130
Views
0
CrossRef citations to date
0
Altmetric
Review

Innovative peptide architectures: advancements in foldamers and stapled peptides for drug discovery

, , ORCID Icon & ORCID Icon
Pages 699-723 | Received 27 Feb 2024, Accepted 29 Apr 2024, Published online: 16 May 2024

References

  • DeMarsilis A, Reddy N, Boutari C, et al. Pharmacotherapy of type 2 diabetes: an update and future directions. Metabolism. 2022;137:155332. doi: 10.1016/j.metabol.2022.155332
  • Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26(10):2700–2707. doi: 10.1016/j.bmc.2017.06.052
  • Sang P, Cai J. Unnatural helical peptidic foldamers as protein segment mimics. Chem Soc Rev. 2023;52(15):4843–4877. doi: 10.1039/D2CS00395C
  • Crisma M, De Zotti M, Formaggio F, et al. Handedness preference and switching of peptide helices. Part II: helices based on noncoded α-amino acids. J Pept Sci. 2015;21(3):148–177. doi: 10.1002/psc.2743
  • Crisma M, Toniolo C. Helical screw-sense preferences of peptides based on chiral, Cα-tetrasubstituted α-amino acids. Biopolymers. 2015;104(1):46–64. doi: 10.1002/bip.22581
  • Tanaka M. Design and synthesis of chiral alpha,alpha-disubstituted amino acids and conformational study of their oligopeptides. Chem Pharm Bull (Tokyo). 2007;55(3):349–358. doi: 10.1248/cpb.55.349
  • Dannecker‐Dörig I, Linden A, Heimgartner H. Synthesis of poly‐aib oligopeptides and aib‐containing peptides via the ‘azirine/oxazolone method’, and their crystal structures. Helvetica Chimica Acta. 2011;94(6):993–1011. doi: 10.1002/hlca.201100116
  • Karle IL. Controls exerted by the Aib residue: helix formation and helix reversal this article is a US government work and, as such, is in the public domain in the United States of America. Biopolymers. 2001;60(5):351–365. doi: 10.1002/1097-0282(2001)60:5<351:AID-BIP10174>3.0.CO;2-U
  • Zieleniewski F, Woolfson DN, Clayden J. Automated solid-phase concatenation of Aib residues to form long, water-soluble, helical peptides. Chem Commun (Camb). 2020;56(80):12049–12052. doi: 10.1039/D0CC04698A
  • Demizu Y, Doi M, Kurihara M, et al. One-handed helical screw direction of homopeptide foldamer exclusively induced by cyclic α-amino acid side-chain chiral centers. Chemistry A European J. 2012;18(8):2430–2439. doi: 10.1002/chem.201102902
  • Demizu Y, Doi M, Kurihara M, et al. Conformational studies on peptides containing α,α-disubstituted α-amino acids: chiral cyclic α,α-disubstituted α-amino acid as an α-helical inducer. Org Biomol Chem. 2011;9(9):3303–3312. doi: 10.1039/c0ob01146k
  • Seebach D, Gardiner J. Beta-peptidic peptidomimetics. Acc Chem Res. 2008;41(10):1366–1375. doi: 10.1021/ar700263g
  • Appella DH, Christianson LA, Klein DA, et al. Residue-based control of helix shape in beta-peptide oligomers. Nature. 1997;387(6631):381–384. doi: 10.1038/387381a0
  • Appella HD, Christianson LA, Gellman SH. β-peptide-foldamers-robust-helix-formation-in-a-new-family-of-β-amino-acid-oligomers. J Am Chem Soc. 1996;118(51):13071–13072. doi: 10.1021/ja963290l
  • Lee M, Shim J, Kang P, et al. Structural characterization of α/β-peptides having alternating residues: X-ray structures of the 11/9-helix from crystals of racemic mixtures. Angew Chem Int Ed Engl. 2013;52(48):12564–12567. doi: 10.1002/anie.201306404
  • Schmitt MA, Choi SH, Guzei IA, et al. Residue requirements for helical folding in short alpha/beta-peptides: crystallographic characterization of the 11-helix in an optimized sequence. J Am Chem Soc. 2005;127(38):13130–13131. doi: 10.1021/ja0536163
  • Choi SH, Guzei IA, Spencer LC, et al. Crystallographic characterization of helical secondary structures in 2: 1 and 1: 2 alpha/beta-peptides. J Am Chem Soc. 2009;131(8):2917–2924. doi: 10.1021/ja808168y
  • Seebach D, Hook DF, Glättli A. Helices and other secondary structures of beta- and gamma-peptides. Biopolymers. 2006;84(1):23–37. doi: 10.1002/bip.20391
  • Vasudev PG, Chatterjee S, Shamala N, et al. Structural chemistry of peptides containing backbone expanded amino acid residues: conformational features of β, γ, and hybrid peptides. Chem Rev. 2011;111(2):657–687. doi: 10.1021/cr100100x
  • Seebach D, Beck AK, Bierbaum DJ. The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components. Chem Biodivers. 2004;1(8):1111–1239. doi: 10.1002/cbdv.200490087
  • Guo L, Zhang W, Reidenbach AG, et al. Characteristic structural parameters for the γ-peptide 14-helix: importance of subunit preorganization. Angew Chem Int Ed Engl. 2011;50(26):5843–5846. doi: 10.1002/anie.201101301
  • Qureshi MK, Smith MD. Parallel sheet structure in cyclopropane γ-peptides stabilized by C–H⋯O hydrogen bonds. Chem Commun (Camb). 2006;2006(48):5006–5008. doi: 10.1039/B611882H
  • Woll MG, Lai JR, Guzei IA, et al. Parallel sheet secondary structure in gamma-peptides. J Am Chem Soc. 2001;123(44):11077–11078. doi: 10.1021/ja011719p
  • Li X, Chen S, Zhang WD, et al. Stapled helical peptides bearing different anchoring residues. Chem Rev. 2020;120(18):10079–10144. doi: 10.1021/acs.chemrev.0c00532
  • Jacobsen Ø, Klaveness J, Rongved P. Structural and pharmacological effects of ring-closing metathesis in peptides. Molecules. 2010;15(9):6638–6677. doi: 10.3390/molecules15096638
  • Blackwell HE, Grubbs RH. Highly efficient synthesis of covalently cross-linked peptide helices by Ring-Closing Metathesis. Angew Chem Int Ed Engl. 1998;37(23):3281–3284. doi: 10.1002/(SICI)1521-3773(19981217)37:23<3281:AID-ANIE3281>3.0.CO;2-V
  • Blackwell HE, Sadowsky JD, Howard RJ, et al. Ring-closing metathesis of olefinic peptides: design, synthesis, and structural characterization of macrocyclic helical peptides. J Org Chem. 2001;66(16):5291–5302. doi: 10.1021/jo015533k
  • Schafmeister CE, Po J, Verdine GL. An All-Hydrocarbon Cross-Linking System for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc. 2000;122(24):5891–5892. doi: 10.1021/ja000563a
  • Ali AM, Atmaj J, Van Oosterwijk N, et al. Stapled peptides inhibitors: a new window for target drug discovery. Comput Struct Biotechnol J. 2019;17:263–281. doi: 10.1016/j.csbj.2019.01.012
  • Fischer L, Claudon P, Pendem N, et al. The canonical helix of urea oligomers at atomic resolution: insights into folding-induced axial organization. Angew Chem Int Ed Engl. 2010;49(6):1067–1070. doi: 10.1002/anie.200905592
  • Legrand B, André C, Wenger E, et al. Robust helix formation in a new family of oligoureas based on a constrained bicyclic building block. Angew Chem Int Ed Engl. 2012;51(45):11267–11270. doi: 10.1002/anie.201205842
  • Yoo SH, Li B, Dolain C, et al. Urea based foldamers. Methods Enzymol. 2021;656:59–92. doi: 10.1016/bs.mie.2021.04.019
  • Semetey V, Rognan D, Hemmerlin C, et al. Stable helical secondary structure in short-chain N,N’-linked oligoureas bearing proteinogenic side chains. Angew Chem Int Ed Engl. 2002;41(11):1893–1895. doi: 10.1002/1521-3773(20020603)41:11<1893:AID-ANIE1893>3.0.CO;2-F
  • Sang P, Shi Y, Huang B, et al. Sulfono-γ-AApeptides as helical Mimetics: crystal structures and applications. Acc Chem Res. 2020;53(10):2425–2442. doi: 10.1021/acs.accounts.0c00482
  • Guichard G, Huc I. Synthetic foldamers. Chem Commun (Camb). 2011;47(21):5933–5941. doi: 10.1039/c1cc11137j
  • Hill DJ, Mio MJ, Prince RB, et al. A field guide to Foldamers. Chem Rev. 2001;101(12):3893–4012. doi: 10.1021/cr990120t
  • Huc I. Aromatic oligoamide foldamers. European J Org Chem. 2004;2004(1):17–29. doi: 10.1002/ejoc.200300495
  • Hamuro Y, Geib SJ, Hamilton AD. Novel molecular scaffolds: formation of helical secondary structure in a family of Oligoanthranilamides. Angew Chem Int Ed Engl. 1994;33(4):446–448. doi: 10.1002/anie.199404461
  • Jiang H, Léger J-M, Dolain C, et al. Aromatic δ-peptides: design, synthesis and structural studies of helical, quinoline-derived oligoamide foldamers. Tetrahedron. 2003;59(42):8365–8374. doi: 10.1016/j.tet.2003.08.058
  • Mándity IM, Fülöp F. An overview of peptide and peptoid foldamers in medicinal chemistry. Expert Opin Drug Discov. 2015;10(11):1163–1177. doi: 10.1517/17460441.2015.1076790
  • Kirshenbaum K, Barron AE, Goldsmith RA, et al. Sequence-specific polypeptoids: a diverse family of heteropolymers with stable secondary structure. Proc Natl Acad Sci USA. 1998;95(8):4303–4308. doi: 10.1073/pnas.95.8.4303
  • Gorske BC, Bastian BL, Geske GD, et al. Local and tunable n–>pi* interactions regulate amide isomerism in the peptoid backbone. J Am Chem Soc. 2007;129(29):8928–8929. doi: 10.1021/ja071310l
  • Vanderstichele H, Kodadek T. Roadblocks for integration of novel biomarker concepts into clinical routine: the peptoid approach. Alzheimers Res Ther. 2014;6(2):23. doi: 10.1186/alzrt253
  • Fowler SA, Blackwell HE. Structure–function relationships in peptoids: recent advances toward deciphering the structural requirements for biological function. Org Biomol Chem. 2009;7(8):1508–1524. doi: 10.1039/b817980h
  • Personne H, Paschoud T, Fulgencio S, et al. To fold or not to fold: diastereomeric optimization of an α-helical antimicrobial peptide. J Med Chem. 2023;66(11):7570–7583. doi: 10.1021/acs.jmedchem.3c00460
  • Hirano M, Saito C, Goto C, et al. Rational design of helix-stabilized antimicrobial peptide foldamers containing α,α-disubstituted amino acids or side-chain stapling. Chempluschem. 2020;85(12):2731–2736. doi: 10.1002/cplu.202000749
  • Ito T, Hashimoto W, Ohoka N, et al. Structure–activity relationship study of helix-stabilized antimicrobial peptides containing nonproteinogenic amino acids. ACS Biomater Sci Eng. 2023;9(8):4654–4661. doi: 10.1021/acsbiomaterials.3c00759
  • Takada M, Ito T, Kurashima M, et al. Structure–activity relationship studies of substitutions of cationic amino acid residues on antimicrobial peptides. Antibiotics. 2022;12(1):19. doi: 10.3390/antibiotics12010019
  • Ito T, Matsunaga N, Kurashima M, et al. Enhancing chemical stability through structural modification of antimicrobial peptides with non-proteinogenic amino acids. Antibiotics. 2023;12(8):1326. doi: 10.3390/antibiotics12081326
  • Murakami Y, Ishida S, Demizu Y, et al. Design of antimicrobial peptides containing non-proteinogenic amino acids using multi-objective bayesian optimisation. Digital Discov. 2023;2(5):1347–1353. doi: 10.1039/D3DD00090G
  • Chowdhary R, Mubarak MM, Kantroo HA, et al. Synthesis, characterization, and antimicrobial activity of ultra-short cationic β-peptides. ACS Infect Dis. 2023;9(7):1437–1448. doi: 10.1021/acsinfecdis.3c00238
  • Liu L, Courtney KC, Huth SW, et al. Beyond amphiphilic balance: changing subunit stereochemistry alters the pore-forming activity of nylon-3 polymers. J Am Chem Soc. 2021;143(8):3219–3230. doi: 10.1021/jacs.0c12731
  • Zhang D, Shi C, Cong Z, et al. Microbial metabolite inspired β-peptide polymers displaying potent and selective antifungal activity. Adv Sci. 2022;9(14):2104871. doi: 10.1002/advs.202104871
  • Tallet L, Frisch E, Bornerie M, et al. Design of oligourea-based foldamers with antibacterial and antifungal activities. Molecules. 2022;27(5):1749. doi: 10.3390/molecules27051749
  • Sinatra L, Kolano L, Icker M, et al. Hybrid peptides based on α-aminoxy acids as antimicrobial and anticancer foldamers. Chempluschem. 2021;86(6):827–835. doi: 10.1002/cplu.202000812
  • Shao C, Jian Q, Li B, et al. Ultrashort all-hydrocarbon stapled α-helix amphiphile as a potent and stable antimicrobial compound. J Med Chem. 2023;66(16):11414–11427. doi: 10.1021/acs.jmedchem.3c00856
  • Macyszyn J, Chyży P, Burmistrz M, et al. Structural dynamics influences the antibacterial activity of a cell-penetrating peptide (KFF)(3)K. Sci Rep. 2023;13(1):14826. doi: 10.1038/s41598-023-38745-y
  • Hirano M, Saito C, Yokoo H, et al. Development of antimicrobial stapled peptides based on magainin 2 sequence. Molecules. 2021;26(2):444. doi: 10.3390/molecules26020444
  • Yokoo H, Hirano M, Ohoka N, et al. Structure-activity relationship study of amphipathic antimicrobial peptides using helix-destabilizing sarcosine. J Pept Sci. 2021;27(12):e3360. doi: 10.1002/psc.3360
  • Sun J, Ma X, Li R, et al. Antimicrobial nanostructured assemblies with extremely low toxicity and potent activity to eradicate staphylococcus aureus biofilms. Small. 2023;19(3):2204039. doi: 10.1002/smll.202204039
  • Frederiksen N, Louka S, Mudaliar C, et al. Peptide/β-peptoid hybrids with ultrashort PEG-Like moieties: effects on hydrophobicity, antibacterial activity and hemolytic properties. Int J Mol Sci. 2021;22(13):7041. doi: 10.3390/ijms22137041
  • Vestergaard M, Skive B, Domraceva I, et al. Peptide/β-peptoid hybrids with activity against vancomycin-resistant enterococci: influence of hydrophobicity and structural features on antibacterial and hemolytic properties. Int J Mol Sci. 2021;22(11):5617. doi: 10.3390/ijms22115617
  • Xie J, Zhou M, Qian Y, et al. Addressing MRSA infection and antibacterial resistance with peptoid polymers. Nat Commun. 2021;12(1):5898. doi: 10.1038/s41467-021-26221-y
  • Cafaro V, Bosso A, Di Nardo I, et al. The antimicrobial, antibiofilm and anti-inflammatory activities of P13#1, a cathelicidin-like achiral peptoid. Pharmaceuticals (Basel). 2023;16(10):1386. doi: 10.3390/ph16101386
  • Ma X, Lin M, Sun J, et al. Fabrication of antifouling/antimicrobial polysulfonium-coated surface against biofilms and water bacterial contamination. Adv NanoBiomed Res. 2023;3(7):2200150. doi: 10.1002/anbr.202200150
  • Sun J, Li M, Lin M, et al. High antibacterial activity and selectivity of the versatile polysulfoniums that combat drug resistance. Adv Mater. 2021;33(41):2104402. doi: 10.1002/adma.202104402
  • Kim M, Cheon Y, Shin D, et al. Real-time monitoring of multitarget antimicrobial mechanisms of peptoids using label-free imaging with optical diffraction tomography. Adv Sci. 2023;10(24):2302483. doi: 10.1002/advs.202302483
  • Copolovici DM, Langel K, Eriste E, et al. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano. 2014;8(3):1972–1994. doi: 10.1021/nn4057269
  • Hoyer J, Neundorf I. Peptide vectors for the nonviral delivery of nucleic acids. Acc Chem Res. 2012;45(7):1048–1056. doi: 10.1021/ar2002304
  • Oba M. Cell-penetrating peptide foldamers: drug-delivery tools. Chembiochem. 2019;20(16):2041–2045. doi: 10.1002/cbic.201900204
  • Yokoo H, Misawa T, Demizu Y. De Novo design of cell-penetrating foldamers. Chem Rec. 2020;20(9):912–921. doi: 10.1002/tcr.202000047
  • Li M, Puschmann R, Herdlitschka A, et al. Delivery of myo-inositol hexakisphosphate to the cell nucleus with a proline-based cell-penetrating peptide. Angew Chem Int Ed Engl. 2020;59(36):15586–15589. doi: 10.1002/anie.202006770
  • Hyun S, Kim D, Cho J, et al. Design and optimization of an α-helical bundle dimer cell-penetrating peptide for in vivo drug delivery. Bioconjugate Chem. 2022;33(12):2420–2427. doi: 10.1021/acs.bioconjchem.2c00518
  • Furukawa K, Tanaka M, Oba M. siRNA delivery using amphipathic cell-penetrating peptides into human hepatoma cells. Bioorg Med Chem. 2020;28(8):115402. doi: 10.1016/j.bmc.2020.115402
  • Uchida S, Yamaberi Y, Tanaka M, et al. A helix foldamer oligopeptide improves intracellular stability and prolongs protein expression of the delivered mRNA. Nanoscale. 2021;13(45):18941–18946. doi: 10.1039/D1NR03600A
  • Yokoo H, Misawa T, Kato T, et al. Development of delivery carriers for plasmid DNA by conjugation of a helical template to oligoarginine. Bioorg Med Chem. 2022;72:116997. doi: 10.1016/j.bmc.2022.116997
  • Takada H, Tsuchiya K, Demizu Y. Helix-stabilized cell-penetrating peptides for delivery of antisense morpholino oligomers: relationships among helicity, cellular uptake, and antisense activity. Bioconjugate Chem. 2022;33(7):1311–1318. doi: 10.1021/acs.bioconjchem.2c00199
  • Yokoo H, Dirisala A, Uchida S, et al. Oligosarcosine conjugation of arginine-rich peptides improves the intracellular delivery of peptide/pDNA complexes. ACS Biomater Sci Eng. 2023;10(2):890–896. doi: 10.1021/acsbiomaterials.3c01542
  • Illa O, Ospina J, Sánchez-Aparicio JE, et al. Hybrid Cyclobutane/Proline-containing peptidomimetics: the conformational constraint influences their cell-penetration ability. Int J Mol Sci. 2021;22(10):5092. doi: 10.3390/ijms22105092
  • Lee TH, Checco JW, Malcolm T, et al. Differential membrane binding of α/β-peptide foldamers: implications for cellular delivery and mitochondrial targeting. Aust J Chem. 2023;76(8):482–492. doi: 10.1071/CH23063
  • Gupta A, Gupta S, Das U, et al. Guanidinium-functionalized flexible azaproline transporter for efficient intracellular delivery of proapoptotic peptide and PDL1 antisense morpholino oligo in human carcinoma cells in vitro. Bioconjugate Chem. 2022;33(5):907–917. doi: 10.1021/acs.bioconjchem.2c00129
  • Illa O, Olivares JA, Gaztelumendi N, et al. Chiral cyclobutane-containing cell-penetrating peptides as selective vectors for anti-leishmania drug delivery systems. Int J Mol Sci. 2020;21(20):7502. doi: 10.3390/ijms21207502
  • Bornerie M, Brion A, Guichard G, et al. Delivery of siRNA by tailored cell-penetrating urea-based foldamers. Chem Commun (Camb). 2021;57(12):1458–1461. doi: 10.1039/D0CC06285E
  • Li S, Zhang X, Guo C, et al. Hydrocarbon staple constructing highly efficient α-helix cell-penetrating peptides for intracellular cargo delivery. Chem Commun (Camb). 2020;56(100):15655–15658. doi: 10.1039/D0CC06312F
  • Shi M, Jiang Z, Xiao Y, et al. Stapling of short cell-penetrating peptides for enhanced tumor cell-and-tissue dual-penetration. Chem Commun (Camb). 2022;58(14):2299–2302. doi: 10.1039/D1CC06595E
  • Simon M, Laroui N, Heyraud M, et al. Hydrocarbon-stapled peptide based-nanoparticles for siRNA delivery. Nanomaterials (Basel). 2020;10(12):2334. doi: 10.3390/nano10122334
  • Tsuchiya K, Horikoshi K, Fujita M, et al. Development of hydrophobic cell-penetrating stapled peptides as drug carriers. Int J Mol Sci. 2023;24(14):11768. doi: 10.3390/ijms241411768
  • Hirano M, Yokoo H, Goto C, et al. Magainin 2-derived stapled peptides derived with the ability to deliver pDNA, mRNA, and siRNA into cells. Chem Sci. 2023;14(38):10403–10410. doi: 10.1039/D3SC04124G
  • Kim HS, Lee Y, Shin MH, et al. Cell-penetrating, amphipathic cyclic peptoids as molecular transporters for cargo delivery. Chem Commun (Camb). 2021;57(55):6800–6803. doi: 10.1039/D1CC02848K
  • Calabretta LO, Yang J, Raines RT. N(α) -methylation of arginine: implications for cell-penetrating peptides. J Pept Sci. 2023;29(5):e3468. doi: 10.1002/psc.3468
  • Laniel A, Marouseau É, Nguyen DT, et al. Characterization of PGua4, a guanidinium-rich peptoid that delivers IgGs to the cytosol via macropinocytosis. Mol Pharmaceut. 2023;20(3):1577–1590. doi: 10.1021/acs.molpharmaceut.2c00783
  • Lin M, Wang M, Liu D, et al. Nanoscale polyelectrolyte complex vesicles from bioinspired peptidomimetic homopolymers with zwitterionic property and extreme stability. Macromolecules. 2022;55(20):9257–9268. doi: 10.1021/acs.macromol.2c01004
  • Liu D, Lin M, Shu L, et al. A versatile supramolecular assembly platform for tumor microenvironment motivated drug release and ferroptosis synergistic therapy. Nano Lett. 2023;23(12):5713–5721. doi: 10.1021/acs.nanolett.3c01440
  • Lu H, Zhou Q, He J, et al. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Signal Transduct Target Ther. 2020;5(1):213. doi: 10.1038/s41392-020-00315-3
  • Qiu Y, Li X, He X, et al. Computational methods-guided design of modulators targeting protein-protein interactions (PPIs). Eur J Med Chem. 2020;207:112764. doi: 10.1016/j.ejmech.2020.112764
  • Wang X, Ni D, Liu Y, et al. Rational design of peptide-based inhibitors disrupting protein-protein interactions. Front Chem. 2021;9:682675. doi: 10.3389/fchem.2021.682675
  • Guryanov I, Korzhikov-Vlakh V, Bhattacharya M, et al. Conformationally constrained peptides with high affinity to the vascular endothelial growth factor. J Med Chem. 2021;64(15):10900–10907. doi: 10.1021/acs.jmedchem.1c00219
  • Niu J, Cederstrand AJ, Eddinger GA, et al. Trimer-to-monomer disruption mechanism for a potent, protease-resistant antagonist of tumor necrosis factor-α signaling. J Am Chem Soc. 2022;144(22):9610–9617. doi: 10.1021/jacs.1c13717
  • Cussol L, Mauran-Ambrosino L, Buratto J, et al. Structural basis for α-helix mimicry and inhibition of protein-protein interactions with Oligourea Foldamers. Angew Chem Int Ed Engl. 2021;60(5):2296–2303. doi: 10.1002/anie.202008992
  • Jelinska C, Kannan S, Frosi Y, et al. Stitched peptides as potential cell permeable inhibitors of oncogenic DAXX protein. RSC Chem Biol. 2023;4(12):1096–1110. doi: 10.1039/D3CB00149K
  • Petruk G, Puthia M, Samsudin F, et al. Targeting toll-like receptor-driven systemic inflammation by engineering an innate structural fold into drugs. Nat Commun. 2023;14(1):6097. doi: 10.1038/s41467-023-41702-y
  • Lai Y, Fois G, Flores JR, et al. Inhibition of calcium-triggered secretion by hydrocarbon-stapled peptides. Nature. 2022;603(7903):949–956. doi: 10.1038/s41586-022-04543-1
  • Takyo M, Sato Y, Hirata N, et al. Oligoarginine-conjugated peptide foldamers inhibiting vitamin D receptor-mediated transcription. ACS Omega. 2022;7(50):46573–46582. doi: 10.1021/acsomega.2c05409
  • Tsuchiya K, Kiyoshi M, Hashii N, et al. Development of a penetratin-conjugated stapled peptide that inhibits Wnt/β-catenin signaling. Bioorg Med Chem. 2022;73:117021. doi: 10.1016/j.bmc.2022.117021
  • Fujita M, Tsuchiya K, Kurohara T, et al. In silico optimization of peptides that inhibit Wnt/β-catenin signaling. Bioorg Med Chem. 2023;84:117264. doi: 10.1016/j.bmc.2023.117264
  • Xu W, Lau YH, Fischer G, et al. Macrocyclized extended peptides: inhibiting the substrate-recognition domain of Tankyrase. J Am Chem Soc. 2017;139(6):2245–2256. doi: 10.1021/jacs.6b10234
  • Zhou L, Jeong IH, Xue S, et al. Inhibition of the Ubiquitin transfer cascade by a peptidomimetic foldamer mimicking the E2 N-Terminal helix. J Med Chem. 2023;66(1):491–502. doi: 10.1021/acs.jmedchem.2c01459
  • Sang P, Shi Y, Lu J, et al. α-helix-mimicking sulfono-γ-AApeptide inhibitors for p53-MDM2/MDMX protein-protein interactions. J Med Chem. 2020;63(3):975–986. doi: 10.1021/acs.jmedchem.9b00993
  • Sabale PM, Imiołek M, Raia P, et al. Suprastapled peptides: hybridization-enhanced peptide ligation and enforced α-helical conformation for affinity selection of combinatorial libraries. J Am Chem Soc. 2021;143(45):18932–18940. doi: 10.1021/jacs.1c07013
  • Li X, Tolbert WD, Hu HG, et al. Dithiocarbamate-inspired side chain stapling chemistry for peptide drug design. Chem Sci. 2019;10(5):1522–1530. doi: 10.1039/C8SC03275K
  • Jiang W, Abdulkadir S, Zhao X, et al. Inhibition of hypoxia-inducible transcription factor (HIF-1α) signaling with sulfonyl-γ-AApeptide helices. J Am Chem Soc. 2023;145(36):20009–20020. doi: 10.1021/jacs.3c06694
  • Ahmed J, Fitch TC, Donnelly CM, et al. Foldamers reveal and validate therapeutic targets associated with toxic α-synuclein self-assembly. Nat Commun. 2022;13(1):2273. doi: 10.1038/s41467-022-29724-4
  • Bonnel C, Legrand B, Simon M, et al. Tailoring the physicochemical properties of antimicrobial peptides onto a thiazole-based γ-peptide foldamer. J Med Chem. 2020;63(17):9168–9180. doi: 10.1021/acs.jmedchem.0c00077
  • Toole J, Bolt HL, Marley JJ, et al. Peptoids with antibiofilm activity against the gram negative obligate anaerobe, Fusobacterium nucleatum. Molecules. 2021;26(16):4741. doi: 10.3390/molecules26164741

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.