106
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular simulations required to target novel and potent inhibitors of cancer invasion

, , , , , , & show all
Pages 1367-1377 | Received 28 Feb 2023, Accepted 30 Aug 2023, Published online: 07 Sep 2023

References

  • Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149(4):778–789. doi: 10.1002/ijc.33588
  • Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol. 2018;834:188–196. doi: 10.1016/j.ejphar.2018.07.034
  • Dwyer-Lindgren L, Bertozzi-Villa A, Stubbs RW, et al. US county-level trends in mortality rates for major causes of death, 1980-2014. JAMA. 2016;316(22):2385–2401. doi: 10.1001/jama.2016.13645
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca A Cancer J Clinicians. 2018;68(6):394–424. doi: 10.3322/caac.21492
  • Farrow NE, Turner MC, Salama AKS, et al. Overall survival improved for contemporary patients with melanoma: a 2004–2015 national cancer database analysis. Oncol Therapy. 2020;8(2):261–275. doi: 10.1007/s40487-020-00117-1
  • Pishvaian MJ, Blais EM, Brody JR, et al. Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: a retrospective analysis of the know your tumor registry trial. Lancet Oncol. 2020;21(4):508–518. doi: 10.1016/S1470-2045(20)30074-7
  • Lin Y, Zhang Y, Wang D, et al. Computer especially AI-assisted drug virtual screening and design in traditional Chinese medicine. Phytomedicine. 2022;107:154481.
  • Yu D, Wang L, Wang Y. Recent advances in application of computer-aided drug design in anti-influenza a virus drug discovery. Int J Mol Sci. 2022;23:4738.
  • Yalcin-Ozkat G. Molecular modeling strategies of cancer Multidrug resistance. Drug Resistance Updates. 2021;59:100789. doi: 10.1016/j.drup.2021.100789
  • Flaherty KT, Yasothan U, Kirkpatrick PV. Vemurafenib. Nat Rev Drug Discov. 2011;10(11):811–812. doi: 10.1038/nrd3579
  • Fu X, Wang X, Duanmu J, et al. KRAS mutations are negatively correlated with immunity in colon cancer. Aging. 2021;13:750–768.
  • Cheng W, Yang Z, Wang S, et al. Recent development of CDK inhibitors: an overview of CDK/inhibitor co-crystal structures. Eur J Med Chem. 2019;164:615–639. doi: 10.1016/j.ejmech.2019.01.003
  • Bukanov NO, Smith LA, Klinger KW, et al. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature. 2006;444(7121):949–952. doi: 10.1038/nature05348
  • Raje N, Kumar S, Hideshima T, et al. Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood. 2005;106(3):1042–1047. doi: 10.1182/blood-2005-01-0320
  • Piezzo M, Cocco S, Caputo R, et al. Targeting cell cycle in breast cancer: CDK4/6 inhibitors. Int J Mol Sci. 2020;21(18):6479. doi: 10.3390/ijms21186479
  • Mita MM, Joy AA, Mita A, et al. Randomized phase II trial of the cyclin-dependent kinase inhibitor dinaciclib (MK-7965) versus capecitabine in patients with advanced breast cancer. Clin Breast Cancer. 2014;14(3):169–176. doi: 10.1016/j.clbc.2013.10.016
  • Diab A, Martin A, Simpson L, et al. Phase I trial of the CDK 4/6 inhibitor, P1446A-05 (voruciclib) in combination with the BRAF inhibitor (BRAFi), vemurafenib in advanced, BRAF-mutant melanoma. J Clin Oncol. 2015;33(15_suppl):9076–9076. doi: 10.1200/jco.2015.33.15_suppl.9076
  • Bharate SB, Kumar V, Jain SK, et al. Discovery and preclinical development of IIIM-290, an orally active potent cyclin-dependent kinase inhibitor. J Med Chem. 2018;61(4):1664–1687. doi: 10.1021/acs.jmedchem.7b01765
  • Cicenas J, Valius M. The CDK inhibitors in cancer research and therapy. J Cancer Res Clin Oncol. 2011;137(10):1409–1418. doi: 10.1007/s00432-011-1039-4
  • Li X, Li M, Huang M, et al. The multi-molecular mechanisms of tumor-targeted drug resistance in precision medicine. Biomed Pharmacother. 2022;150:113064. doi: 10.1016/j.biopha.2022.113064
  • Asamitsu K, Hirokawa T, Okamoto T, et al. Identification of a novel CDK9 inhibitor targeting the intramolecular hidden cavity of CDK9 induced by tat binding. PLoS One. 2022;17(11):e0277024. doi: 10.1371/journal.pone.0277024
  • Frame S, Saladino C, MacKay C, et al. Fadraciclib (CYC065), a novel CDK inhibitor, targets key pro-survival and oncogenic pathways in cancer. PLoS One. 2020;15(7):e0234103. doi: 10.1371/journal.pone.0234103
  • Whittaker SR, Barlow C, Martin MP, et al. Molecular profiling and combinatorial activity of CCT068127: a potent CDK2 and CDK9 inhibitor. Mol Oncol. 2018;12(3):287–304. doi: 10.1002/1878-0261.12148
  • Di Stefano M, Galati S, Ortore G, et al. Machine learning-based virtual screening for the Identification of Cdk5 inhibitors. Int J Mol Sci. 2022;23(18):10653. doi: 10.3390/ijms231810653
  • Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12(1):9–22. doi: 10.1016/j.ccr.2007.05.008
  • Guertin DA, Sabatini DM. An expanding role for mTOR in cancer. Trends Mol Med. 2005;11(8):353–361. doi: 10.1016/j.molmed.2005.06.007
  • Abraham RT, Gibbons JJ. The mammalian target of rapamycin signaling pathway: twists and turns in the road to cancer therapy. Clin Cancer Res. 2007;13(11):3109–3114. doi: 10.1158/1078-0432.CCR-06-2798
  • Easton JB, Houghton PJ. mTOR and cancer therapy. Oncogene. 2006;25(48):6436–6446. doi: 10.1038/sj.onc.1209886
  • Parate S, Kumar V, Lee G, et al. Marine-derived natural products as ATP-Competitive mTOR Kinase inhibitors for cancer therapeutics. Pharmaceuticals (Basel). 2021;14(3):282. doi: 10.3390/ph14030282
  • Raynaud FI, Eccles S, Clarke PA, et al. Pharmacologic Characterization of a potent inhibitor of class I Phosphatidylinositide 3-kinases. Cancer Res. 2007;67(12):5840–5850. doi: 10.1158/0008-5472.CAN-06-4615
  • Maira S-M, Fdr S, Brueggen J, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 2008;7(7):1851–1863. doi: 10.1158/1535-7163.MCT-08-0017
  • Minami H, Fujiwara Y, Muro K, et al. Phase I study of BGT226, a pan-PI3K and mTOR inhibitor, in Japanese patients with advanced solid cancers. Cancer Chemother Pharmacol. 2019;84(2):337–343. doi: 10.1007/s00280-019-03883-6
  • Li T, Wang J, Wang X, et al. WJD008, a dual Phosphatidylinositol 3-kinase (PI3K)/Mammalian target of rapamycin inhibitor, Prevents PI3K signaling and inhibits the proliferation of Transformed cells with oncogenic PI3K Mutant. J Pharmacol Exp Ther. 2010;334(3):830. doi: 10.1124/jpet.110.167940
  • Strambu IR, Seemayer CA, Fagard LMCA, et al. GLPG1205 for idiopathic pulmonary fibrosis: a phase 2 randomised placebo-controlled trial. Eur Respir J. 2022;61:2201794. doi: 10.1183/13993003.01794-2022
  • Zhao H, Chen G, Liang H. Dual PI3K/mTOR Inhibitor, XL765, suppresses glioblastoma growth by inducing ER stress-dependent apoptosis. Onco Targets Ther. 2019;12:5415–5424. doi: 10.2147/OTT.S210128
  • Yu P, Laird AD, Du X, et al. Characterization of the activity of the PI3K/mTOR Inhibitor XL765 (SAR245409) in tumor models with Diverse Genetic alterations Affecting the PI3K pathway. Mol Cancer Ther. 2014;13(5):1078–1091. doi: 10.1158/1535-7163.MCT-13-0709
  • Rehan M, Saleem M. Anticancer compound XL765 as PI3K/mTOR dual inhibitor: a structural insight into the inhibitory mechanism using computational approaches. PLoS One. 2019;14(6):e0219180. doi: 10.1371/journal.pone.0219180
  • Knight SD, Adams ND, Burgess JL, et al. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med Chem Lett. 2010;1(1):39–43. doi: 10.1021/ml900028r
  • Leung E, Kim JE, Rewcastle GW, et al. Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells. Cancer Biol Ther. 2011;11(11):938–946. doi: 10.4161/cbt.11.11.15527
  • Munster P, Aggarwal R, Hong D, et al. First-in-human phase I study of GSK2126458, an Oral pan-class I Phosphatidylinositol-3-kinase inhibitor, in patients with advanced solid tumor malignancies. Clin Cancer Res. 2016;22(8):1932–1939. doi: 10.1158/1078-0432.CCR-15-1665
  • Zapevalova MV, Shchegravina ES, Fonareva IP, et al. Synthesis, molecular docking, in vitro and in vivo studies of novel Dimorpholinoquinazoline-based potential inhibitors of PI3K/Akt/mTOR Pathway. Int J Mol Sci. 2022;23(18):10854. doi: 10.3390/ijms231810854
  • Chaube U, Chhatbar D, Bhatt H. 3D-QSAR, molecular dynamics simulations and molecular docking studies of benzoxazepine moiety as mTOR inhibitor for the treatment of lung cancer. Bioorganic Med Chem Lett. 2016;26(3):864–874. doi: 10.1016/j.bmcl.2015.12.075
  • Chaube U, Bhatt H. 3D-QSAR, molecular dynamics simulations, and molecular docking studies on pyridoaminotropanes and tetrahydroquinazoline as mTOR inhibitors. Mol Divers. 2017;21(3):741–759. doi: 10.1007/s11030-017-9752-9
  • Weinberg MA. RES-529: a PI3K/AKT/mTOR pathway inhibitor that dissociates the mTORC1 and mTORC2 complexes. Anticancer Drugs. 2016;27(6):475–487. doi: 10.1097/CAD.0000000000000354
  • Ferguson KT, Torr EE, Bernau K, et al. The novel mTOR Complex 1/2 inhibitor P529 inhibits human lung Myofibroblast Differentiation. J Cell Biochem. 2017;118(8):2241–2249. doi: 10.1002/jcb.25878
  • Benavides-Serrato A, Lee J, Holmes B, et al. Specific blockade of Rictor-mTOR association inhibits mTORC2 activity and is cytotoxic in glioblastoma. PLoS One. 2017;12(4):e0176599. doi: 10.1371/journal.pone.0176599
  • Chen Y, Zhou X. Research progress of mTOR inhibitors. Eur J Med Chem. 2020;208:112820. doi: 10.1016/j.ejmech.2020.112820
  • Couto C-M, Wang H-Y, Green JCA, et al. PARP regulates nonhomologous end joining through retention of Ku at double-strand breaks. J Cell Bio. 2011;194(3):367–375. doi: 10.1083/jcb.201012132
  • Xie H, Wang W, Xia B, et al. Therapeutic applications of PARP inhibitors in ovarian cancer. Biomed Pharmacother. 2020;127:110204. doi: 10.1016/j.biopha.2020.110204
  • Colombo I, Lheureux S, Oza AM. Rucaparib: a novel PARP inhibitor for BRCA advanced ovarian cancer. Drug Des Devel Ther. 2018;12:605–617. doi: 10.2147/DDDT.S130809
  • LaFargue CJ, Dal Molin GZ, Sood AK, et al. Exploring and comparing adverse events between PARP inhibitors. Lancet Oncol. 2019;20(1):e15–e28. doi: 10.1016/S1470-2045(18)30786-1
  • Wang Y-Q, Wang P-Y, Wang Y-T, et al. An Update on Poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors: Opportunities and challenges in cancer therapy. J Med Chem. 2016;59(21):9575–9598. doi: 10.1021/acs.jmedchem.6b00055
  • Ison G, Howie LJ, Amiri-Kordestani L, et al. FDA approval Summary: Niraparib for the Maintenance treatment of patients with Recurrent ovarian cancer in response to Platinum-based Chemotherapy. Clin Cancer Res. 2018;24(17):4066–4071. doi: 10.1158/1078-0432.CCR-18-0042
  • Middleton MR, Friedlander P, Hamid O, et al. Randomized phase II study evaluating veliparib (ABT-888) with temozolomide in patients with metastatic melanoma. Ann Oncol. 2015;26(10):2173–2179. doi: 10.1093/annonc/mdv308
  • Du T, Zhang Z, Zhou J, et al. A novel PARP inhibitor YHP-836 for the treatment of BRCA-Deficiency cancers. Front Pharmacol. 2022;13:865085. doi: 10.3389/fphar.2022.865085
  • Cao R. Free energy calculation provides insight into the action mechanism of selective PARP-1 inhibitor. J Mol Model. 2016; 22(4):74. doi: 10.1007/s00894-016-2952-x
  • Li J, Zhou N, Cai P, et al. In silico screening Identifies a novel potential PARP1 inhibitor targeting Synthetic Lethality in cancer treatment. Int J Mol Sci. 2016;17(2):258. doi: 10.3390/ijms17020258
  • Sherstyuk YV, Ivanisenko NV, Zakharenko AL, et al. Design, synthesis and molecular modeling study of Conjugates of ADP and Morpholino Nucleosides as a novel class of inhibitors of PARP-1, PARP-2 and PARP-3. IJMS. 2020;21:214. doi: 10.3390/ijms21010214
  • Nwaefulu ON, Al-Shar’i NA, Owolabi JO, et al. The impact of cycleanine in cancer research: a computational study. J Mol Model. 2022;28(11):340. doi: 10.1007/s00894-022-05326-1
  • Syam YM, Anwar MM, Abd El-Karim SS, et al. New Quinoxaline-based derivatives as PARP-1 inhibitors: Design, synthesis, antiproliferative, and computational studies. Molecules. 2022;27(15):4924. doi: 10.3390/molecules27154924
  • Sahin K, Durdagi S. Identifying new piperazine-based PARP1 inhibitors using text mining and integrated molecular modeling approaches. J Biomol Struct Dynamics. 2021;39(2):681–690. doi: 10.1080/07391102.2020.1715262
  • Zheng J, Zhang W, Li L, et al. Signaling pathway and small-molecule drug Discovery of FGFR: A Comprehensive review. Front Chem. 2022;10:860985. doi: 10.3389/fchem.2022.860985
  • Wiedemann M, Trueb B. Characterization of a novel protein (FGFRL1) from human cartilage related to FGF receptors. Genomics. 2000;69(2):275–279. doi: 10.1006/geno.2000.6332
  • André F, Cortés J. Rationale for targeting fibroblast growth factor receptor signaling in breast cancer. Breast Cancer Res Treat. 2015;150(1):1–8. doi: 10.1007/s10549-015-3301-y
  • Desai A, Adjei AA. FGFR signaling as a target for lung cancer therapy. J Thorac Oncol. 2016;11(1):9–20. doi: 10.1016/j.jtho.2015.08.003
  • Xie L, Su X, Zhang L, et al. FGFR2 gene amplification in gastric cancer predicts sensitivity to the selective FGFR inhibitor AZD4547. Clin Cancer Res. 2013;19(9):2572–2583. doi: 10.1158/1078-0432.CCR-12-3898
  • Pan YL, Liu YL, Chen JZ. Computational simulation studies on the binding selectivity of 1-(1H-Benzimidazol-5-yl)-5-aminopyrazoles in complexes with FGFR1 and FGFR4. Molecules. 2018;23(4):767. doi: 10.3390/molecules23040767
  • Ying S, Du X, Fu W, et al. Synthesis, biological evaluation, QSAR and molecular dynamics simulation studies of potential fibroblast growth factor receptor 1 inhibitors for the treatment of gastric cancer. Eur J Med Chem. 2017;127:885–899. doi: 10.1016/j.ejmech.2016.10.066
  • Tsimafeyeu I, Kazey V, Dragun N, et al. 39P Effect of dose level of the selective FGFR2 inhibitor alofanib on toxicity, pharmacokinetics and preliminary efficacy: A phase Ib study in patients with advanced gastric cancer (RPT835GC1B). Ann Oncol. 2021;32:S16–S17. doi: 10.1016/j.annonc.2021.01.054
  • Karp JM, Cowburn D. Simulations of FGFR2 kinase activation Loop dynamics and their effects on Catalytic activity. Biophys J. 2016;110(3):177a. doi: 10.1016/j.bpj.2015.11.987
  • Guffanti F, Chila R, Bello E, et al. In vitro and in vivo activity of Lucitanib in FGFR1/2 Amplified or Mutated cancer models. Neoplasia. 2017;19(1):35–42. doi: 10.1016/j.neo.2016.11.008
  • Reddy T, Hall B, Chetwynd A, et al. Molecular dynamics simulations of the transmembrane Helix of the FGFR3 receptor in POPC and DPPC. Biophys J. 2011;100(3):254a. doi: 10.1016/j.bpj.2010.12.1606
  • Liu PCC, Koblish H, Wu L, et al. INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models. PLoS One. 2020;15(4):e0231877. doi: 10.1371/journal.pone.0231877
  • Fu W, Chen L, Wang Z, et al. Theoretical studies on FGFR isoform selectivity of FGFR1/FGFR4 inhibitors by molecular dynamics simulations and free energy calculations. Phys Chem Chem Phys. 2017;19(5):3649–3659. doi: 10.1039/C6CP07964D
  • Dehghanian F, Alavi S. Molecular mechanisms of the anti-cancer drug, LY2874455, in overcoming the FGFR4 mutation-based resistance. Sci Rep. 2021; 11(1):16593. doi: 10.1038/s41598-021-96159-0
  • Modh DH, Modi SJ, Deokar H, et al. Fibroblast growth factor receptor (FGFR) inhibitors as anticancer agents: 3D-QSAR, molecular docking and dynamics simulation studies of 1, 6-naphthyridines and pyridopyrimidines. Journal Of Biomolecular Structure And Dynamics. 2022;41:1–16. doi: 10.1080/07391102.2022.2053206
  • Zhang X, Wang Y, Ji J, et al. Discovery of 1,6-Naphthyridin-2(1H)-one derivatives as novel, potent, and selective FGFR4 inhibitors for the treatment of Hepatocellular carcinoma. J Med Chem. 2022;65(11):7595–7618. doi: 10.1021/acs.jmedchem.1c01977
  • Zanna C, Vaslin A, Voss MH, et al. Preliminary clinical pharmacokinetics and pharmacodynamics of Debio 1347 (CH5183284), a novel FGFR inhibitor. J Clin Oncol. 2015;33(15_suppl):2540–2540. doi: 10.1200/jco.2015.33.15_suppl.2540
  • Vetrie D, Vořechovský I, Sideras P, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993;361(6409):226–233. doi: 10.1038/361226a0
  • Cheng S, Ma J, Guo A, et al. BTK inhibition targets in vivo CLL proliferation through its effects on B-cell receptor signaling activity. Leukemia. 2014;28(3):649–657. doi: 10.1038/leu.2013.358
  • Hendriks RW. New Btk inhibitor holds promise. Nat Chem Biol. 2011;7(1):4–5. doi: 10.1038/nchembio.502
  • Ma C, Li Q, Zhao M, et al. Discovery of 1-amino-1H-imidazole-5-carboxamide derivatives as highly selective, covalent Bruton’s tyrosine kinase (BTK) inhibitors. J Med Chem. 2021;64(21):16242–16270. doi: 10.1021/acs.jmedchem.1c01559
  • Catlett IM, Nowak M, Kundu S, et al. Safety, pharmacokinetics and pharmacodynamics of branebrutinib (BMS-986195), a covalent, irreversible inhibitor of Bruton’s tyrosine kinase: Randomised phase I, placebo-controlled trial in healthy participants. Br J Clin Pharmacol. 2020;86(9):1849–1859. doi: 10.1111/bcp.14290
  • Tichenor MS, Wiener JJM, Rao NL, et al. Discovery of JNJ-64264681: A potent and selective covalent inhibitor of Bruton’s tyrosine kinase. J Med Chem. 2022;65(21):14326–14336. doi: 10.1021/acs.jmedchem.2c01026
  • Balasubramanian PK, Balupuri A, Kang HY, et al. Receptor-guided 3D-QSAR studies, molecular dynamics simulation and free energy calculations of Btk kinase inhibitors. BMC Syst Biol. 2017;11(Suppl S2):6. doi: 10.1186/s12918-017-0385-5
  • Edlund H, Lee SK, Andrew MA, et al. Population pharmacokinetics of the BTK inhibitor Acalabrutinib and its active Metabolite in healthy Volunteers and patients with B-Cell malignancies. Clin Pharmacokinet. 2019;58(5):659–672. doi: 10.1007/s40262-018-0725-7
  • Barf T, Covey T, Izumi R, et al. Acalabrutinib (ACP-196): A covalent Bruton tyrosine kinase inhibitor with a Differentiated selectivity and in vivo potency profile. J Pharmacol Exp Ther. 2017;363(2):240–252. doi: 10.1124/jpet.117.242909
  • Guo Y, Liu Y, Hu N, et al. Discovery of Zanubrutinib (BGB-3111), a novel, potent, and selective covalent inhibitor of Bruton’s tyrosine kinase. J Med Chem. 2019;62(17):7923–7940. doi: 10.1021/acs.jmedchem.9b00687
  • Lee KW, Lee WH, Han BS, et al. Molecular drug Discovery of single Ginsenoside compounds as a potent Bruton’s tyrosine kinase inhibitor. Int J Mol Sci. 2020;21(9):3065. doi: 10.3390/ijms21093065
  • Li Y, Ramirez-Valle F, Xue Y, et al. Population pharmacokinetics and exposure response assessment of CC-292, a potent BTK inhibitor, in patients with chronic lymphocytic leukemia. J Clin Pharmacol. 2017;57(10):1279–1289. doi: 10.1002/jcph.923
  • TCS H, Chan AHY, Ganesan A. Thirty years of HDAC inhibitors: 2020 insight and Hindsight. J Med Chem. 2020; 63(21):12460–12484. doi: 10.1021/acs.jmedchem.0c00830
  • Zhou M, Yuan M, Zhang M, et al. Combining histone deacetylase inhibitors (HDACis) with other therapies for cancer therapy. Eur J Med Chem. 2021;226:113825. doi: 10.1016/j.ejmech.2021.113825
  • Kelly AD, Issa JJ. The promise of epigenetic therapy: reprogramming the cancer epigenome. Curr Opin Genet Dev. 2017;42:68–77. doi: 10.1016/j.gde.2017.03.015
  • Ting AH, McGarvey KM, Baylin SB. The cancer epigenome–components and functional correlates. Genes Dev. 2006;20(23):3215–3231. doi: 10.1101/gad.1464906
  • Yang X, Liu M, Li M, et al. Epigenetic modulations of noncoding RNA: a novel dimension of cancer biology. Mol Cancer. 2020;19(1):64. doi: 10.1186/s12943-020-01159-9
  • Chen Y, Hong T, Wang S, et al. Epigenetic modification of nucleic acids: from basic studies to medical applications. Chem Soc Rev. 2017;46(10):2844–2872. doi: 10.1039/C6CS00599C
  • Gray SG, Ekstrom TJ. The human histone deacetylase family. Exp Cell Res. 2001;262(2):75–83. doi: 10.1006/excr.2000.5080
  • Issa JP, Kantarjian HM. Targeting DNA methylation. Clin Cancer Res. 2009;15(12):3938–3946. doi: 10.1158/1078-0432.CCR-08-2783
  • Garcia-Manero G, Yang H, Bueso-Ramos C, et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood. 2008;111(3):1060–1066. doi: 10.1182/blood-2007-06-098061
  • Duvic M, Talpur R, Ni X, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2006;109(1):31–39. doi: 10.1182/blood-2006-06-025999
  • Fang K, Dong G, Li Y, et al. Discovery of novel Indoleamine 2,3-Dioxygenase 1 (IDO1) and histone deacetylase (HDAC) dual inhibitors. ACS Med Chem Lett. 2018;9(4):312–317. doi: 10.1021/acsmedchemlett.7b00487
  • Tan J, Cang S, Ma Y, et al. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol. 2010;3(1):5. doi: 10.1186/1756-8722-3-5
  • Bergman JA, Woan K, Perez-Villarroel P, et al. Selective histone deacetylase 6 inhibitors bearing substituted urea linkers inhibit melanoma cell growth. J Med Chem. 2012;55(22):9891–9899. doi: 10.1021/jm301098e
  • Kolbinger FR, Koeneke E, Ridinger J, et al. The HDAC6/8/10 inhibitor TH34 induces DNA damage-mediated cell death in human high-grade neuroblastoma cell lines. Arch Toxicol. 2018;92(8):2649–2664. doi: 10.1007/s00204-018-2234-8
  • Balasubramanian S, Ramos J, Luo W, et al. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia. 2008;22(5):1026–1034. doi: 10.1038/leu.2008.9
  • Yao D, Li C, Jiang J, et al. Design, synthesis and biological evaluation of novel HDAC inhibitors with improved pharmacokinetic profile in breast cancer. Eur J Med Chem. 2020;205:112648. doi: 10.1016/j.ejmech.2020.112648
  • Zhao L, Fu L, Li G, et al. Three-dimensional quantitative structural-activity relationship and molecular dynamics study of multivariate substituted 4-oxyquinazoline HDAC6 inhibitors. Mol Divers. 2022;27:1123–1140. doi: 10.1007/s11030-022-10474-w
  • Yang Y, Hu B, Yang Y, et al. Rational design of selective HDAC2 inhibitors for liver cancer treatment: computational insights into the selectivity mechanism through molecular dynamics simulations and QM/MM calculations. Phys Chem Chem Phys. 2021;23(32):17576–17590. doi: 10.1039/D1CP02264D
  • Liu GH, Chen T, Zhang X, et al. Small molecule inhibitors targeting the cancers. MedComm. 2022;3(4):e181. doi: 10.1002/mco2.181
  • Hu J-P, Wu Z-X, Xie T, et al. Applications of molecular simulation in the discovery of antituberculosis drugs: a review. Protein & Peptide Letters. 2019;26(9):648–663. doi: 10.2174/0929866526666190620145919
  • Babaoglu ZY, Kilic D. Virtual screening, molecular simulations and bioassays: discovering novel microsomal prostaglandin E Synthase-1 (mPGES-1) inhibitors. Comput Biol Med. 2023;155:106616. doi: 10.1016/j.compbiomed.2023.106616
  • Zhang M-Q, Wilkinson B. Drug discovery beyond the ‘rule-of-five’. Curr Opin Biotechnol. 2007; 18(6):478–488. doi: 10.1016/j.copbio.2007.10.005
  • Yang Z-Y, Yang Z-J, He J-H, et al. Benchmarking the mechanisms of frequent hitters: limitation of PAINS alerts. Drug Discovery Today. 2021;26(6):1353–1358. doi: 10.1016/j.drudis.2021.02.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.