1,158
Views
0
CrossRef citations to date
0
Altmetric
Review

Another string to your bow: machine learning prediction of the pharmacokinetic properties of small molecules

, , & ORCID Icon
Pages 683-698 | Received 23 Oct 2023, Accepted 23 Apr 2024, Published online: 10 May 2024

References

  • Martin L, Hutchens M, Hawkins C. Clinical trial cycle times continue to increase despite industry efforts. Nat Rev Drug Discov. 2017;16(3):157–157. doi: 10.1038/nrd.2017.21
  • Simoens S, Huys I. R&D Costs of new medicines: a landscape analysis. Front Med. 2021;8. doi: 10.3389/fmed.2021.760762
  • Rennane S, Baker L, Mulcahy A. Estimating the cost of industry investment in drug research and development: a review of methods and results. Inq J Heal Care Organ Provis Financing. 2021;58:00469580211059731. doi: 10.1177/00469580211059731
  • Sun D, Gao W, Hu H, et al. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B. 2022;12(7):3049–3062. doi: 10.1016/j.apsb.2022.02.002
  • Schuhmacher A, Hinder M, von A, et al. Analysis of pharma R&D productivity – a new perspective needed. Drug Discov Today. 2023;28(10):103726. doi: 10.1016/j.drudis.2023.103726
  • Fowler S, Kletzl H, Finel M, et al. A UGT2B10 splicing polymorphism common in African populations may greatly increase drug exposure. J Pharmacol Exp Ther. 2015;352(2):358–367. doi: 10.1124/jpet.114.220194
  • Smith DA, van Waterschoot RAB, Parrott NJ, et al. Importance of target-mediated drug disposition for small molecules. Drug Discov Today. 2018;23(12):2023–2030. doi: 10.1016/j.drudis.2018.06.010
  • Thompson NC, Ge GF, Manso S. The importance of (exponentially more) computing power. Aca Manag Proceed. cited 2023 Jul. 25;2023(1). Available from: https://arxiv.org/abs/2206.14007
  • Pavan M, Menin S, Bassani D, et al. Implementing a scoring function based on interaction fingerprint for Autogrow4: protein kinase CK1δ as a case study. Front Mol Biosci. 2022;9. doi: 10.3389/fmolb.2022.909499
  • Carbone D, De Franco M, Pecoraro C, et al. Discovery of the 3-amino-1,2,4-triazine-based library as selective PDK1 inhibitors with therapeutic potential in highly aggressive pancreatic ductal adenocarcinoma. Int J Mol Sci. 2023;24(4):3679. doi: 10.3390/ijms24043679
  • Bassani D, Moro S. Past, present, and future perspectives on computer-aided drug design methodologies. Molecules. 2023;28(9):3906. doi: 10.3390/molecules28093906
  • Sabe VT, Ntombela T, Jhamba LA, et al. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: a review. Eur J Med Chem. 2021;224:113705. doi: 10.1016/j.ejmech.2021.113705
  • Leelananda SP, Lindert S. Computational methods in drug discovery. Beilstein J Org Chem. 2016;12:2694–2718. doi: 10.3762/bjoc.12.267
  • Sliwoski G, Kothiwale S, Meiler J, et al. Computational methods in drug discovery. Pharmacol Rev. 2014;66(1):334–395. doi: 10.1124/pr.112.007336
  • Choudhuri S, Yendluri M, Poddar S, et al. Recent advancements in computational drug design algorithms through machine learning and optimization. Kinases Phosphatases. 2023;1(2):117–140. doi: 10.3390/kinasesphosphatases1020008
  • Bassani M, Scarso A, Drago M, et al. Endo-1-phenylborneol as a novel, alternative chiral auxiliary for the aza-diels-alder reaction. Tetrahedron Lett. 2020;61(31):152165. doi: 10.1016/j.tetlet.2020.152165
  • Pavan M, Bassani D, Bolcato G, et al. Computational strategies to identify new drug candidates against neuroinflammation. CMC. 2022;29(27):4756–4775. doi: 10.2174/0929867329666220208095122
  • Obrezanova O. Artificial intelligence for compound pharmacokinetics prediction. Curr Opin Struc Biol. 2023;79:102546. doi: 10.1016/j.sbi.2023.102546
  • Polson AG, Fuji RN. The successes and limitations of preclinical studies in predicting the pharmacodynamics and safety of cell‐surface‐targeted biological agents in patients. Br J Pharmacol. 2012;166(5):1600–1602. doi: 10.1111/j.1476-5381.2012.01916.x
  • “Review of the use of two species in regulatory toxicology studies | NC3Rs.” [ Online]. [cited 2023 Aug 21]. Available from: https://www.nc3rs.org.uk/our-portfolio/review-use-two-species-regulatory-toxicology-studies
  • Zou P, Yu Y, Zheng N, et al. Applications of human pharmacokinetic prediction in first-in-human dose estimation. Aaps J. 2012;14(2):262–281. doi: 10.1208/s12248-012-9332-y
  • Stoyanova R, Katzberger PM, Komissarov L, et al. Computational predictions of nonclinical pharmacokinetics at the drug design stage. J Chem Inf Model. 2023;63(2):442–458. doi: 10.1021/acs.jcim.2c01134
  • Miljković F, Martinsson A, Obrezanova O, et al. MachinE learning models for human in vivo pharmacokinetic parameters with In-house validation. Mol Pharmaceut. 2021;18(12):4520–4530. doi: 10.1021/acs.molpharmaceut.1c00718
  • Toutain PL, Bousquet‐Mélou A. Plasma clearance. J Vet Pharmacol Ther. 2004;27(6):415–425. doi: 10.1111/j.1365-2885.2004.00605.x
  • Yates JWT, Arundel PA. On the volume of distribution at steady state and its relationship with two‐compartmental models. J Pharm Sci. 2008;97(1):111–122. doi: 10.1002/jps.21089
  • Lappin G, Rowland M, Garner RC. The use of isotopes in the determination of absolute bioavailability of drugs in humans. Expert Opin Drug Metab Toxicol. 2006;2(3):419–427. doi: 10.1517/17425255.2.3.419
  • Toutain PL, Bousquet‐Mélou A. Bioavailability and its assessment. J Vet Pharmacol Ther. 2004;27(6):455–466. doi: 10.1111/j.1365-2885.2004.00604.x
  • Watanabe R, Esaki T, Kawashima H, et al. Predicting fraction unbound in human plasma from chemical structure: improved accuracy in the low value ranges. Mol Pharm. 2018;15(11):5302–5311. doi: 10.1021/acs.molpharmaceut.8b00785
  • Boxenbaum H. Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: extrapolation of data to benzodiazepines and phenytoin. J Pharmacokinet Biopharm. 1980;8(2):165–176. doi: 10.1007/bf01065191
  • Ingber DE. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet. 2022;23(8):467–491. doi: 10.1038/s41576-022-00466-9
  • Zhao Z, Chen X, Dowbaj AM, et al. Organoids. Nat Rev Methods Prim. 2022;2(1):94. doi: 10.1038/s43586-022-00174-y
  • Choi G-W, Lee Y-B, Cho H-Y. Interpretation of non-clinical data for prediction of human pharmacokinetic parameters: In vitro-in vivo extrapolation and allometric scaling. Pharmaceutics. 2019;11(4):168. doi: 10.3390/pharmaceutics11040168
  • Dedrick RL. Animal scale-up. J Pharmacokinet Biopharm. 1973;1(5):435–461. doi: 10.1007/bf01059667
  • Rusyn I, Sakolish C, Kato Y, et al. Microphysiological systems evaluation: experience of TEX-VAL tissue chip testing consortium. Toxicol Sci. 2022;188(2):143–152. doi: 10.1093/toxsci/kfac061
  • Paalzow LK. Torsten Teorell, the father of pharmacokinetics. Upsala J Méd Sci. 2010;100(1):41–46. doi: 10.3109/03009739509178895
  • Peck CC, Barr WH, Benet LZ, et al. Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. Clin Pharmacol Ther. 1992;51(4):465–473. doi: 10.1038/clpt.1992.47
  • Li AP. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today. 2001;6(7):357–366. doi: 10.1016/s1359-6446(01)01712-3
  • Kerns E. Editorial [hot topic: high throughput in vitro ADME/Tox profiling for drug discovery (Guest Editor: Edward H. Kerns)]. Curr Drug Metab. 2008;9(9):845–846. doi: 10.2174/138920008786485074
  • Lin W, Chen Y, Unadkat JD, et al. Applications, challenges, and outlook for PBPK modeling and simulation: a regulatory, industrial and academic perspective. Pharm Res. 2022;39(8):1701–1731. doi: 10.1007/s11095-022-03274-2
  • Zhuang X, Lu C. PBPK modeling and simulation in drug research and development. Acta Pharm Sin B. 2016;6(5):430–440. doi: 10.1016/j.apsb.2016.04.004
  • Belubbi T, Bassani D, Stillhart C, et al. Physiologically based biopharmaceutics modeling of food effect for Basmisanil: a retrospective case study of the utility for formulation bridging. Pharmaceutics. 2023;15(1):191. doi: 10.3390/pharmaceutics15010191
  • Sager JE, Yu J, Ragueneau-Majlessi I, et al. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and Model verification. Drug Metab Dispos. 2015;43(11):1823–1837. doi: 10.1124/dmd.115.065920
  • Gaohua L, Abduljalil K, Jamei M, et al. PBPK for pregnancy with time‐varying physiological parameters. Br J Clin Pharmacol. 2012;74(5):873–885. doi: 10.1111/j.1365-2125.2012.04363.x
  • Chetty M, Johnson TN, Polak S, et al. Physiologically based pharmacokinetic modelling to guide drug delivery in older people. Adv Drug Deliv Rev. 2018;135:85–96. doi: 10.1016/j.addr.2018.08.013
  • Calvier EAM, Krekels EHJ, Johnson TN, et al. Scaling drug clearance from adults to the young children for drugs undergoing hepatic metabolism: a simulation study to search for the simplest scaling method. Aaps J. 2019;21(3):38. doi: 10.1208/s12248-019-0295-0
  • Rostami‐Hodjegan A. Reverse translation in PBPK and QSP: going backwards in order to go forward with confidence. Clin Pharmacol Ther. 2018;103(2):224–232. doi: 10.1002/cpt.904
  • Rostami‐Hodjegan A. Physiologically based pharmacokinetics joined with in vitro–in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology. Clin Pharmacol Ther. 2012;92(1):50–61. doi: 10.1038/clpt.2012.65
  • Rodríguez-Rodríguez DR, Ramírez-Solís R, Garza-Elizondo MA, et al. Genome editing: a perspective on the application of CRISPR/Cas9 to study human diseases (review). Int J Mol Med. 2019;43(4):1559–1574. doi: 10.3892/ijmm.2019.4112
  • Lu J, Liu J, Guo Y, et al. CRISPR-Cas9: a method for establishing rat models of drug metabolism and pharmacokinetics. Acta Pharm Sin B. 2021;11(10):2973–2982. doi: 10.1016/j.apsb.2021.01.007
  • Hall B, Limaye A, Kulkarni AB. Overview: generation of gene knockout mice. Curr Protoc Cell Biol. 2009;44(1):.19.12.1–.19.12.17. doi: 10.1002/0471143030.cb1912s44
  • Yong KSM, Her Z, Chen Q. Humanized mice as unique tools for human-specific studies. Arch Immunol Ther Exp. 2018;66(4):245–266. doi: 10.1007/s00005-018-0506-x
  • Liu J, Lu J, Yao B, et al. Construction of humanized CYP1A2 rats using CRISPR/Cas9 to promote drug metabolism and pharmacokinetic research. Drug Metab Dispos. 2023;52(1):DMD-AR-2023–001500. doi: 10.1124/dmd.123.001500
  • Liu J, Shang X, Huang S, et al. Construction and characterization of CRISPR/Cas9 knockout rat model of carboxylesterase 2a gene. Mol Pharmacol. 2021;100(5):MOLPHARM-AR-2021–000357. doi: 10.1124/molpharm.121.000357
  • Lu J, Chen A, Ma X, et al. Generation and characterization of cytochrome P450 2J3/10 CRISPR/Cas9 knockout rat Model. Drug Metab Dispos. 2020;48(11):DMD-AR-2020–000114. doi: 10.1124/dmd.120.000114
  • Petitet F, Barberan O, Dubus E, et al. Development of an ADME and drug–drug interactions knowledge database for the acceleration of drug discovery and development. Expert Opin Drug Discov. 2006;1(7):737–751. doi: 10.1517/17460441.1.7.737
  • Przybylak KR, Madden JC, Covey-Crump E, et al. Characterisation of data resources for in silico modelling: benchmark datasets for ADME properties. Expert Opin Drug Metab Toxicol. 2018;14(2):169–181. doi: 10.1080/17425255.2017.1316449
  • Bhhatarai B, Walters WP, Hop CECA, et al. Opportunities and challenges using artificial intelligence in ADME/Tox. Nat Mater. 2019;18(5):418–422. doi: 10.1038/s41563-019-0332-5
  • Hansen JU, Quinon P. The importance of expert knowledge in big data and machine learning. Synthese. 2023;201(2):35. doi: 10.1007/s11229-023-04041-5
  • Badillo S, Banfai B, Birzele F, et al. An introduction to machine learning. Clin Pharmacol Ther. 2020;107(4):871–885. doi: 10.1002/cpt.1796
  • Friedman JH. Recent advances in predictive (machine) learning. J Classif. 2006;23(2):175–197. doi: 10.1007/s00357-006-0012-4
  • Atz K, Grisoni F, Schneider G. Geometric deep learning on molecular representations. Nature Mach Intell. 2021;3(12):1023–1032. doi: 10.1038/s42256-021-00418-8
  • Zhou J, Cui G, Hu S, et al. Graph neural networks: a review of methods and applications. AI Open. 2020;1:57–81. doi: 10.1016/j.aiopen.2021.01.001
  • Morger A, Garcia de Lomana M, Norinder U, et al. Studying and mitigating the effects of data drifts on ML model performance at the example of chemical toxicity data. Sci Rep. 2022;12(1):7244. doi: 10.1038/s41598-022-09309-3
  • Yap CW, Li ZR, Chen YZ. Quantitative structure–pharmacokinetic relationships for drug clearance by using statistical learning methods. J Mol Graph Model. 2006;24(5):383–395. doi: 10.1016/j.jmgm.2005.10.004
  • Xu C, Mager DE. Quantitative structure–pharmacokinetic relationships. Expert Opin Drug Metab Toxicol. 2011;7(1):63–77. doi: 10.1517/17425255.2011.537257
  • Janela T, Takeuchi K, Bajorath J. Predicting potent compounds using a conditional variational autoencoder based upon a new structure–potency fingerprint. Biomolecules. 2023;13(2):393. doi: 10.3390/biom13020393
  • Naga D, Muster W, Musvasva E, et al. Off-targetP ML: an open source machine learning framework for off-target panel safety assessment of small molecules. J Cheminformatics. 2022;14(1):27. doi: 10.1186/s13321-022-00603-w
  • Prezhdo OV. Advancing physical chemistry with machine learning. J Phys Chem Lett. 2020;11(22):9656–9658. doi: 10.1021/acs.jpclett.0c03130
  • Lim MA, Yang S, Mai H, et al. Exploring deep learning of quantum chemical properties for absorption, distribution, metabolism, and excretion predictions. J Chem Inf Model. 2022;62(24):6336–6341. doi: 10.1021/acs.jcim.2c00245
  • Bräm DS, Parrott N, Hutchinson L, et al. Introduction of an artificial neural network–based method for concentration‐time predictions. CPT Pharmacom Syst Pharma. 2022;11(6):745–754. doi: 10.1002/psp4.12786
  • Pietersma D, Lacroix R, Lefebvre D, et al. Performance analysis for machine-learning experiments using small data sets. Comput Electron Agric. 2003;38(1):1–17. doi: 10.1016/s0168-1699(02)00104-7
  • Lascio ED, Gerebtzoff G, Rodríguez-Pérez R. Systematic evaluation of local and global machine learning models for the prediction of ADME properties. Mol Pharm. 2023;20(3):1758–1767. doi: 10.1021/acs.molpharmaceut.2c00962
  • Kumar K, Chupakhin V, Vos A, et al. Development and implementation of an enterprise-wide predictive model for early absorption, distribution, metabolism and excretion properties. Futur Med Chem. 2021;13(19):1639–1654. doi: 10.4155/fmc-2021-0138
  • Czub N, Szlȩk J, Pacławski A, et al. Artificial intelligence-based quantitative structure–property relationship model for predicting human intestinal absorption of compounds with serotonergic activity. Mol Pharm. 2023;20(5):2545–2555. doi: 10.1021/acs.molpharmaceut.2c01117
  • Zhang X, Liu T, Fan X, et al. In silico modeling on ADME properties of natural products: classification models for blood-brain barrier permeability, its application to traditional Chinese medicine and in vitro experimental validation. J Mol Graph Model. 2017;75:347–354. doi: 10.1016/j.jmgm.2017.05.021
  • Prachayasittikul V, Worachartcheewan A, Shoombuatong W, et al. Classification of P-glycoprotein-interacting compounds using machine learning methods. Excli J. 2015;14:958–970. doi: 10.17179/excli2015-374
  • Belekar V, Lingineni K, Garg P. Classification of breast cancer resistant protein (BCRP) inhibitors and non-inhibitors using machine learning approaches. Comb Chem High Throughput Screen. 2015;18(5):476–485. doi: 10.2174/1386207318666150525094503
  • Banerjee P, Dunkel M, Kemmler E, et al. SuperCYPsPred—a web server for the prediction of cytochrome activity. Nucleic Acids Res. 2020;48(W1):W580–W585. doi: 10.1093/nar/gkaa166
  • Holmer M, de C, Kops B, et al. Cypstrate: a set of machine learning models for the accurate classification of cytochrome P450 enzyme substrates and non-substrates. Molecules. 2021;26(15):4678. doi: 10.3390/molecules26154678
  • Mazzolari A, Scaccabarozzi A, Vistoli G, et al. MetaClass, a comprehensive classification system for predicting the occurrence of metabolic reactions based on the MetaQSAR database. Molecules. 2021;26(19):5857. doi: 10.3390/molecules26195857
  • Malwe AS, Srivastava GN, Sharma VK. GutBug: a tool for prediction of human gut bacteria mediated biotransformation of biotic and xenobiotic molecules using machine learning. J Mol Biol. 2023;435(14):168056. doi: 10.1016/j.jmb.2023.168056
  • Jang WD, Jang J, Song JS, et al. PredPS: attention-based graph neural network for predicting stability of compounds in human plasma. Comput Struct Biotechnol J. 2023;21:3532–3539. doi: 10.1016/j.csbj.2023.07.008
  • Zaretzki J, Matlock M, Swamidass SJ. XenoSite: accurately predicting CYP-Mediated sites of metabolism with neural networks. J Chem Inf Model. 2013;53(12):3373–3383. doi: 10.1021/ci400518g
  • StarDrop: small molecule drug discovery & data visualisation software. 2024 Mar 19. Available from: https://optibrium.com/stardrop/
  • Ng SSS, Lu Y. Evaluating the use of graph neural networks and transfer learning for oral bioavailability prediction. J Chem Inf Model. 2023;63(16):5035–5044. doi: 10.1021/acs.jcim.3c00554
  • Rácz A, Vincze A, Volk B, et al. Extending the limitations in the prediction of PAMPA permeability with machine learning algorithms. Eur J Pharm Sci. 2023;188:106514. doi: 10.1016/j.ejps.2023.106514
  • Bhatia AS, Saggi MK, Kais S. Quantum Machine learning predicting ADME-Tox properties in drug discovery. J Chem Inf Model. 2023. doi: 10.1021/acs.jcim.3c01079 63 21 6476–6486
  • Schneckener S, Grimbs S, Hey J, et al. Prediction of oral bioavailability in rats: transferring insights from in vitro correlations to (deep) machine learning models using in silico Model outputs and chemical structure parameters. J Chem Inf Model. 2019;59(11):4893–4905. doi: 10.1021/acs.jcim.9b00460
  • Iwata H, Matsuo T, Mamada H, et al. Predicting total drug clearance and volumes of distribution using the machine learning-mediated multimodal method through the imputation of various nonclinical data. J Chem Inf Model. 2022;62(17):4057–4065. doi: 10.1021/acs.jcim.2c00318
  • Caruana R. Multitask learning. Mach Learn. 1997;28(1):41–75. doi: 10.1023/a:1007379606734
  • Liu K, Sun X, Jia L, et al. Chemi-Net: a molecular graph convolutional network for accurate drug property prediction. Int J Mol Sci. 2019;20(14):3389. doi: 10.3390/ijms20143389
  • Lou H, Hageman MJ. Machine learning attempts for predicting human subcutaneous bioavailability of monoclonal antibodies. Pharm Res. 2021;38(3):451–460. doi: 10.1007/s11095-021-03022-y
  • Heyndrickx W, Mervin L, Morawietz T, et al. MELLODDY: cross-pharma Federated Learning at unprecedented scale unlocks benefits in QSAR without compromising proprietary information. J Chem Inf Model. 2023. doi: 10.1021/acs.jcim.3c00799
  • Fang C, Wang Y, Grater R, et al. Prospective Validation of Machine Learning Algorithms for absorption, distribution, metabolism, and excretion prediction: an industrial perspective. J Chem Inf Model. 2023;63(11):3263–3274. doi: 10.1021/acs.jcim.3c00160
  • Wang X, Liu M, Zhang L, et al. Optimizing pharmacokinetic property prediction based on integrated datasets and a deep learning approach. J Chem Inf Model. 2020;60(10):4603–4613. doi: 10.1021/acs.jcim.0c00568
  • Orosz Á, Héberger K, Rácz A. Comparison of descriptor- and fingerprint sets in machine learning models for ADME-Tox targets. Front Chem. 2022;10:852893. doi: 10.3389/fchem.2022.852893
  • Obrezanova O, Martinsson A, Whitehead T, et al. Prediction of in vivo pharmacokinetic parameters and Time–exposure curves in rats using machine learning from the chemical structure. Mol Pharm. 2022;19(5):1488–1504. doi: 10.1021/acs.molpharmaceut.2c00027
  • Yang K, Swanson K, Jin W, et al. Analyzing learned molecular representations for property prediction. J Chem Inf Model. 2019;59(8):3370–3388. doi: 10.1021/acs.jcim.9b00237
  • Heid E, Greenman KP, Chung Y, et al. Chemprop: a machine learning package for chemical property prediction. J Chem Inf Model. 2024;64(1):9–17. doi: 10.1021/acs.jcim.3c01250
  • Irwin BWJ, Levell JR, Whitehead TM, et al. Practical applications of deep learning to impute heterogeneous drug discovery data. J Chem Inf Model. 2020;60(6):2848–2857. doi: 10.1021/acs.jcim.0c00443
  • Freitas AA, Limbu K, Ghafourian T. Predicting volume of distribution with decision tree-based regression methods using predicted tissue: plasma partition coefficients. J Cheminformatics. 2015;7(1):6. doi: 10.1186/s13321-015-0054-x
  • Murad N, Pasikanti KK, Madej BD, et al. Predicting volume of distribution in humans: performance of in silico methods for a large set of structurally diverse clinical compounds. Drug Metab Dispos. 2020;49(2):DMD-AR-2020–000202. doi: 10.1124/dmd.120.000202
  • Cauvin C, Bourguignon L, Carriat L, et al. Machine-learning exploration of exposure-effect relationships of cisplatin in head and neck cancer patients. Pharmaceutics. 2022;14(11):2509. doi: 10.3390/pharmaceutics14112509
  • Tang A. Machine learning for pharmacokinetic/pharmacodynamic modeling. J Pharm Sci. 2023;112(5):1460–1475. doi: 10.1016/j.xphs.2023.01.010
  • Khusial R, Bies RR, Akil A. Deep learning methods applied to drug concentration prediction of olanzapine. Pharmaceutics. 2023;15(4):1139. doi:10.3390/pharmaceutics15041139
  • Naga D, Parrott N, Ecker GF, et al. Evaluation of the success of high-throughput physiologically based pharmacokinetic (HT-PBPK) modeling predictions to inform early drug discovery. Mol Pharm. 2022;19(7):2203–2216. doi: 10.1021/acs.molpharmaceut.2c00040
  • Adachi K, Shimizu M, Yamazaki H. Updated in silico prediction methods for fractions absorbed and key input parameters of 355 disparate chemicals for physiologically based pharmacokinetic models for time-dependent plasma concentrations after virtual oral doses in humans. Biol Pharm Bull. 2022;45(12):1812–1817. doi: 10.1248/bpb.b22-00502
  • Parrott N, Manevski N, Olivares-Morales A. Can we predict clinical pharmacokinetics of highly lipophilic compounds by Integration of Machine Learning or in vitro data into physiologically based models? A feasibility study based on 12 development compounds. Mol Pharmaceut. 2022;19(11):3858–3868. doi: 10.1021/acs.molpharmaceut.2c00350
  • Fagerholm U, Hellberg S, Spjuth O. Advances in predictions of oral bioavailability of Candidate drugs in man with new machine learning methodology. Molecules. 2021;26(9):2572. doi: 10.3390/molecules26092572
  • Destere A, Marquet P, Labriffe M, et al. A hybrid algorithm combining population pharmacokinetic and machine learning for isavuconazole exposure prediction. Pharm Res. 2023;40(4):951–959. doi: 10.1007/s11095-023-03507-y
  • Destere A, Marquet P, Gandonnière CS, et al. A hybrid Model associating population pharmacokinetics with machine learning: a case study with iohexol clearance estimation. Clin Pharmacokinet. 2022;61(8):1157–1165. doi: 10.1007/s40262-022-01138-x
  • Hughes JH, Tong DMH, Burns V, et al. Clinical decision support for chemotherapy‐induced neutropenia using a hybrid pharmacodynamic/machine learning model. CPT: Pharmacomet Syst Pharmacol. 2023;12(11):1764–1776. doi: 10.1002/psp4.13019
  • Du Y, Zhang Y, Yang Z, et al. Artificial neural network analysis of determinants of tacrolimus pharmacokinetics in liver transplant recipients. Ann Pharmacother. 2023;58(5):469–479.
  • Damnjanović I, Tsyplakova N, Stefanović N, et al. Joint use of population pharmacokinetics and machine learning for optimizing antiepileptic treatment in pediatric population. Ther Adv Drug Saf. 2023;14:20420986231181336. doi: 10.1177/20420986231181337
  • Jaber MM, Yaman B, Sarafoglou K, et al. Application of deep neural networks as a prescreening tool to assign individualized absorption models in pharmacokinetic analysis. Pharmaceutics. 2021;13(6):797. doi: 10.3390/pharmaceutics13060797
  • Lu J, Deng K, Zhang X, et al. Neural-ODE for pharmacokinetics modeling and its advantage to alternative machine learning models in predicting new dosing regimens. iScience. 2021;24(7):102804. doi: 10.1016/j.isci.2021.102804
  • Choobdar S, Ahsen ME, Crawford J, et al. Assessment of network module identification across complex diseases. Nat Methods. 2019;16(9):843–852. doi: 10.1038/s41592-019-0509-5
  • Grinsztajn L, Oyallon E, Varoquaux G. Why do tree-based models still outperform deep learning on typical tabular data? [cited Jan 2024 19]. Available from: https://arxiv.org/pdf/2207.08815.pdf
  • Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell. 2019;1(5):206–215. doi: 10.1038/s42256-019-0048-x
  • Sheridan RP. The relative importance of domain applicability metrics for estimating prediction errors in QSAR varies with training set diversity. J Chem Inf Model. 2015;55(6):1098–1107. doi: 10.1021/acs.jcim.5b00110
  • Morger A, Mathea M, Achenbach JH, et al. KnowTox: pipeline and case study for confident prediction of potential toxic effects of compounds in early phases of development. J Cheminformatics. 2020;12(1):24. doi: 10.1186/s13321-020-00422-x
  • Lombardo F, Bentzien J, Berellini G, et al. Prediction of human clearance using in silico models with reduced bias. Mol Pharmaceutics. 2024;21(3):1192–1203. doi: 10.1021/acs.molpharmaceut.3c00812
  • Tanimoto K. An elementary mathematical theory of classification and prediction. New York (USA): McGraw-Hill; 1958.
  • Hirschfeld L, Swanson K, Yang K, et al. Uncertainty quantification using neural networks for molecular property prediction. J Chem Inf Model. 2020;60(8):3770–3780. doi: 10.1021/acs.jcim.0c00502
  • Vasudevan RK, Ziatdinov M, Vlcek L, et al. Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality. Npj Comput Mater. 2021;7(1):16. doi: 10.1038/s41524-020-00487-0
  • Busk J, Jørgensen PB, Bhowmik A, et al. Calibrated uncertainty for molecular property prediction using ensembles of message passing neural networks. Mach Learn Sci Technol. 2022;3(1):015012. doi: 10.1088/2632-2153/ac3eb3
  • Li Y, Rao S, Hassaine A, et al. Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records. Sci Rep. 2021;11(1):20685. doi: 10.1038/s41598-021-00144-6
  • Bassani D, Brigo A, Andrews-Morger A. Federated learning in computational toxicology: an industrial perspective on the Effiris Hackathon. Chem Res Toxicol. 2023;36(9):1503–1517. doi: 10.1021/acs.chemrestox.3c00137
  • Crouzet SJ, Lieberherr AM, Atz K, et al. G-PLIP: knowledge graph neural network for structure-free protein-ligand bioactivity prediction. bioRxiv. 2023 Sep 1;555977. doi: 10.1101/2023.09.01.555977
  • Michoel T, Zhang JD. Causal inference in drug discovery and development. Drug Discov Today. 2023;28(10):103737. doi: 10.1016/j.drudis.2023.103737
  • Scannell JW, Bosley J, Hickman JA, et al. Predictive validity in drug discovery: what it is, why it matters and how to improve it. Nat Rev Drug Discov. 2022;21(12):915–931. doi: 10.1038/s41573-022-00552-x
  • Fernando K, Menon S, Jansen K, et al. Achieving end-to-end success in the clinic: Pfizer’s learnings on R&D productivity. Drug Discov Today. 2022;27(3):697–704. doi: 10.1016/j.drudis.2021.12.010
  • Morgan P, Brown DG, Lennard S, et al. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat Rev Drug Discov. 2018;17(3):167–181. doi: 10.1038/nrd.2017.244
  • Schneider G. Automating drug discovery. Nat Rev Drug Discov. 2018;17(2):97–113. doi: 10.1038/nrd.2017.232
  • Lin Z, Chou W-C. Machine learning and artificial intelligence in toxicological sciences. Toxicol Sci. 2022;189(1):7–19. doi: 10.1093/toxsci/kfac075
  • Ribba B, Bräm DS, Baverel PG, et al. Model enhanced reinforcement learning to enable precision dosing: a theoretical case study with dosing of propofol. CPT: Pharmacomet Syst Pharmacol. 2022;11(11):1497–1510. doi: 10.1002/psp4.12858
  • Edginton AN. Using physiologically based pharmacokinetic modeling for mechanistic insight: cases of reverse translation. Clin Transl Sci. 2018;11(2):109–111. doi: 10.1111/cts.12517
  • Shakhnovich V. It’s time to reverse our thinking: the reverse translation research paradigm. Clin Transl Sci. 2018;11(2):98–99. doi: 10.1111/cts.12538
  • Kasichayanula S, Venkatakrishnan K. Reverse translation: the art of cyclical learning. Clin Pharmacol Ther. 2018;103(2):152–159. doi: 10.1002/cpt.952