

References

  • Shahrubudin N, Lee TC, Ramlan R. An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf. 2019;35:1286–1296. doi: 10.1016/j.promfg.2019.06.089
  • Praveena BA, Lokesh N, Buradi A, et al. A comprehensive review of emerging additive manufacturing (3D printing technology): methods, materials, applications, challenges, trends and future potential. Mater Today Proc. 2022;52:1309–1313.
  • Shah J, Snider B, Clarke T, et al. Large-scale 3D printers for additive manufacturing: design considerations and challenges. Int J Adv Manuf Technol. 2019;104(9–12):3679–3693. doi: 10.1007/s00170-019-04074-6
  • Elmrabet N, Siegkas P. Dimensional considerations on the mechanical properties of 3D printed polymer parts. Polym Test. 2020;90:106656. doi: 10.1016/j.polymertesting.2020.106656
  • Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials. 2022;287:121639. doi: 10.1016/j.biomaterials.2022.121639
  • de la Vega L, Lee C, Sharma R, et al. 3D bioprinting models of neural tissues: the current state of the field and future directions. Brain Res Bull. 2019;150:240–249.
  • Pusch K, Hinton TJ, Feinberg AW. Large volume syringe pump extruder for desktop 3D printers. HardwareX. 2018;3:49–61. doi: 10.1016/j.ohx.2018.02.001
  • Tashman JW, Shiwarski DJ, Feinberg AW. A high performance open-source syringe extruder optimized for extrusion and retraction during FRESH 3D bioprinting. HardwareX. 2021;9:e00170. doi: 10.1016/j.ohx.2020.e00170
  • Tashman JW, Shiwarski DJ, Feinberg AW. Development of a high-performance open-source 3D bioprinter. Sci Rep. 2022;12(1):22652. doi: 10.1038/s41598-022-26809-4
  • Groll J, Burdick JA, Cho D-W, et al. A definition of bioinks and their distinction from biomaterial inks. Biofabrication. 2018;11(1):013001. doi: 10.1088/1758-5090/aaec52
  • Schwab A, Levato R, D’Este M, et al. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):11028–11055. doi: 10.1021/acs.chemrev.0c00084
  • Salaris F, Colosi C, Brighi C, et al. 3D bioprinted human cortical neural constructs derived from induced pluripotent stem cells. J Clin Med. 2019;8(10):1–13. doi: 10.3390/jcm8101595
  • Gu Q, Tomaskovic-Crook E, Wallace GG, et al. Engineering human neural tissue by 3D bioprinting. Methods Mol Biol. 2018;1758:129–138.
  • Silva TP, Cotovio JP, Bekman E, et al. Design principles for pluripotent stem cell-derived organoid engineering. Stem Cells Int. 2019;2019:1–17. doi:10.1155/2019/4508470
  • Struzyna LA, Watt ML. The emerging role of neuronal organoid models in drug discovery: potential applications and hurdles to implementation. Mol Pharmacol. 2021;99(4):256–265. doi: 10.1124/molpharm.120.000142
  • Cremades N. In-vitro maturation of round spermatids using co-culture on vero cells. Hum Reprod. 1999;14(5):1287–1293. doi: 10.1093/humrep/14.5.1287
  • Mazzocchi A, Soker S, Skardal A. 3D bioprinting for high-throughput screening: drug screening, disease modeling, and precision medicine applications. Appl Phys Rev. 2019;6(1):011302–22. doi: 10.1063/1.5056188
  • Dong R, Zhang B, Zhang X. Liver organoids: an in vitro 3D model for liver cancer study. Cell Biosci. 2022;12(1):152. doi: 10.1186/s13578-022-00890-8
  • Guo Y, Pu WT. Cardiomyocyte maturation. Circ Res. 2020;126(8):1086–1106. doi: 10.1161/CIRCRESAHA.119.315862
  • Kong JS, Huang X, Choi YJ, et al. Promoting long-term cultivation of motor neurons for 3D neuromuscular junction formation of 3d in vitro using central-nervous-tissue-derived bioink. Adv Healthc Mater. 2021;10(18):1–12. doi: 10.1002/adhm.202100581
  • Han Y, King M, Tikhomirov E, et al. Towards 3D bioprinted spinal cord organoids. Int J Mol Sci. 2022;23:1–13. doi:10.3390/ijms23105788
  • Zhang Y, Chen H, Long X, et al. Three-dimensional-engineered bioprinted in vitro human neural stem cell self-assembling culture model constructs of Alzheimer’s disease. Bioact Mater [Internet]. 2022;11:192–205. doi: 10.1016/j.bioactmat.2021.09.023
  • Prior N, Inacio P, Huch M. Liver organoids: from basic research to therapeutic applications. Gut. 2019;68(12):2228–2237. doi: 10.1136/gutjnl-2019-319256
  • Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell. 2010;18(2):175–189. doi: 10.1016/j.devcel.2010.01.011
  • Miyajima A, Tanaka M, Itoh T. Stem/Progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14(5):561–574. doi: 10.1016/j.stem.2014.04.010
  • Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276:60–66.
  • Huch M, Koo B-K. Modeling mouse and human development using organoid cultures. Development. 2015;142(18):3113–3125. doi: 10.1242/dev.118570
  • Bissell DM, Arenson DM, Maher JJ, et al. Support of cultured hepatocytes by a laminin-rich gel. evidence for a functionally significant subendothelial matrix in normal rat liver. J Clin Invest. 1987;79(3):801–812. doi: 10.1172/JCI112887
  • Harrison SP, Baumgarten SF, Verma R, et al. Liver organoids: recent developments, limitations and potential. Front Med. 2021;8: doi: 10.3389/fmed.2021.574047
  • Guan Y, Xu D, Garfin PM, et al. Human hepatic organoids for the analysis of human genetic diseases. JCI Insight. 2017;2(17): doi: 10.1172/jci.insight.94954
  • Ouchi R, Togo S, Kimura M, et al. Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab. 2019;30(2):374–384.e6. doi: 10.1016/j.cmet.2019.05.007
  • Huch M, Gehart H, van Boxtel R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 2015;160(1–2):299–312. doi: 10.1016/j.cell.2014.11.050
  • Liu Q, Zeng A, Liu Z, et al. Liver organoids: from fabrication to application in liver diseases. Front Physiol. 2022;13: doi: 10.3389/fphys.2022.956244
  • Wu Y, Wenger A, Golzar H, et al. 3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink. Sci Rep. 2020;10:20648.
  • Kang D, Hong G, An S, et al. Bioprinting of multiscaled hepatic lobules within a highly vascularized construct. Small. 2020;16(13):1905505. doi: 10.1002/smll.201905505
  • Ma L, Wu Y, Li Y, et al. Current advances on 3d‐bioprinted liver tissue models. Adv Healthc Mater. 2020;9(24):2001517. doi: 10.1002/adhm.202001517
  • Groll J, Boland T, Blunk T, et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication. 2016;8(1):013001. doi: 10.1088/1758-5090/8/1/013001
  • Ong CS, Fukunishi T, Zhang H, et al. Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci Rep. 2017;7(1):4566. doi: 10.1038/s41598-017-05018-4
  • Wang Z, Lee SJ, Cheng H-J, et al. 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater. 2018;70:48–56. doi:10.1016/j.actbio.2018.02.007
  • Jang J, Park H-J, Kim S-W, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112:264–274.
  • Kupfer ME, Lin W-H, Ravikumar V, et al. In Situ expansion, differentiation, and electromechanical coupling of human cardiac muscle in a 3d bioprinted, chambered organoid. Circ Res. 2020;127(2):207–224. doi: 10.1161/CIRCRESAHA.119.316155
  • Maiullari F, Costantini M, Milan M, et al. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and Ipsc-derived cardiomyocytes. Sci Rep. 2018;8(1):13532. doi: 10.1038/s41598-018-31848-x
  • Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45–59. doi:10.1016/j.biomaterials.2016.09.003
  • Burridge PW, Keller G, Gold JD, et al. Production of De Novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell. 2012;10(1):16–28. doi: 10.1016/j.stem.2011.12.013
  • Doss MX, Sachinidis A. Current challenges of ipsc-based disease modeling and therapeutic implications. Cells. 2019;8(5):403. doi: 10.3390/cells8050403
  • Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365:482–487.
  • Zhu K, Shin SR, van Kempen T, et al. Gold nanocomposite bioink for printing 3D cardiac constructs. Adv Funct Mater. 2017;27(12):1605352. doi: 10.1002/adfm.201605352
  • Vukadinovic-Nikolic Z, Andrée B, Dorfman SE, et al. Generation of bioartificial heart tissue by combining a three-dimensional gel-based cardiac construct with decellularized small intestinal submucosa. Tissue Eng Part A. 2013;131116072436005:131116072436005. doi:10.1089/ten.tea.2013.0184
  • Tesarik J, Greco E, Rienzi L, et al. Differentiation of spermatogenic cells during in-vitro culture of testicular biopsy samples from patients with obstructive azoospermia: effect of recombinant follicle stimulating hormone. Hum Reprod. 1998;13(10):2772–2781. doi: 10.1093/humrep/13.10.2772
  • Tesarik J, Guido M, Mendoza C, et al. Human spermatogenesis in vitro: respective effects of follicle-stimulating hormone and testosterone on meiosis, spermiogenesis, and sertoli cell apoptosis. J Clin Endocrinol Metab. 1998;83(12):4467–4473. doi: 10.1210/jcem.83.12.5304
  • Tesarik J, Bahceci M, Özcan C, et al. Restoration of fertility by in-vitro spermatogenesis. Lancet. 1999;353(9152):555–556. doi: 10.1016/S0140-6736(98)04784-9
  • Yuan Y, Li L, Cheng Q, et al. In vitro testicular organogenesis from human fetal gonads produces fertilization-competent spermatids. Cell Res. 2020;30(3):244–255. doi: 10.1038/s41422-020-0283-z
  • Portela JMD, de Winter-Korver CM, van Daalen SKM, et al. Assessment of fresh and cryopreserved testicular tissues from (pre)pubertal boys during organ culture as a strategy for in vitro spermatogenesis. Hum Reprod. 2019;34(12):2443–2455. doi: 10.1093/humrep/dez180
  • de Michele F, Vermeulen M, Wyns C. Fertility restoration with spermatogonial stem cells. Curr Opin Endocrinol Diabetes Obes. 2017;24(6):424–431. doi: 10.1097/MED.0000000000000370
  • de Michele F, Poels J, Giudice MG, et al. In vitro formation of the blood–testis barrier during long-term organotypic culture of human prepubertal tissue: comparison with a large cohort of pre/peripubertal boys. MHR Basic Sci Reprod Med. 2018;24(5):271–282. doi: 10.1093/molehr/gay012
  • de Michele F, Poels J, Vermeulen M, et al. Haploid germ cells generated in organotypic culture of testicular tissue from prepubertal boys. Front Physiol. 2018;9: doi: 10.3389/fphys.2018.01413
  • Tanaka A, Nagayoshi M, Awata S, et al. Completion of meiosis in human primary spermatocytes through in vitro coculture with Vero cells. Fertil Steril. 2003;79:795–801. doi:10.1016/S0015-0282(02)04833-1
  • Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7(3):211–224. doi: 10.1038/nrm1858
  • Pendergraft SS, Sadri-Ardekani H, Atala A, et al. Three-dimensional testicular organoid: a novel tool for the study of human spermatogenesis and gonadotoxicity in vitro†. Biol Reprod. 2017;96(3):720–732. doi: 10.1095/biolreprod.116.143446
  • von Kopylow K, Schulze W, Salzbrunn A, et al. Dynamics, ultrastructure and gene expression of human in vitro organized testis cells from testicular sperm extraction biopsies. MHR Basic Sci Reprod Med. 2018;24:123–134.
  • Sakib S, Uchida A, Valenzuela-Leon P, et al. Formation of organotypic testicular organoids in microwell culture†. Biol Reprod. 2019;100(6):1648–1660. doi: 10.1093/biolre/ioz053
  • Macarrón R, Hertzberg RP. Design and implementation of high-throughput screening assays. Methods Mol Biol. 2009;565:1–32. doi: 10.1007/978-1-60327-258-2_1
  • Sharma R, Smits IPM, De La Vega L, et al. 3D bioprinting pluripotent stem cell derived neural tissues using a novel fibrin bioink containing drug releasing microspheres. Front Bioeng Biotechnol. 2020;8:1–12. doi:10.3389/fbioe.2020.00057
  • Dai X, Ma C, Lan Q, et al. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication. 2016;8(4):045005. doi: 10.1088/1758-5090/8/4/045005
  • He C, Lu D, Lin Z, et al. Liver organoids, novel and promising modalities for exploring and repairing liver injury. Stem Cell Rev Rep. 2023;19(2):345–357. doi: 10.1007/s12015-022-10456-3
  • Lam DTUH, Dan YY, Chan Y-S, et al. Emerging liver organoid platforms and technologies. Cell Regen. 2021;10(1):27. doi: 10.1186/s13619-021-00089-1
  • Sun L, Hui L, Yao X. Progress in human liver organoids. J Mol Cell Biol. 2020;12(8):607–617. doi: 10.1093/jmcb/mjaa013
  • Freeman RB, Steffick DE, Guidinger MK, et al. Liver and intestine transplantation in the united states, 1997–2006. Am J Transplant. 2008;8(4):958–976. doi: 10.1111/j.1600-6143.2008.02174.x
  • Powers MJ, Janigian DM, Wack KE, et al. Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor. Tissue Eng. 2002;8(3):499–513. doi: 10.1089/107632702760184745
  • Allen JW, Bhatia SN. Improving the next generation of bioartificial liver devices. Semin Cell Dev Biol. 2002;13(6):447–454. doi: 10.1016/S1084952102001337
  • Heydari Z, Najimi M, Mirzaei H, et al. Tissue engineering in liver regenerative medicine: insights into novel translational technologies. Cells. 2020;9(2):304. doi: 10.3390/cells9020304
  • Melchels FPW, Domingos MAN, Klein TJ, et al. Additive manufacturing of tissues and organs. Prog Polym Sci. 2012;37(8):1079–1104. doi: 10.1016/j.progpolymsci.2011.11.007
  • Zein NN, Hanouneh IA, Bishop PD, et al. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transplant. 2013;19(12):1304–1310. doi: 10.1002/lt.23729
  • Xiang N, Fang C, Fan Y, et al. Application of liver three-dimensional printing in hepatectomy for complex massive hepatocarcinoma with rare variations of portal vein: preliminary experience. Int J Clin Exp Med. 2015;8(10):18873–18878.
  • Perez RA, Kim H-W. Core–shell designed scaffolds for drug delivery and tissue engineering. Acta Biomater. 2015;21:2–19. doi: 10.1016/j.actbio.2015.03.013
  • Taymour R, Kilian D, Ahlfeld T, et al. 3D bioprinting of hepatocytes: core–shell structured co-cultures with fibroblasts for enhanced functionality. Sci Rep. 2021;11(1):5130. doi: 10.1038/s41598-021-84384-6
  • van Grunsven LA. 3D in vitro models of liver fibrosis. Adv Drug Deliv Rev. 2017;121:133–146. doi: 10.1016/j.addr.2017.07.004
  • Lewis PL, Green RM, Shah RN. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression. Acta Biomater. 2018;69:63–70. doi: 10.1016/j.actbio.2017.12.042
  • Lee JW, Choi Y-J, Yong W-J, et al. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication. 2016;8(1):015007. doi: 10.1088/1758-5090/8/1/015007
  • Foster E, You J, Siltanen C, et al. Heparin hydrogel sandwich cultures of primary hepatocytes. Eur Polym J. 2015;72:726–735. doi:10.1016/j.eurpolymj.2014.12.033
  • Ma X, Qu X, Zhu W, et al. Deterministically patterned biomimetic human Ipsc-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci. 2016;113(8):2206–2211. doi: 10.1073/pnas.1524510113
  • Jeon H, Kang K, Park SA, et al. Generation of multilayered 3D structures of hepg2 cells using a bio-printing technique. Gut Liver. 2017;11(1):121–128. doi: 10.5009/gnl16010
  • Lee H, Han W, Kim H, et al. Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromolecules. 2017;18(4):1229–1237. doi: 10.1021/acs.biomac.6b01908
  • Visk D. Will advances in preclinical in vitro models lower the costs of drug development? Appl Vitr Toxicol. 2015;1(1):79–82. doi: 10.1089/aivt.2015.1503
  • Nguyen D, Robbins J, Crogan‐Grundy C, et al. Functional Characterization of three‐dimensional (3d) human liver tissues generated by an automated bioprinting platform. FASEB J. 2015;29(S1):29. doi: 10.1096/fasebj.29.1_supplement.lb424
  • Robbins JB, Gorgen V, Min P, et al. A novel in vitro three‐dimensional bioprinted liver tissue system for drug development. FASEB J. 2013;27(S1):27. doi: 10.1096/fasebj.27.1_supplement.872.12
  • Cho S, Discher DE, Leong KW, et al. Challenges and opportunities for the next generation of cardiovascular tissue engineering. Nat Methods. 2022;19(9):1064–1071. doi: 10.1038/s41592-022-01591-3
  • Weinberger F, Mannhardt I, Eschenhagen T. Engineering cardiac muscle tissue. Circ Res. 2017;120(9):1487–1500. doi: 10.1161/CIRCRESAHA.117.310738
  • Shafaattalab S, Lin E, Christidi E, et al. Ibrutinib displays atrial-specific toxicity in human stem cell-derived cardiomyocytes. Stem Cell Rep. 2019;12(5):996–1006. doi: 10.1016/j.stemcr.2019.03.011
  • Nunes SS, Miklas JW, Liu J, et al. Biowire: a platform for maturation of human pluripotent stem cell–derived cardiomyocytes. Nat Methods. 2013;10(8):781–787. doi: 10.1038/nmeth.2524
  • Park S-J, Zhang D, Qi Y, et al. Insights into the pathogenesis of catecholaminergic polymorphic ventricular tachycardia from engineered human heart tissue. Circulation. 2019;140(5):390–404. doi: 10.1161/CIRCULATIONAHA.119.039711
  • Zhang JZ, Zhao SR, Tu C, et al. Protocol to measure contraction, calcium, and action potential in human-induced pluripotent stem cell-derived cardiomyocytes. STAR Protoc. 2021;2(4):100859. doi: 10.1016/j.xpro.2021.100859
  • Kang H-W, Lee SJ, Ko IK, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312–319. doi: 10.1038/nbt.3413
  • Ji S, Guvendiren M. Complex 3D bioprinting methods. APL Bioeng. 2021;5(1):011508. doi: 10.1063/5.0034901
  • Skylar-Scott MA, Uzel SGM, Nam LL, et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci Adv. 2019;5(9): doi: 10.1126/sciadv.aaw2459
  • Skylar-Scott MA, Huang JY, Lu A, et al. Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues. Nat Biomed Eng. 2022;6(4):449–462. doi: 10.1038/s41551-022-00856-8
  • Zhang J, Byers P, Erben A, et al. Single cell bioprinting with ultrashort laser pulses. Adv Funct Mater. 2021;31(19):2100066. doi: 10.1002/adfm.202100066
  • Dalton PD, Woodfield TBF, Mironov V, et al. Advances in hybrid fabrication toward hierarchical tissue constructs. Adv Sci. 2020;7(11):1902953. doi: 10.1002/advs.201902953
  • Zhou X, Wu H, Wen H, et al. Advances in single-cell printing. Micromach. 2022;13(1):80. doi: 10.3390/mi13010080
  • Miri AK, Nieto D, Iglesias L, et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv Mater. 2018;30(27):1800242. doi: 10.1002/adma.201800242
  • Liu W, Zhong Z, Hu N, et al. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication. 2018;10(2):024102. doi: 10.1088/1758-5090/aa9d44
  • Robinson M, Bedford E, Witherspoon L, et al. Using clinically derived human tissue to 3-dimensionally bioprint personalized testicular tubules for in vitro culturing: first report. F&S Sci. 2022;3(2):130–139. doi: 10.1016/j.xfss.2022.02.004
  • Sato T, Katagiri K, Gohbara A, et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature. 2011;471(7339):504–507. doi: 10.1038/nature09850
  • de Michele F, Poels J, Weerens L, et al. Preserved seminiferous tubule integrity with spermatogonial survival and induction of sertoli and leydig cell maturation after long-term organotypic culture of prepubertal human testicular tissue. Hum Reprod. 2016; doi:10.1093/humrep/dew300
  • Komeya M, Kimura H, Nakamura H, et al. Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Sci Rep. 2016;6(1):21472. doi: 10.1038/srep21472
  • Perrard M-H, Sereni N, Schluth-Bolard C, et al. Complete human and rat ex vivo spermatogenesis from fresh or frozen testicular tissue. Biol Reprod. 2016;95(4):89–89. doi: 10.1095/biolreprod.116.142802
  • Grimes DR, Kelly C, Bloch K, et al. A method for estimating the oxygen consumption rate in multicellular tumour spheroids. J R Soc Interface. 2014;11(92):20131124. doi: 10.1098/rsif.2013.1124
  • Ryma M, Genç H, Nadernezhad A, et al. A print‐and‐fuse strategy for sacrificial filaments enables biomimetically structured perfusable microvascular networks with functional endothelium inside 3D hydrogels. Adv Mater. 2022;34(28):2200653. doi: 10.1002/adma.202200653
  • Eltaher HM, Abukunna FE, Ruiz-Cantu L, et al. Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites. Acta Biomater. 2020;113:339–349. doi:10.1016/j.actbio.2020.06.012
  • Nothdurfter D, Ploner C, Coraça-Huber DC, et al. 3D bioprinted, vascularized neuroblastoma tumor environment in fluidic chip devices for precision medicine drug testing. Biofabrication. 2022;14(3):035002. doi: 10.1088/1758-5090/ac5fb7
  • Shao L, Gao Q, Xie C, et al. Directly coaxial 3D bioprinting of large-scale vascularized tissue constructs. Biofabrication. 2020;12(3):035014. doi: 10.1088/1758-5090/ab7e76
  • Dobos A, Gantner F, Markovic M, et al. On-chip high-definition bioprinting of microvascular structures. Biofabrication. 2021;13(1):015016. doi: 10.1088/1758-5090/abb063
  • Salvador E, Köppl T, Hörmann J, et al. Tumor treating fields (ttfields) Induce Cell Junction alterations in a human 3D in vitro model of the blood-brain barrier. Pharmaceutics. 2023;15(1):185. doi: 10.3390/pharmaceutics15010185
  • Yin X, Mead BE, Safaee H, et al. Engineering stem cell organoids. Cell Stem Cell. 2016;18(1):25–38. doi: 10.1016/j.stem.2015.12.005
  • Ren Y, Yang X, Ma Z, et al. Developments and opportunities for 3D bioprinted organoids. Int J Bioprinting. 2021;7(3):364. doi: 10.18063/ijb.v7i3.364
  • Ashammakhi N, Ahadian S, Xu C, et al. Materials today bio bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio. 2019;1:1. doi:10.1016/j.mtbio.2019.100008
  • Perez MR, Sharma R, Masri NZ. 3D bioprinting mesenchymal stem cell-derived neural tissues using a fibrin-based bioink. 2021;11(8):1–15.
  • Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an Ipsc-derived organ bud transplant. Nature. 2013;499(7459):481–484. doi: 10.1038/nature12271
  • Spence JR, Mayhew CN, Rankin SA, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011;470(7332):105–109. doi: 10.1038/nature09691
  • Ma L, Li Y, Wu Y, et al. 3D bioprinted hyaluronic acid ‑ based cell ‑ laden scaffold for brain microenvironment simulation. Bio-Design Manuf Internet. 2020;3(3):164–174. doi: 10.1007/s42242-020-00076-6
  • Sinha S, Ayushman M, Tong X, et al. Dynamically crosslinked poly (ethylene-glycol) hydrogels reveal a critical role of viscoelasticity in modulating glioblastoma fates and drug responses in 3D. Adv Healthcare Mater. 2023;12(1):1–16. doi: 10.1002/adhm.202202147
  • Kim J, Koo B-K, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21(10):571–584. doi: 10.1038/s41580-020-0259-3
  • Chaudhuri O, Cooper-White J, Janmey PA, et al. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature. 2020;584(7822):535–546. doi: 10.1038/s41586-020-2612-2
  • Cho S, Discher DE, Leong KW, et al.Generation of cardiovascular tissue engineering. Nature Methods. 2022, 19;199: 1064–1071. 10.1038/s41592-022-01591-3
  • Thomas D, Choi S, Alamana C, et al. Cellular and engineered organoids for cardiovascular models. Circ Res. 2022;130(12):1780–1802. doi: 10.1161/CIRCRESAHA.122.320305
  • Hoffman T, Antovski P, Tebon P, et al. Synthetic biology and tissue engineering: toward fabrication of complex and smart cellular constructs. Adv Funct Mater. 2020;30(26):1909882. doi: 10.1002/adfm.201909882
  • Xiang Y, Miller K, Guan J, et al. 3D bioprinting of complex tissues in vitro: state ‑ of ‑ the ‑ art and future perspectives. Arch Toxicol Internet. 2022;96(3):691–710. doi: 10.1007/s00204-021-03212-y
  • Elkhoury K, Chen M, Koçak P, et al. Hybrid extracellular vesicles-liposome incorporated advanced bioink to deliver microRNA. Biofabrication. 2022;14(4):045008. doi: 10.1088/1758-5090/ac8621

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.