155
Views
0
CrossRef citations to date
0
Altmetric
Review

Understanding the impact of binding free energy and kinetics calculations in modern drug discovery

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 671-682 | Received 27 Jul 2023, Accepted 25 Apr 2024, Published online: 09 May 2024

References

  • DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33. doi: 10.1016/j.jhealeco.2016.01.012
  • Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000;33(12):889–897. doi: 10.1021/ar000033j
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in advanced drug delivery reviews 23 (1997) 3–25. 1. Adv Drug Delivery Rev. 2001;46(1–3):3–26. doi: 10.1016/S0169-409X(00)00129-0
  • Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model. 2016;56(2):256–269.
  • Miao Y, Bhattarai A, & Wang J. Ligand gaussian accelerated molecular dynamics (LiGaMD): characterization of ligand binding thermodynamics and kinetics. J Chem Theory Comput. 2020;16(9):5526–5547. doi: 10.1021/acs.jctc.0c00395
  • Wang J, & Miao Y. Ligand gaussian accelerated molecular dynamics 2 (LiGamd2): improved calculations of ligand binding thermodynamics and kinetics with closed protein pocket. J Chem Theory Comput. 2023;19(3):733–745. doi: 10.1021/acs.jctc.2c01194
  • Bhattarai A, Pawnikar S, Miao Y. Mechanism of ligand recognition by human ACE2 receptor. J Phys Chem Lett. 2021;12(20):4814–4822. doi: 10.1021/acs.jpclett.1c01064
  • Lenselink EB, Louvel J, Forti AF, et al. Predicting binding affinities for GPCR ligands using free-energy perturbation. ACS Omega. 2016;1(2):293–304. doi: 10.1021/acsomega.6b00086
  • Cournia Z, Allen B, Sherman W. Relative binding free energy calculations in drug discovery: recent advances and practical considerations. J Chem Inf Model. 2017 Dec 26;57(12):2911–2937. doi: 10.1021/acs.jcim.7b00564
  • Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449–461. doi: 10.1517/17460441.2015.1032936
  • Gohlke H, Klebe G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Ang Chem Int Ed. 2002;41(15):2644–2676. doi: 10.1002/1521-3773(20020802)41:15<2644:AID-ANIE2644>3.0.CO;2-O
  • Armacost KA, Riniker S, Cournia Z. Novel directions in free energy methods and applications. J Chem Inf Model. 2020;60(1):1–5. doi: 10.1021/acs.jcim.9b01174
  • Cournia Z, Chipot C, Roux B, et al. Free energy methods in drug discovery—introduction. Free energy methods in drug discovery: current state and future directions. 2021. p. 1–38. doi: 10.1021/bk-2021-1397.ch001
  • Bowman GR, Beauchamp KA, Boxer G, et al. Progress and challenges in the automated construction of Markov state models for full protein systems. J Chem Phys. 2009;131(12):124101. doi: 10.1063/1.3216567
  • York MD. Modern alchemical free energy methods for drug discovery explained. ACS Phys Chem Au. 2023;3(6):478–491. doi: 10.1021/acsphyschemau.3c00033
  • Lee TS, Tsai HC, Ganguly A, et al. ACES: optimized alchemically enhanced sampling. J Chem Theory Comput. 2023;19(2):472–487. doi: 10.1021/acs.jctc.2c00697
  • Swanson JM, Henchman RH, McCammon JA. Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys J 2004;86(1):67–74. doi: 10.1016/S0006-3495(04)74084-9
  • Genheden S, Ryde U. Comparison of end-point continuum-solvation methods for the calculation of protein–ligand binding free energies. Proteins. 2012;80(5):1326–1342. doi: 10.1002/prot.24029
  • Sham YY, Chu ZT, Tao H, et al. Examining methods for calculations of binding free energies: LRA, LIE, PDLDLRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Proteins. 2000;39(4):393–407. doi: 10.1002/(SICI)1097-0134(20000601)39:4<393:AID-PROT120>3.3.CO;2-8
  • Aqvist J, Medina C, Samuelsson JE. A new method for predicting binding affinity in computer-aided drug design. Protein Eng Des Sel. 1994;7(3):385–391. doi: 10.1093/protein/7.3.385
  • Adekoya OA, Willassen NP, Sylte I. Molecular insight into pseudolysin inhibition using the MM-PBSA and LIE methods. J Struct Biol. 2006;153(2):129–144. doi: 10.1016/j.jsb.2005.11.003
  • Hansson T, Marelius J, Aqvist J. Ligand binding affinity prediction by linear interaction energy methods. J ComputAided Mol Des. 1998;12(1):27–35. doi: 10.1023/A:1007930623000
  • Torrie GM, Valleau JP. Nonphysical sampling distributions in monte carlo free-energy estimation: umbrella sampling. J Comput Phys. 1977;23(2):187–199. doi: 10.1016/0021-9991(77)90121-8
  • Darve E, Rodríguez-Gómez D, Pohorille A. Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys. 2008;128(14). doi: 10.1063/1.2829861
  • Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci. 2002;99(20):12562–12566. doi: 10.1073/pnas.202427399
  • Grubmüller H. Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys Rev E. 1995 Sep;52(3):2893–2906. doi: 10.1103/PhysRevE.52.2893
  • Valsson O, Parrinello M. Variational approach to enhanced sampling and free energy calculations. Phys Rev Lett. 2014;113(9). doi: 10.1103/physrevlett.113.090601
  • Kokh DB, Amaral M, Bomke J, et al. Estimation of drug-target residence times by τ-random acceleration molecular dynamics simulations. J Chem Theory Comput. 2018;14(7):3859–3869. doi: 10.1021/acs.jctc.8b00230
  • Wolf S, Stock G. Targeted molecular dynamics calculations of free energy profiles using a nonequilibrium friction correction. J Chem Theory Comput. 2018;14(12):6175–6182. doi: 10.1021/acs.jctc.8b00835
  • Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, et al. Gmx_mmpbsa: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput. 2021 Oct 12;17(10):6281–6291. doi: 10.1021/acs.jctc.1c00645
  • Wang S, Sun X, Cui W, et al. MM/PB(GB)SA benchmarks on soluble proteins and membrane proteins. Front Pharmacol. 2022 Dec 1;13:1018351. doi: 10.3389/fphar.2022.1018351
  • Tuccinardi T. What is the current value of MM/PBSA and MM/GBSA methods in drug discovery? Expert Opin Drug Discov. 2021 Nov;16(11):1233–1237. doi: 10.1080/17460441.2021.1942836
  • Virtanen SI, Niinivehmas SP, Pentikäinen OT. Case-specific performance of MM-PBSA, MM-GBSA, and SIE in virtual screening. J Mol Graph Model. 2015 Nov;62:303–318. doi: 10.1016/j.jmgm.2015.10.012
  • Weis A, Katebzadeh K, Soderhjelm P, et al. Ligand affinities predicted with the MM/PBSA method: dependence on the simulation method and the force field. J Med Chem. 2006;49(22):6596–6606. doi: 10.1021/jm0608210
  • Sahakyan H. Improving virtual screening results with MM/GBSA and MM/PBSA rescoring. J Comput Aided Mol Des. 2021 Jun;35(6):731–736. doi: 10.1007/s10822-021-00389-3
  • Crean RM, Pudney CR, Cole DK, et al. Reliable in silico ranking of engineered therapeutic TCR binding affinities with MMPB/GBSA. J Chem Inf Model. 2022 Feb 14;62(3):577–590. doi: 10.1021/acs.jcim.1c00765
  • Zhang X, Wong SE, Lightstone FC. Towards fully automated high-performance computing drug discovery: a massively parallel virtual screening pipeline for docking and MM/GBSA rescoring to improve enrichment. J Chem Inf Model. 2014;54(1):324–337. doi: 10.1021/ci4005145
  • Pan Y, Lu Z, Li C, et al. Molecular dockings and molecular dynamics simulations reveal the potency of different inhibitors against xanthine oxidase. ACS Omega. 2021;6(17):11639–11649. doi: 10.1021/acsomega.1c00968
  • Maffucci I, Hu X, Fumagalli V, et al. An efficient implementation of the nwat-MMGBSA method to rescore docking results in medium-throughput virtual screenings. Front Chem. 2018;6:6. doi: 10.3389/fchem.2018.00043
  • Wang Z, Pan H, Sun H, et al. fastDRH: a webserver to predict and analyze protein-ligand complexes based on molecular docking and MM/PB(GB)SA computation. Brief Bioinform. 2022 Sep 20;23(5):bbac201. doi: 10.1093/bib/bbac201
  • Wang JM, Hou TJ, Xu XJ. Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr Comput-Aided Drug Des. 2006;2(3):287–306. doi: 10.2174/157340906778226454
  • Rastelli G, Del Rio A, Degliesposti G, et al. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J Comput Chem. 2009;31(4):797–810. doi: 10.1002/jcc.21372
  • Zhong S, Huang K, Luo S, et al. Improving the performance of the MM/PBSA and MM/GBSA methods in recognizing the native structure of the bcl-2 family using the interaction entropy method. Phys Chem Chem Phys. 2020;22(7):4240–4251. doi: 10.1039/c9cp06459a
  • Bello M, Bandala C. Evaluating the ability of end-point methods to predict the binding affinity tendency of protein kinase inhibitors. RSC Adv. 2023 Aug 22;13(36):25118–25128. doi: 10.1039/d3ra04916g
  • Homeyer N, Gohlke H. Free energy calculations by the molecular mechanics poisson-Boltzmann surface area method. Mol Inform. 2012 Feb;31(2):114–122. doi: 10.1002/minf.201100135
  • Nurisso A, Blanchard B, Audfray A, et al. Role of water molecules in structure and energetics of Pseudomonas aeruginosa lectin I interacting with disaccharides. J Biol Chem. 2010 Jun 25;285(26):20316–20327. doi: 10.1074/jbc.M110.108340
  • Foloppe N, Hubbard R. Towards predictive ligand design with free-energy based computational methods? Curr Med Chem. 2006;13(29):3583–3608. doi: 10.2174/092986706779026165
  • Wang J, Hou T, Xu X. Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr Comput-Aided Drug Des. 2006;2(3):287–306. doi: 10.2174/157340906778226454
  • Homeyer N, Gohlke H. Free energy calculations by the molecular mechanics poisson Boltzmann surface area method. Mol Inform. 2012;31(2):114–122. doi: 10.1002/minf.201100135
  • Ekberg V, Ryde U. On the use of interaction entropy and related methods to estimate binding entropies. J Chem Theory Comput. 2021 Aug 10;17(8):5379–5391. doi: 10.1021/acs.jctc.1c00374
  • Zwanzig RW. High-temperature equation of state by a perturbation method. 1. Nonpolar Gases J Chem Phys. 1954;22(8):1420–1426. doi: 10.1063/1.1740409
  • Kirkwood JG. Statistical mechanics of fluid mixtures. J Chem Phys. 1935;3(5):300–313. doi: 10.1063/1.1749657
  • Bennett CH. Efficient estimation of free energy differences from monte carlo data. J Comput Phys. 1976;22(2):245–268. doi: 10.1016/0021-9991(76)90078-4
  • Shirts MR. Reweighting from the mixture distribution as a better way to describe the multistate bennett acceptance ratio. arXiv Preprint arXiv. 2017;1704:00891.
  • Matsunaga Y, Kamiya M, Oshima H, et al. Use of multistate Bennett acceptance ratio method for free-energy calculations from enhanced sampling and free-energy perturbation. Biophys Rev. 2022 Dec 14;14(6):1503–1512. doi: 10.1007/s12551-022-01030-9
  • Matricon P, Vo DD, Gao ZG, et al. Fragment-based design of selective GPCR ligands guided by free energy simulations. Chem Commun (Camb). 2021 Nov 19;57(92):12305–12308. doi: 10.1039/d1cc03202j
  • Deflorian F, Perez-Benito L, Lenselink EB, et al. Accurate prediction of GPCR ligand binding affinity with free energy perturbation. J Chem Inf Model. 2020;60(11):5563–5579. doi: 10.1021/acs.jcim.0c00449
  • Jespers W, Verdon G, Azuaje J, et al. X-Ray crystallography and free energy calculations reveal the binding mechanism of A2A adenosine receptor antagonists. Angew Chem Int Ed Engl. 2020 Sep 14;59(38):16536–16543. doi: 10.1002/anie.202003788
  • Panel N, Vo DD, Kahlous NA, et al. Design of drug efficacy guided by free energy simulations of the β2-adrenoceptor. Angew Chem Int Ed Engl. 2023 May 22;62(22):e202218959. doi: 10.1002/anie.202218959
  • Sergeeva AP, Katsamba PS, Liao J, et al. Free energy perturbation calculations of mutation effects on SARS-CoV-2 RBD: ACE2 binding affinity. J Mol Biol. 2023 Aug 1;435(15):168187. doi: 10.1016/j.jmb.2023.168187
  • Ibrahim MT, Verkhivker GM, Misra J, et al. Novel allosteric effectors targeting human transcription factor TEAD. Int J Mol Sci. 2023 May 19;24(10):9009. doi: 10.3390/ijms24109009
  • Havranek B, Demissie R, Lee H, Lan S, Zhang H, Sarafianos S, Ayitou AJ, Islam SM. Discovery of nirmatrelvir resistance mutations in SARS-CoV-2 3CLpro: a computational-experimental approach. J Chem Inf Model. 2023 Nov 10;63(22):7180–7188. doi: 10.1021/acs.jcim.3c01269 Epub ahead of print.
  • Wang L, Wu YJ, Deng Y, et al. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc. 2015;137(7):2695–2703. doi: 10.1021/ja512751q
  • Horton JT, Boothroyd S, Wagner J, et al. Open force field BespokeFit: automating bespoke torsion parametrization at scale. J Chem Inf Model. 2022;62(22):5622–5633. doi: 10.1021/acs.jcim.2c01153
  • Liu P, Kim B, Friesner RA, et al. Replica exchange with solute tempering: a method for sampling biological systems in explicit water. Proc Natl Acad Sci, USA. 2005;102(39):13749–13754. doi: 10.1073/pnas.0506346102
  • Wang L, Friesner RA, Berne BJ. Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J Phys Chem B. 2011;115(30):9431–9438. doi: 10.1021/jp204407d
  • Wang L, Berne BJ, Friesner RA. On achieving high accuracy and reliability in the calculation of relative protein-ligand binding affinities. Proc Natl Acad Sci, USA. 2012;109(6):1937–1942. doi: 10.1073/pnas.1114017109
  • Lenselink EB, Louvel J, Forti AF, et al. Predicting binding affinities for GPCR ligands using free-energy perturbation. ACS Omega. 2016;1(2):293–304. doi: 10.1021/acsomega.6b00086
  • Sun S, Fushimi M, Rossetti T, et al. Scaffold hopping and optimization of small molecule soluble adenyl cyclase inhibitors led by free energy perturbation. J Chem Inf Model. 2023 May 8;63(9):2828–2841. doi: 10.1021/acs.jcim.2c01577
  • Clark AJ, Gindin T, Zhang B, et al. Free energy perturbation calculation of relative binding free energy between broadly neutralizing antibodies and the gp120 glycoprotein of HIV-1. J Mol Biol. 2017;429(7):930–947. doi: 10.1016/j.jmb.2016.11.021
  • Clark AJ, Negron C, Hauser K, et al. Relative binding affinity prediction of charge-changing sequence mutations with FEP in protein–protein interfaces. J Mol Biol. 2019;431(7):1481–1493. doi: 10.1016/j.jmb.2019.02.003
  • Yamashita T. Toward rational antibody design: recent advancements in molecular dynamics simulations. Int Immunol. 2018;30(4):133–140. doi: 10.1093/intimm/dxx077
  • Zhu F, Bourguet FA, Bennett WFD, et al. Large-scale application of free energy perturbation calculations for antibody design. Sci Rep. 2022 Jul 21;12(1):12489. doi: 10.1038/s41598-022-14443-z
  • Sormanni P, Aprile FA, Vendruscolo M. Third generation antibody discovery methods: in silico rational design. Chem Soc Rev. 2018;47(24):9137–9157. doi: 10.1039/C8CS00523K
  • Chen W, Cui D, Jerome SV, et al. Enhancing hit discovery in virtual screening through absolute protein–ligand binding free-energy calculations. J Chem Inf Model. 2023 May 22;63(10):3171–3185. doi: 10.1021/acs.jcim.3c00013
  • Ghahremanpour MM, Saar A, Tirado-Rives J, et al. Computation of absolute binding free energies for noncovalent inhibitors with SARS-CoV-2 main protease. J Chem Inf Model. 2023 Aug 28;63(16):5309–5318. doi: 10.1021/acs.jcim.3c00874
  • Lockhart C, Luo X, Olson A, et al. Can free energy perturbation simulations coupled with replica-exchange molecular dynamics study ligands with distributed binding sites? J Chem Inf Model. 2023 Aug 14;63(15):4791–4802. doi: 10.1021/acs.jcim.3c00631
  • Jorgensen WL. Efficient drug lead discovery and optimization. Acc Chem Res. 2009;42(6):724–733. doi: 10.1021/ar800236t
  • Chodera JD, Mobley DL, Shirts MR, et al. Alchemical free energy methods for drug discovery: progress and challenges. Curr Opin Struct Biol. 2011 Apr;21(2):150–160. doi: 10.1016/j.sbi.2011.01.011
  • Procacci P. Methodological uncertainties in drug-receptor binding free energy predictions based on classical molecular dynamics. Curr Opin Struct Biol. 2021 Apr;67:127–134. doi: 10.1016/j.sbi.2020.08.001
  • Fu H, Chipot C, Shao X, et al. Standard binding free-energy calculations: how far are we from automation? J Phys Chem B. 2023 Dec 14;127(49):10459–10468. doi: 10.1021/acs.jpcb.3c04370
  • Shih AY, Hack M, Mirzadegan T. Impact of protein preparation on resulting accuracy of FEP calculations. J Chem Inf Model. 2020;60(11):5287–5289. doi: 10.1021/acs.jcim.0c00445
  • Muegge I, Hu Y. Recent advances in alchemical binding free energy calculations for drug discovery. ACS Med Chem Lett. 2023 Feb 16;14(3):244–250. doi: 10.1021/acsmedchemlett.2c00541
  • Zhang H, Jiang W, Chatterjee P, et al. Ranking reversible covalent drugs: from free energy perturbation to fragment docking. J Chem Inf Model. 2019;59(5):2093–2102. doi: 10.1021/acs.jcim.8b00959
  • Constantine KL, Mueller L, Metzler WJ, et al. Multiple and single binding modes of fragment-like kinase inhibitors revealed by molecular modeling, residue type-selective protonation, and nuclear overhauser effects. J Med Chem. 2008;51(19):6225–6229. doi: 10.1021/jm800747w
  • Shirts MR, Chodera JD. Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys. 2008;129(12):124105. doi: 10.1063/1.2978177
  • Zou J, Tian C, Simmerling C. Blinded prediction of protein–ligand binding affinity using amber thermodynamic integration for the 2018 D3R Grand Challenge 4. J Comput Aided Mol Des. 2019;33(12):1021–1029. doi: 10.1007/s10822-019-00223-x
  • He X, Liu S, Lee T-S, et al. Fast, accurate, and reliable protocols for routine calculations of protein–ligand binding affinities in drug design projects using amber GPU-ti with FF14SB/GAFF. ACS Omega. 2020;5(9):4611–4619. doi: 10.1021/acsomega.9b04233
  • Sheng Z, Bimela JS, Wang M, et al. An optimized thermodynamics integration protocol for identifying beneficial mutations in antibody design. Front Immunol. 2023;14:14. doi: 10.3389/fimmu.2023.1190416
  • Bhati AP, Wan S, Wright DW, et al. Rapid, accurate, precise, and reliable relative free energy prediction using ensemble based thermodynamic integration. J Chem Theory Comput. 2016;13(1):210–222. doi: 10.1021/acs.jctc.6b00979
  • Tiwary P, Parrinello M. From metadynamics to dynamics. Phys Rev Lett. 2013;111(23). doi: 10.1103/physrevlett.111.230602
  • Pramanik D, Smith Z, Kells A, et al. CAN one trust kinetic and thermodynamic observables from biased metadynamics simulations? Detailed quantitative benchmarks on millimolar drug fragment dissociation. J Phys Chem B. 2019;123(17):3672–3678. doi: 10.1021/acs.jpcb.9b01813
  • Wang Y, Martins JM, Lindorff-Larsen K. Biomolecular conformational changes and ligand binding: from kinetics to thermodynamics. Chem Sci. 2017;8(9):6466–6473. doi: 10.1039/c7sc01627a
  • Lamim Ribeiro JM, Provasi D, Filizola M. A combination of machine learning and infrequent metadynamics to efficiently predict kinetic rates, transition states, and molecular determinants of drug dissociation from G protein-coupled receptors. J Chem Phys. 2020;153(12). doi: 10.1063/5.0019100
  • Mahinthichaichan P, Vo QN, Ellis CR, et al. Kinetics and mechanism of fentanyl dissociation from the μ-opioid receptor. JACS Au. 2021;1(12):2208–2215. doi: 10.1021/jacsau.1c00341
  • Ravindra P, Smith Z, Tiwary P. Automatic mutual information noise omission (AMINO): generating order parameters for molecular systems. Mol Syst Des Eng. 2020;5(1):339–348. doi: 10.1039/c9me00115h
  • Ribeiro JML, Bravo P, Wang Y, et al. Reweighted autoencoded variational Bayes for enhanced sampling (RAVE). J Chem Phys. 2018;149(7):072301. doi: 10.1063/1.5025487
  • Pedersen MF, Wróbel TM, Märcher-Rørsted E, et al. Biased agonism of clinically approved μ-opioid receptor agonists and TRV130 is not controlled by binding and signaling kinetics. Neuropharmacology. 2020;166:107718. doi: 10.1016/j.neuropharm.2019.107718
  • Miao Y, Feher VA, McCammon JA. Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J Chem Theory Comput. 2015;11(8):3584–3595. doi: 10.1021/acs.jctc.5b00436
  • Guillain F, Thusius D. Use of proflavine as an indicator in temperature-jump studies of the binding of a competitive inhibitor to trypsin. J Am Chem Soc. 1970;92(18):5534–5536. doi: 10.1021/ja00721a051
  • Kokh DB, Amaral M, Bomke J, et al. Estimation of drug-target residence times by τ-random acceleration molecular dynamics simulations. J Chem Theory Comput. 2018;14(7):3859–3869. doi: 10.1021/acs.jctc.8b00230
  • Schuetz DA, Richter L, Amaral M, et al. Ligand desolvation steers on-rate and impacts drug residence time of heat shock protein 90 (Hsp90) inhibitors. J Med Chem. 2018;61(10):4397–4411. doi: 10.1021/acs.jmedchem.8b00080
  • Kokh DB, Kaufmann T, Kister B, et al. Machine learning analysis of τRAMD trajectories to decipher molecular determinants of drug-target residence times. Front Mol Biosci. 2019;6:6. doi: 10.3389/fmolb.2019.00036
  • Nunes-Alves A, Kokh DB, Wade RC. Ligand unbinding mechanisms and kinetics for T4 lysozyme mutants from τRAMD simulations. Curr Res Struct Biol. 2021;3:106–111. doi: 10.1016/j.crstbi.2021.04.001
  • Wolf S, Stock G. Targeted molecular dynamics calculations of free energy profiles using a nonequilibrium friction correction. J Chem Theory Comput. 2018;14:6175–6182. doi:10.1021/acs.jctc.8b00835 12
  • Schlitter J, Engels M, Krüger P. Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. J Mol Graphics. 1994;12(2):84–89. doi: 10.1016/0263-7855(94)80072-3
  • Wolf S, Lickert B, Bray S, et al. Multisecond ligand dissociation dynamics from atomistic simulations. Nat Commun. 2020;11(1). doi: 10.1038/s41467-020-16655-1
  • Bello-Rivas JM, Elber R. Exact milestoning. J Chem Phys. 2015;142(9). doi: 10.1063/1.4913399
  • Elber R. Milestoning: an efficient approach for atomically detailed simulations of kinetics in biophysics. Annu Rev Biophys. 2020;49(1):69–85. doi: 10.1146/annurev-biophys-121219-081528
  • Votapka LW, Jagger BR, Heyneman AL, et al. SEEKR: simulation enabled estimation of kinetic rates, a computational tool to estimate molecular kinetics and its application to trypsin–benzamidine binding. J Phys Chem B. 2017;121(15):3597–3606. doi: 10.1021/acs.jpcb.6b09388
  • Jagger BR, Ojha AA, Amaro RE. Predicting ligand binding kinetics using a markovian milestoning with voronoi tessellations multiscale approach. J Chem Theory Comput. 2020;16(8):5348–5357. doi: 10.1021/acs.jctc.0c00495
  • Votapka LW, Stokely AM, Ojha AA, et al. SEEKR2: versatile multiscale milestoning utilizing the OpenMM molecular dynamics engine. J Chem Inf Model. 2022;62(13):3253–3262. doi: 10.1021/acs.jcim.2c00501
  • Wang E, Sun H, Wang J, et al. End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev. 2019;119(16):9478–9508. doi: 10.1021/acs.chemrev.9b00055
  • Tsai HC, Lee TS, Ganguly A, et al. AMBER free energy tools: a new framework for the design of optimized alchemical transformation pathways. J Chem Theory Comput. 2023 Jan 9;19(2):640–658. doi: 10.1021/acs.jctc.2c00725
  • Lee TS, Allen BK, Giese TJ, et al. Alchemical binding free energy calculations in AMBER20: advances and best practices for drug discovery. J Chem Inf Model. 2020 Nov 23;60(11):5595–5623. doi: 10.1021/acs.jcim.0c00613
  • Wang J, Do HN, Koirala K, Miao Y. Predicting biomolecular binding kinetics: a review. J Chem Theory Comput. 2023;19(8):2135–2148. doi: 10.1021/acs.jctc.2c01085

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.