192
Views
0
CrossRef citations to date
0
Altmetric
Review

Using DNA-encoded libraries of fragments for hit discovery of challenging therapeutic targets

, , , &
Pages 725-740 | Received 27 Mar 2024, Accepted 08 May 2024, Published online: 16 May 2024

References

  • Congreve M, Chessari G, Tisi D, et al. Recent developments in fragment-based drug discovery. J Med Chem. 2008;51(13):3661–3680. doi: 10.1021/jm8000373
  • Price AJ, Howard S, Cons BD. Fragment-based drug discovery and its application to challenging drug targets. Essays Biochem. 2017;61(5):475–484. doi: 10.1042/EBC20170029
  • Scott DE, Coyne AG, Hudson SA, et al. Fragment-based approaches in drug discovery and chemical biology. Biochemistry. 2012;51(25):4990–5003. doi: 10.1021/bi3005126
  • Brown DG, Boström J. Where do recent small molecule clinical development candidates come from? J Med Chem. 2018;61(21):9442–9468. doi: 10.1021/acs.jmedchem.8b00675
  • Jencks WP. On the attribution and additivity of binding energies. Proc Nat Acad Sci. 1981;78(7):4046–4050. doi: 10.1073/pnas.78.7.4046
  • Farmer PS, Ariëns EJ. Speculations on the design of nonpeptidic peptidomimetics. Trends In Pharmacol Sci. 1982;3:362–365. doi: 10.1016/0165-6147(82)91184-1
  • Benner B, Good L, Quiroga D, et al. Pexidartinib, a novel small molecule CSF-1R inhibitor in use for tenosynovial giant cell tumor: a systematic review of pre-clinical and clinical development. Drug Des Dev Ther. 2020;14:1693–1704. doi: 10.2147/DDDT.S253232
  • Kim A, Cohen MS. The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. Expert Opin Drug Discov. 2016;11(9):907–916. doi: 10.1080/17460441.2016.1201057
  • Murray CW, Newell DR, Angibaud P. A successful collaboration between academia, biotech and pharma led to discovery of erdafitinib, a selective FGFR inhibitor recently approved by the FDA. MedChemcomm. 2019;10(9):1509–1511. doi: 10.1039/C9MD90044F
  • Fischer J, Klein C, Childers WE, et al. Successful drug discovery. Wiley Online Lib. 2015;1:37. doi: 10.1002/9783527826872
  • Lanman BA, Allen JR, Allen JG, et al. Discovery of a covalent inhibitor of KRASG12C (AMG 510) for the treatment of solid tumors. J Med Chem. 2020;63(1):52–65. doi: 10.1021/acs.jmedchem.9b01180
  • Schoepfer J, Jahnke W, Berellini G, et al. Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J Med Chem. 2018;61(18):8120–8135. doi: 10.1021/acs.jmedchem.8b01040
  • Bon M, Bilsland A, Bower J, et al. Fragment-based drug discovery the importance of high-quality molecule libraries. Mol Oncol. 2022;16(21):3761–3777. doi: 10.1002/1878-0261.13277
  • Murray CW, Rees DC. The rise of fragment-based drug discovery. Nat Chem. 2009;1(3):187–192. doi: 10.1038/nchem.217
  • Jacquemard C, Kellenberger E. A bright future for fragment-based drug discovery: what does it hold? expert Opin drug Discov. Expert Opin Drug Discov. 2019;14(5):413–416. doi: 10.1080/17460441.2019.1583643
  • Jhoti H, Williams G, Rees DC, et al. The ‘rule of three’ for fragment-based drug discovery: where are we now? Nat Rev Drug Discov. 2013;12(8):644–644. doi: 10.1038/nrd3926-c1
  • Bembenek SD, Tounge BA, Reynolds CH. Ligand efficiency and fragment-based drug discovery. Drug Discov Today. 2009;14(5–6):278–283. doi: 10.1016/j.drudis.2008.11.007
  • Chen H, Zhou X, Wang A, et al. Evolutions in fragment-based drug design: the deconstruction–reconstruction approach. Drug Discov Today. 2015;20(1):105–113. doi: 10.1016/j.drudis.2014.09.015
  • Konteatis Z. What makes a good fragment in fragment-based drug discovery? Expert Opin Drug Discov. 2021;16(7):723–726. doi: 10.1080/17460441.2021.1905629
  • Doak BC, Morton CJ, Simpson JS, et al. Design and evaluation of the performance of an NMR screening fragment library. Aust J Chem. 2013;66(12):1465–1472. doi: 10.1071/CH13280
  • Blundell TL, Jhoti H, Abell C. High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discovery. 2002;1(1):45–54. doi: 10.1038/nrd706
  • Rees DC, Congreve M, Murray CW, et al. Fragment-based lead discovery. Nat Rev Drug Discovery. 2004;3(8):660–672. doi: 10.1038/nrd1467
  • Whitty A. Cooperativity and biological complexity. Nat Chem Biol. 2008;4(8):435–439. doi: 10.1038/nchembio0808-435
  • Bancet A, Raingeval C, Lomberget T, et al. Fragment linking strategies for structure-based drug design. J Med Chem. 2020;63(20):11420–11435. doi: 10.1021/acs.jmedchem.0c00242
  • Mondal M, Groothuis DE, Hirsch AKH. Fragment growing exploiting dynamic combinatorial chemistry of inhibitors of the aspartic protease endothiapepsin. MedChemcomm. 2015;6(7):1267–1271. doi: 10.1039/C5MD00157A
  • Ramström O, Lehn J-M. Drug discovery by dynamic combinatorial libraries. Nat Rev Drug Discov. 2002;1(1):26–36. doi: 10.1038/nrd704
  • Brenner S, Lerner RA. Encoded combinatorial chemistry. Proc Natl Acad Sci. 1992;89(12):5381–5383. doi: 10.1073/pnas.89.12.5381
  • Satz AL, Brunschweiger A, Flanagan ME, et al. DNA-encoded chemical libraries. Nat Rev Method Prime. 2022;2(1). doi: 10.1038/s43586-021-00084-5
  • Sunkari YK, Siripuram VK, Nguyen TL, et al. High-power screening (HPS) empowered by DNA-encoded libraries. Trends Pharmacol Sci. 2022;43(1):4–15. doi: 10.1016/j.tips.2021.10.008
  • Gironda-Martinez A, Donckele EJ, Samain F, et al. DNA-Encoded chemical libraries: a comprehensive review with succesful stories and future challenges. ACS Pharmacol Transl Sci. 2021;4(4):1265–1279. doi: 10.1021/acsptsci.1c00118
  • Ma P, Zhang S, Huang Q, et al. Evolution of chemistry and selection technology for DNA-encoded library. Acta Pharm Sin B. 2024;14(2):492–516. doi: 10.1016/j.apsb.2023.10.001
  • Bao Y, Xing M, Matthew N, et al. Macrocyclizing DNA-Linked peptides via three-component cyclization and photoinduced chemistry. Org Lett. 2023;26(14):2763–2767. doi: 10.1021/acs.orglett.3c01817
  • Ding Z, Wu Y, Li F, et al. DNA-Conjugated cyclopropane derivatives constructed from sulfonium ylides with alpha, beta-unsaturated ketones. Bioconjug Chem. 2023;34(9):1523–1527. doi: 10.1021/acs.bioconjchem.3c00291
  • Ding Z, Wu Y, Liu L, et al. Construction of isocytosine scaffolds via DNA-Compatible biginelli-like reaction. Org Lett. 2023;25(29):5515–5519. doi: 10.1021/acs.orglett.3c01986
  • Fan L, Yu Y, Jayne C, et al. Synthesis of DNA-Encoded macrocyclic peptides via nitrile-aminothiol click reaction. Org Lett. 2023;25(44):8038–8042. doi: 10.1021/acs.orglett.3c03284
  • Fang X, Zhang T, Fang W, et al. Synthesis of functionalized triazoles on DNA via azide-acetonitrile “click” reaction. Org Lett. 2023;25(46):8326–8331. doi: 10.1021/acs.orglett.3c03404
  • Hudson L, Mason JW, Westphal MV, et al. Diversity-oriented synthesis encoded by deoxyoligonucleotides. Nat Commun. 2023;14(1):4930. doi: 10.1038/s41467-023-40575-5
  • Li X, Liu C, Gao Y, et al. DNA-compatible combinatorial synthesis of functionalized 2-thiobenzazole scaffolds. Chem Commun. 2023;59(62):9489–9492. doi: 10.1039/D3CC02593D
  • Liu C, Li X, Zhang J, et al. DNA-Compatible benzotriazinone formation through aryl diazonium intermediates. J Org Chem. 2023;88(11):6565–6572. doi: 10.1021/acs.joc.2c02686
  • Mantell MA, Marcaurelle L, Ding Y. One reaction served three ways: the on-DNA Ugi 4C-3C reaction for the formation of lactams. Org Lett. 2023;25(8):1241–1245. doi: 10.1021/acs.orglett.2c04043
  • Matsuo B, Kim S, Shreiber ST, et al. Diversifying chemical space of DNA-encoded libraries: synthesis of 2-oxa-1-azaspiro(bicyclo[3.2.0])heptanes on-DNA via visible light-mediated energy transfer catalysis. Chem Commun. 2023;59(73):10964–10967. doi: 10.1039/D3CC03421F
  • Merrifield JL, Pimentel EB, Peters-Clarke TM, et al. DNA-Compatible copper/TEMPO oxidation for DNA-Encoded libraries. Bioconjug Chem. 2023;34(8):1380–1386. doi: 10.1021/acs.bioconjchem.3c00254
  • Stanway-Gordon HA, Odger JA, Waring MJ. Development of a micellar-promoted heck reaction for the synthesis of DNA-encoded libraries. Bioconjug Chem. 2023;34(4):756–763. doi: 10.1021/acs.bioconjchem.3c00051
  • Sun Z, Xiao L, Chen Y, et al. Constructive on-DNA Abramov reaction and pudovik reaction for DEL synthesis. ACS Med Chem Lett. 2023;14(4):473–478. doi: 10.1021/acsmedchemlett.3c00022
  • Wang H, Fan X, Chen T, et al. DNA-compatible synthesis of enaminones via amination of allenic ketones. Org Chem Front. 2023;10(16):4105–4110. doi: 10.1039/D3QO00901G
  • Wang Y, Fang X, Liao H, et al. DNA-Compatible synthesis of thiazolidione derivatives via three-component annulation and knoevenagel condensation. Org Lett. 2023;25(24):4473–4477. doi: 10.1021/acs.orglett.3c01482
  • Zhang J, Wang L, Ji Q, et al. DNA-Compatible cyanomethylation of (Hetero)aryl halides or triflates under a tandem reaction for DNA-Encoded library synthesis. Org Lett. 2023;25(37):6931–6936. doi: 10.1021/acs.orglett.3c02850
  • Zhao G, Wang H, Luo J, et al. Multicomponent DNA-Compatible synthesis of an annelated benzodiazepine scaffold for focused chemical libraries. Org Lett. 2023;25(4):665–670. doi: 10.1021/acs.orglett.2c04293
  • Lam KS, Salmon SE, Hersh EM, et al. A new type of synthetic peptide library for identifying ligand-binding activity. Nature. 1991;354(6348):82–84. doi: 10.1038/354082a0
  • Liu R, Marik J, Lam KS. A novel peptide-based encoding system for “one-bead one-compound” peptidomimetic and small molecule combinatorial libraries. J Am Chem Soc. 2002;124(26):7678–7680. doi: 10.1021/ja026421t
  • Song Y, Li X. Evolution of the selection methods of DNA-Encoded chemical libraries. Acc Chem Res. 2021;54(17):3491–3503. doi: 10.1021/acs.accounts.1c00375
  • Shi B, Zhou Y, Huang Y, et al. Recent advances on the encoding and selection methods of DNA-encoded chemical library. Bioorg Med Chem Lett. 2017;27(3):361–369. doi: 10.1016/j.bmcl.2016.12.025
  • Huang Y, Li X. Recent advances on the selection methods of DNA-encoded libraries. Chembiochem. 2021;22(14):2384–2397. doi: 10.1002/cbic.202100144
  • Zhu Z, Grady LC, Ding Y, et al. Development of a selection method for discovering irreversible (covalent) binders from a DNA-Encoded library. SLAS Discov. 2019;24(2):169–174. doi: 10.1177/2472555218808454
  • Schneider LA, Sauter B, Dagher K, et al. Recording binding information directly into DNA-Encoded libraries using terminal deoxynucleotidyl transferase. J Am Chem Soc. 2023;145(38):20874–20882. doi: 10.1021/jacs.3c05961
  • Chan AI, McGregor LM, Liu DR. Novel selection methods for DNA-encoded chemical libraries. Curr Opin Chem Biol. 2015;26:55–61. doi: 10.1016/j.cbpa.2015.02.010
  • Melkko S, Scheuermann J, Dumelin CE, et al. Encoded self-assembling chemical libraries. Nat Biotechnol. 2004;22(5):568–574. doi: 10.1038/nbt961
  • Wichert M, Krall N, Decurtins W, et al. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nat Chem. 2015;7(3):241–249. doi: 10.1038/nchem.2158
  • Plais L, Lessing A, Keller M, et al. Universal encoding of next generation DNA-encoded chemical libraries. Chem Sci. 2022;13(4):967–974. doi: 10.1039/D1SC05721A
  • Oehler S, Plais L, Bassi G, et al. Modular assembly and encoding strategies for dual-display DNA-encoded chemical libraries. Chem Commun. 2021;57(92):12289–12292. doi: 10.1039/D1CC04306D
  • Lessing A, Petrov D, Scheuermann J. Advancing small-molecule drug discovery by encoded dual-display technologies. Trends Pharmacol Sci. 2023;44(11):817–831. doi: 10.1016/j.tips.2023.08.006
  • Cui M, Nguyen D, Gaillez MP, et al. Trio-pharmacophore DNA-encoded chemical library for simultaneous selection of fragments and linkers. Nat Commun. 2023;14(1):1481. doi: 10.1038/s41467-023-37071-1
  • Sannino A, Gabriele E, Bigatti M, et al. Quantitative assessment of affinity selection performance by using DNA-encoded chemical libraries. Chembiochem. 2019;20(7):955–962. doi: 10.1002/cbic.201800766
  • Chen Q, Cheng X, Zhang L, et al. Exploring the lower limit of individual DNA-encoded library molecules in selection. SLAS Discov. 2019;25(5):523–529. doi: 10.1177/2472555219893949
  • Sprinz KI, Tagore DM, Hamilton AD. Self-assembly of bivalent protein-binding agents based on oligonucleotide-linked organic fragments. Bioorg Med Chem Lett. 2005;15(17):3908–3911. doi: 10.1016/j.bmcl.2005.05.094
  • Shi B, Zhou Y, Li X. Recent advances in DNA-encoded dynamic libraries. RSC Chem Biol. 2022;3(4):407–419. doi: 10.1039/D2CB00007E
  • Reddavide FV, Lin W, Lehnert S, et al. DNA-Encoded dynamic combinatorial chemical libraries. Angew Chem Int Ed. 2015;54(27):7924–7928. doi: 10.1002/anie.201501775
  • Reddavide FV, Cui M, Lin W, et al. Second generation DNA-encoded dynamic combinatorial chemical libraries. Chem Commun. 2019;55(26):3753–3756. doi: 10.1039/C9CC01429B
  • Li G, Zheng W, Chen Z, et al. Design, preparation, and selection of DNA-encoded dynamic libraries. Chem Sci. 2015;6(12):7097–7104. doi: 10.1039/C5SC02467F
  • Zhou Y, Li C, Peng J, et al. DNA-Encoded dynamic chemical library and its applications in ligand discovery. J Am Chem Soc. 2018;140(46):15859–15867. doi: 10.1021/jacs.8b09277
  • Zhou Y, Peng J, Shen W, et al. Psoralen as an interstrand DNA crosslinker in the selection of DNA-Encoded dynamic chemical library. Biochem Biophys Res Commun. 2020;533(2):215–222. doi: 10.1016/j.bbrc.2020.04.033
  • Zhao G, Zhong S, Zhang G, et al. Reversible covalent headpiece enables interconversion between double- and single-stranded DNA-Encoded chemical libraries. Angew Chem Intern Ed. 2022;61(7):e202115157. doi: 10.1002/anie.202115157
  • Winssinger N, Ficarro S, Schultz PG, et al. Profiling protein function with small molecule microarrays. Proc Natl Acad Sci. 2002;99(17):11139–11144. doi: 10.1073/pnas.172286899
  • Daguer JP, Ciobanu M, Alvarez S, et al. DNA-templated combinatorial assembly of small molecule fragments amenable to selection/amplification cycles. Chem Sci. 2011;2(4):625–632. doi: 10.1039/c0sc00574f
  • Ciobanu M, Huang KT, Daguer JP, et al. Selection of a synthetic glycan oligomer from a library of DNA-templated fragments against DC-SIGN and inhibition of HIV gp120 binding to dendritic cells. Chem Commun. 2011;47(33):9321–9323. doi: 10.1039/c1cc13213j
  • Vummidi BR, Farrera-Soler L, Daguer JP, et al. A mating mechanism to generate diversity for the Darwinian selection of DNA-encoded synthetic molecules. Nat Chem. 2022;14(2):141–152. doi: 10.1038/s41557-021-00829-5
  • Machida T, Novoa A, Gillon E, et al. Dynamic cooperative glycan assembly blocks the binding of bacterial lectins to epithelial cells. Angew Chem Int Ed. 2017;56(24):6762–6766. doi: 10.1002/anie.201700813
  • Farrera-Soler L, Daguer JP, Raunft P, et al. PNA-Based dynamic combinatorial libraries (PDCL) and screening of lectins. Bioorg Med Chem. 2020;28(10):115458. doi: 10.1016/j.bmc.2020.115458
  • Ma H, Murray JB, Luo H, et al. PAC-FragmentDEL – photoactivated covalent capture of DNA-encoded fragments for hit discovery. RSC Med Chem. 2022;13(11):1341–1349. doi: 10.1039/D2MD00197G
  • Salvini CLA, Darlot B, Davison J, et al. Fragment expansion with NUDELs – poised DNA-encoded libraries. Chem Sci. 2023;14(31):8288–8294. doi: 10.1039/D3SC01171B
  • Puglioli S, Schmidt E, Pellegrino C, et al. Selective tumor targeting enabled by picomolar fibroblast activation protein inhibitors isolated from a DNA-encoded affinity maturation library. Chem. 2023;9(2):411–429. doi: 10.1016/j.chempr.2022.10.006
  • Deng Y, Peng J, Xiong F, et al. Selection of DNA-Encoded dynamic chemical libraries for direct inhibitor discovery. Angew Chem Int Ed. 2020;59(35):14965–14972. doi: 10.1002/anie.202005070
  • Zhou Y, Shen W, Gao Y, et al. Protein-templated ligand discovery via the selection of DNA-encoded dynamic libraries. Nat Chem. 2024;16(4):543–555. doi: 10.1038/s41557-024-01442-y
  • Prati L, Bigatti M, Donckele EJ, et al. On-DNA hit validation methodologies for ligands identified from DNA-encoded chemical libraries. Biochem Biophys Res Commun. 2020;533(2):235–240. doi: 10.1016/j.bbrc.2020.04.030
  • Zimmermann G, Li Y, Rieder U, et al. Hit-validation methodologies for ligands isolated from DNA-encoded chemical libraries. Chembiochem. 2017;18(9):853–857. doi: 10.1002/cbic.201600637
  • Bigatti M, Dal Corso A, Vanetti S, et al. Impact of a central scaffold on the binding affinity of fragment pairs isolated from DNA-encoded self-assembling chemical libraries. ChemMedchem. 2017;12(21):1748–1752. doi: 10.1002/cmdc.201700569
  • Scheuermann J, Dumelin CE, Melkko S, et al. DNA-encoded chemical libraries for the discovery of MMP-3 inhibitors. Bioconjug Chem. 2008;19(3):778–785. doi: 10.1021/bc7004347
  • Zimmermann G, Rieder U, Bajic D, et al. A specific and Covalent JNK-1 ligand selected from an encoded self-assembling chemical library. Chem Euro J. 2017;23(34):8152–8155. doi: 10.1002/chem.201701644
  • Bassi G, Favalli N, Vuk M, et al. A single-stranded DNA-Encoded chemical library based on a stereoisomeric scaffold enables ligand discovery by modular assembly of building blocks. Adv Sci. 2020;7(22):2001970. doi: 10.1002/advs.202001970
  • Zhou Y, Shen W, Peng J, et al. Identification of isoform/domain-selective fragments from the selection of DNA-encoded dynamic library. Bioorg Med Chem. 2021;45:116328. doi: 10.1016/j.bmc.2021.116328
  • Barluenga S, Zambaldo C, Ioannidou HA, et al. Novel PTP1B inhibitors identified by DNA display of fragment pairs. Bioorg Med Chem Lett. 2016;26(3):1080–1085. doi: 10.1016/j.bmcl.2015.11.102
  • Daguer JP, Gonse A, Shchukin Y, et al. Dual Bcl-XL/Bcl-2 inhibitors discovered from DNA-encoded libraries using a fragment pairing strategy. Bioorg Med Chem. 2021;44:116282. doi: 10.1016/j.bmc.2021.116282
  • Zhang J, Liu J, Li X, et al. Unexpected cyclization product discovery from the photoinduced bioconjugation chemistry between Tetrazole and Amine. J Am Chem Soc. 2024;146(3):2122–2131. doi: 10.1021/jacs.3c11574
  • Nie Q, Sun J, Fang X, et al. Antimony salt-promoted cyclization facilitating on-DNA syntheses of dihydroquinazolinone derivatives and its applications. Chin Chem Lett. 2023;34(8):108132. doi: 10.1016/j.cclet.2023.108132
  • He P, Zhao G, Zhu M, et al. DNA-compatible functional group transformations via K2RuO4-mediated oxidation. Org Chem Front. 2024. doi: 10.1039/D4QO00203B
  • Sahu R, Yadav S, Nath S, et al. DNA-encoded libraries via late-stage functionalization strategies: a review. Chem Commun. 2023;59(41):6128–6147. doi: 10.1039/D3CC01075A
  • Yen-Pon E, Li L, Levitre G, et al. On-DNA hydroalkylation to introduce diverse Bicyclo[1.1.1]pentanes and abundant alkyls via halogen atom transfer. J Am Chem Soc. 2022;144(27):12184–12191. doi: 10.1021/jacs.2c03025
  • Shi Y, Wu YR, Yu JQ, et al. DNA-encoded libraries (DELs): a review of on-DNA chemistries and their output. RSC Adv. 2021;11(4):2359–2376. doi: 10.1039/D0RA09889B
  • Lenci E, Baldini L, Trabocchi A. Diversity-oriented synthesis as a tool to expand the chemical space of DNA-encoded libraries. Bioorg Med Chem. 2021;41:116218. doi: 10.1016/j.bmc.2021.116218
  • Song M, Hwang GT. DNA-Encoded library screening as core platform technology in drug discovery: its synthetic method development and applications in DEL Synthesis. J Med Chem. 2020;63(13):6578–6599. doi: 10.1021/acs.jmedchem.9b01782
  • Scheuermann J, Neri D. Special edition on DNA-Encoded chemical libraries. Biochem Biophys Res Commun. 2020;533(2):iii–iv. doi: 10.1016/j.bbrc.2020.10.055
  • Martin A, Nicolaou CA, Toledo MA. Navigating the DNA encoded libraries chemical space. Commun Chem. 2020;3(1):127. doi: 10.1038/s42004-020-00374-1
  • Wang X, Sun H, Liu J, et al. Ruthenium-promoted C–H activation reactions between DNA-Conjugated Acrylamide and aromatic acids. Org Lett. 2018;20(16):4764–4768. doi: 10.1021/acs.orglett.8b01837
  • Hou W, Zhang Y, Huang F, et al. Bioinspired Selenium-Nitrogen Exchange (SeNex) click chemistry suitable for nanomole-scale medicinal chemistry and bioconjugation. Angew Chem Inter Ed. 2024;63(15):e202318534. doi: 10.1002/anie.202318534
  • Xu H, Wang Y, Dong H, et al. Selenylation chemistry suitable for on-plate parallel and On-DNA library synthesis enabling high-throughput medicinal chemistry. Angew Chemie Inter Ed. 2022;61(35):e202206516. doi: 10.1002/anie.202206516
  • Flood DT, Asai S, Zhang X, et al. Expanding reactivity in DNA-Encoded library synthesis via reversible binding of DNA to an inert quaternary ammonium support. J Am Chem Soc. 2019;141(25):9998–10006. doi: 10.1021/jacs.9b03774
  • Škopić MK, Götte K, Gramse C, et al. Micellar Brønsted acid mediated synthesis of DNA-Tagged heterocycles. J Am Chem Soc. 2019;141(26):10546–10555. doi: 10.1021/jacs.9b05696
  • Matsuo B, Granados A, Levitre G, et al. Photochemical methods applied to DNA encoded library (DEL) synthesis. Acc Chem Res. 2023;56(3):385–401. doi: 10.1021/acs.accounts.2c00778
  • Xu H, Tan T, Zhang Y, et al. Metal-free and open-air arylation reactions of diaryliodonium salts for DNA-Encoded library synthesis. Adv Sci. 2022;9(26):2202790. doi: 10.1002/advs.202202790
  • Zhang S, Zhang H, Liu X, et al. Mask and release strategy-enabled diversity-oriented synthesis for DNA-Encoded library. Adv Sci. 2024;11(6):2307049. doi: 10.1002/advs.202307049
  • Zhang Y, Xue J-Y, Su X-C, et al. Skeletal editing of benzene motif: photopromoted transannulation for synthesis of DNA-Encoded seven-membered rings. Org Lett. 2024;26(11):2212–2217. doi: 10.1021/acs.orglett.4c00377
  • Gui Y, Wong CS, Zhao G, et al. Converting double-stranded DNA-Encoded libraries (DELs) to single-stranded libraries for more versatile selections. ACS Omega. 2022;7(13):11491–11500. doi: 10.1021/acsomega.2c01152
  • Csizmar CM, Petersburg JR, Perry TJ, et al. Multivalent ligand binding to cell membrane antigens: defining the interplay of affinity, Valency, and expression density. J Am Chem Soc. 2019;141(1):251–261. doi: 10.1021/jacs.8b09198
  • Mammen M, Choi S-K, Whitesides GM. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Inter Ed. 1998;37(20):2754–2794. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754:AID-ANIE2754>3.0.CO;2-3
  • Tu Z, Guday G, Adeli M, et al. Multivalent interactions between 2D nanomaterials and biointerfaces. Adv Mater. 2018;30(33):1706709. doi: 10.1002/adma.201706709
  • Hu X, Chi H, Fu X, et al. Tunable multivalent aptamer-based DNA nanostructures to regulate multiheteroreceptor-mediated tumor recognition. J Am Chem Soc. 2024;146(4):2514–2523. doi: 10.1021/jacs.3c10704
  • Gestwicki JE, Cairo CW, Strong LE, et al. Influencing Receptor−Ligand binding mechanisms with multivalent ligand architecture. J Am Chem Soc. 2002;124(50):14922–14933. doi: 10.1021/ja027184x
  • Perl A, Gomez-Casado A, Thompson D, et al. Gradient-driven motion of multivalent ligand molecules along a surface functionalized with multiple receptors. Nat Chem. 2011;3(4):317–322. doi: 10.1038/nchem.1005
  • Huskens J. Multivalent interactions at interfaces. Curr Opin Chem Biol. 2006;10(6):537–543. doi: 10.1016/j.cbpa.2006.09.007
  • Childs-Disney JL, Yang X, Gibaut QMR, et al. Targeting RNA structures with small molecules. Nat Rev Drug Discovery. 2022;21(10):736–762. doi: 10.1038/s41573-022-00521-4
  • Disney MD, Dwyer BG, Childs-Disney JL. Drugging the RNA World. Cold Spring Harbor Perspect Biol. 2018;10(11):a034769. doi: 10.1101/cshperspect.a034769
  • Schaffer AE, Pinkard O, Coller JM. tRNA metabolism and neurodevelopmental disorders. Annu Rev Genomic Hum Genet. 2019;20:359–387. doi: 10.1146/annurev-genom-083118-015334
  • Kapur M, Ganguly A, Nagy G, et al. Expression of the neuronal tRNA n-Tr20 regulates synaptic transmission and seizure susceptibility. Neuron. 2020;108(1):193–208. doi: 10.1016/j.neuron.2020.07.023
  • Rayford KJ, Cooley A, Rumph JT, et al. piRnas as modulators of disease pathogenesis. Int J Mol Sci. 2021;22(5):2373. doi: 10.3390/ijms22052373
  • Bhattacharyya A, Trotta CR, Narasimhan J, et al. Small molecule splicing modifiers with systemic HTT-lowering activity. Nat Commun. 2021;12(1):7299. doi: 10.1038/s41467-021-27157-z
  • Washington AZ, Tapadar S, George A, et al. Exploiting translational stalling peptides in an effort to extend azithromycin interaction within the prokaryotic ribosome nascent peptide exit tunnel. Bioorg Med Chem. 2015;23(16):5198–5209. doi: 10.1016/j.bmc.2015.04.078

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.