58
Views
0
CrossRef citations to date
0
Altmetric
Review

Hits and misses with animal models of narcolepsy and the implications for drug discovery

, , , &
Pages 755-768 | Received 13 Jan 2024, Accepted 08 May 2024, Published online: 15 May 2024

References

  • Schenck CH, Bassetti CL, Arnulf I, et al. English translations of the first clinical reports on narcolepsy and cataplexy by Westphal and Gélineau in the late 19th century, with commentary. J Clin Sleep Med. 2007;3(3):301–311. doi: 10.5664/jcsm.26804
  • Akintomide GS, Rickards H. Narcolepsy: a review. Neuropsychiatr Dis Treat. 2011;7:507–518. doi: 10.2147/NDT.S23624
  • Kornum BR, Knudsen S, Ollila HM, et al. Narcolepsy. Nat Rev Dis Primers. 2017;3(1):16100. doi: 10.1038/nrdp.2016.100
  • Slowik JM, Collen JF, Yow AG. Narcolepsy. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan [cited 2023 Jun 12]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459236/
  • Sakurai T. Reverse pharmacology of orexin: from an orphan GPCR to integrative physiology. Regul Pept. 2005;126(1–2):3–10. doi: 10.1016/j.regpep.2004.08.006
  • Han F, Lin L, Li J, et al. HLA‐DQ association and allele competition in Chinese narcolepsy. Tissue Antigens. 2012 Oct;80(4):328–335. doi: 10.1111/j.1399-0039.2012.01948.x
  • Pelin Z, Guilleminault C, Risch N, FC Grumet US Modafinil in Narcolepsy Multicenter Study Group, Mignot E. HLA‐DQB1* 0602 homozygosity increases relative risk for narcolepsy but not disease severity in two ethnic groups. Tissue Antigens. 1998 Jan;51(1):96–100. doi: 10.1111/j.1399-0039.1998.tb02952.x
  • Thebault S, Vincent A, Gringras P. Narcolepsy and H1N1 vaccination: a link?. Current opinion in pulmonary medicine. Curr Opin Pulm Med. 2013;19(6):587–593. doi: 10.1097/MCP.0b013e328365af97
  • Stultz D, Osburn S, Burns T, et al. 508 narcolepsy associated with a history of head injury: a retrospective review. Sleep. 2021;44(2):A200–A200. doi: 10.1093/sleep/zsab072.507
  • De la Herrán-Arita AK, García-García F. Narcolepsy as an immune-mediated disease. Sleep Disord. 2014;2014:792687. doi: 10.1155/2014/792687
  • Ruoff C, Rye D. The ICSD-3 and DSM-5 guidelines for diagnosing narcolepsy: clinical relevance and practicality. Curr Med Res Opin. 2016;32(10):1611–1622. doi: 10.1080/03007995.2016.1208643
  • Longstreth WT Jr, Koepsell TD, Ton TG, et al. The epidemiology of narcolepsy. Sleep. 2007;30(1):13–26. doi: 10.1093/sleep/30.1.13
  • Bhattarai J, Sumerall S. Current and future treatment options for narcolepsy: a review. Sleep Sci. 2017;10(1):19–27. doi: 10.5935/1984-0063.20170004
  • Barateau L, Lopez R, Dauvilliers Y. Treatment options for narcolepsy. CNS Drugs. 2016;30(5):369–379. doi: 10.1007/s40263-016-0337-4
  • Littner M, Johnson SF, WV M, et al. Standards of practice committee. Practice parameters for the treatment of narcolepsy: an update for 2000. Sleep. 2001;24(4):451–466. doi: 10.1093/sleep/24.5.603
  • Thorpy MJ, Dauvilliers Y. Clinical and practical considerations in the pharmacologic management of narcolepsy. Sleep Med. 2015;16(1):9–18. doi: 10.1016/j.sleep.2014.10.002
  • Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437–451. doi: 10.1016/s0092-8674(00)81973-x
  • Vassalli A, Franken P. Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Proc Natl Acad Sci USA. 2017;114(27):E5464–E5473. doi: 10.1073/pnas.1700983114
  • Willie JT, Chemelli RM, Sinton CM, et al. Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron. 2003;38(5):715–730. doi: 10.1016/s0896-6273(03)00330-1
  • Oishi Y, Williams RH, Agostinelli L, et al. Role of the medial prefrontal cortex in cataplexy. J Neurosci. 2013;33(23):9743–9751. doi: 10.1523/JNEUROSCI.0499-13.2013
  • Clark EL, Baumann CR, Cano G, et al. Feeding-elicited cataplexy in orexin knockout mice. Neuroscience. 2009;161(4):970–977. doi: 10.1016/j.neuroscience.2009.04.007
  • Tisdale RK, Yamanaka A, Kilduff TS. Animal models of narcolepsy and the hypocretin/orexin system: past, present, and future. Sleep. 2021;44(6):zsaa278. doi: 10.1093/sleep/zsaa278
  • Hara J, Yanagisawa M, Sakurai T. Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions. Neurosci Lett. 2005;380(3):239–242. doi: 10.1016/j.neulet.2005.01.046
  • Ramanathan L, Siegel JM. Gender differences between hypocretin/orexin knockout and wild type mice: age, body weight, body composition, metabolic markers, leptin and insulin resistance. J Neurochem. 2014;131(5):615–624. doi: 10.1111/jnc.12840
  • Lin JS, Dauvilliers Y, Arnulf I, et al. An inverse agonist of the histamine H(3) receptor improves wakefulness in narcolepsy: studies in orexin-/- mice and patients. Neurobiol Dis. 2008;30(1):74–83. doi: 10.1016/j.nbd.2007.12.003
  • Burgess CR, Tse G, Gillis L, et al. Dopaminergic regulation of sleep and cataplexy in a murine model of narcolepsy. Sleep. 2010;33(10):1295–1304. doi: 10.1093/sleep/33.10.1295
  • Willie JT, Renthal W, Chemelli RM, et al. Modafinil more effectively induces wakefulness in orexin-null mice than in wild-type littermates. Neuroscience. 2005;130(4):983–995. doi: 10.1016/j.neuroscience.2004.10.005
  • Hamieh M, Fraigne J, Peever J. The effect of sodium oxybate on cataplexy in orexin knockout mice. Sleep. 2021;44(Supplement 2):A2–A3. doi: 10.1093/sleep/zsab072.005
  • Mochizuki T, Clark EL, Scammell TE. Sodium oxybate consolidates wakefulness in orexin knockout mice. 20th Annual Meeting of the Associated-Professional-Sleep-Societies. 2006;29:A1.
  • Hara J, Beuckmann CT, Nambu T, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30(2):345–354. doi: 10.1016/s0896-6273(01)00293-8
  • Black SW, Morairty SR, Chen TM, et al. GABAB agonism promotes sleep and reduces cataplexy in murine narcolepsy. J Neurosci. 2014;34(19):6485–6494. doi: 10.1523/JNEUROSCI.0080-14.2014
  • Irukayama-Tomobe Y, Ogawa Y, Tominaga H, et al. Nonpeptide orexin type-2 receptor agonist ameliorates narcolepsy-cataplexy symptoms in mouse models. Proc Natl Acad Sci USA. 2017;114(22):5731–5736. doi: 10.1073/pnas.1700499114
  • Ishikawa T, Hara H, Kawano A, et al. Danavorexton, a selective orexin 2 receptor agonist, provides a symptomatic improvement in a narcolepsy mouse model. Pharmacol Biochem Behav. 2022;220:173464. doi: 10.1016/j.pbb.2022.173464
  • Williams RH, Tsunematsu T, Thomas AM, et al. Transgenic archaerhodopsin-3 expression in Hypocretin/Orexin neurons engenders cellular dysfunction and features of type 2 narcolepsy. J Neurosci. 2019;39(47):9435–9452. doi: 10.1523/JNEUROSCI.0311-19.2019
  • Tabuchi S, Tsunematsu T, Black SW, et al. Conditional ablation of orexin/hypocretin neurons: a new mouse model for the study of narcolepsy and orexin system function. J Neurosci. 2014;34(19):6495–6509. doi: 10.1523/JNEUROSCI.0073-14.2014
  • Mieda M, Willie JT, Hara J, et al. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc Natl Acad Sci USA. 2004;101(13):4649–4654. doi: 10.1073/pnas.0400590101
  • Soya S, Shoji H, Hasegawa E, et al. Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation. J Neurosci. 2013;33(36):14549–14557. doi: 10.1523/JNEUROSCI.1130-13.2013
  • Kisanuki YY, Chemelli RM, Sinton CM, et al. The role of orexin receptor type-1 (OX1R) in the regulation of sleep. Sleep. 2000;23:A91.
  • Abbas MG, Shoji H, Soya S, et al. Comprehensive behavioral analysis of male Ox1r (-/-) mice showed implication of orexin receptor-1 in mood, anxiety, and social behavior. Front Behav Neurosci. 2015;9:324. doi: 10.3389/fnbeh.2015.00324
  • Kisanuki YY, Chemelli RM, Tokita S, et al. Behavioral and polysomnographic characterization of orexin-1 receptor and orexin-2 receptor double knockout mice. Sleep. 2001;24:A22.
  • Mochizuki T, Arrigoni E, Marcus JN, et al. Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc Natl Acad Sci USA. 2011;108(11):4471–4476. doi: 10.1073/pnas.1012456108
  • Tsunematsu T, Tabuchi S, Tanaka KF, et al. Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav Brain Res. 2013;255:64–74. doi: 10.1016/j.bbr.2013.05.021
  • Tesoriero C, Codita A, Zhang MD, et al. H1N1 influenza virus induces narcolepsy-like sleep disruption and targets sleep-wake regulatory neurons in mice. Proc Natl Acad Sci USA. 2016;113(3):E368–E377. doi: 10.1073/pnas.1521463112
  • Peyron C, Bernard-Valnet R, Yshii L, et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci USA. 2016;113(39):10956–10961. doi: 10.1073/pnas.1603325113
  • Hung CJ, Ono D, Kilduff TS, et al. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. Elife. 2020;9:e54275. doi: 10.7554/eLife.54275
  • Tsunematsu T, Ueno T, Tabuchi S, et al. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci. 2014;34(20):6896–6909. doi: 10.1523/JNEUROSCI.5344-13.2014
  • Adamantidis AR, Zhang F, Aravanis AM, et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 2007;450(7168):420–424. doi: 10.1038/nature06310
  • Carter ME, Adamantidis A, Ohtsu H, et al. Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci. 2009;29(35):10939–10949. doi: 10.1523/JNEUROSCI.1205-09.2009
  • Carter ME, Brill J, Bonnavion P, et al. Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci USA. 2012;109(39):E2635–2644. doi: 10.1073/pnas.1202526109
  • Heiss JE, Yamanaka A, Kilduff TS. Instantaneous and persistent arousal induced by bilateral optogenetic and pharmacogenetic excitation of HCRT neurons. 2015 Neuroscience Meeting Planner 2015:Program No. 814.12.
  • Tsunematsu T, Kilduff TS, Boyden ES, et al. Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J Neurosci. 2011;31(29):10529–10539. doi: 10.1523/JNEUROSCI.0784-11.2011
  • Tabuchi S, Tsunematsu T, Kilduff TS, et al. Influence of inhibitory serotonergic inputs to orexin/hypocretin neurons on the diurnal rhythm of sleep and wakefulness. Sleep. 2013;36(9):1391–1404. doi: 10.5665/sleep.2972
  • Chen L, Thakkar MM, Winston S, et al. REM sleep changes in rats induced by siRNA-mediated orexin knockdown. Eur J Neurosci. 2006;24(7):2039–2048. doi: 10.1111/j.1460-9568.2006.05058.x
  • Chen L, McKenna JT, Bolortuya Y, et al. Knockdown of orexin type 1 receptor in rat locus coeruleus increases REM sleep during the dark period. Eur J Neurosci. 2010;32(9):1528–1536. doi: 10.1111/j.1460-9568.2010.07401.x
  • Gerashchenko D, Kohls MD, Greco M, et al. Hypocretin-2-saporin lesions of the lateral hypothalamus produce narcoleptic-like sleep behavior in the rat. J Neurosci. 2001;21(18):7273–7283. doi: 10.1523/JNEUROSCI.21-18-07273.2001
  • Gerashchenko D, Blanco-Centurion C, Greco MA, et al. Effects of lateral hypothalamic lesion with the neurotoxin hypocretin-2-saporin on sleep in Long-Evans rats. Neuroscience. 2003;116(1):223–235. doi: 10.1016/s0306-4522(02)00575-4
  • Beuckmann CT, Sinton CM, Williams SC, et al. Expression of a poly-glutamine-ataxin-3 transgene in orexin neurons induces narcolepsy-cataplexy in the rat. J Neurosci. 2004;24(18):4469–4477. doi: 10.1523/JNEUROSCI.5560-03.2004
  • Baker TL, Foutz AS, McNerney V, et al. Canine model of narcolepsy: genetic and developmental determinants. Exp Neurol. 1982;75(3):729–742. doi: 10.1016/0014-4886(82)90038-3
  • John J, Wu MF, Maidment NT, et al. Developmental changes in CSF hypocretin-1 (orexin-A) levels in normal and genetically narcoleptic doberman pinschers. J Physiol. 2004;560(Pt 2):587–592. doi: 10.1113/jphysiol.2004.070573
  • Nishino S, Mignot E. Pharmacological aspects of human and canine narcolepsy. Prog Neurobiol. 1997 May;52(1):27–78. doi: 10.1016/s0301-0082(96)00070-6
  • Kushida CA, Baker TL, Dement WC. Electroencephalographic correlates of cataplectic attacks in narcoleptic canines. Electroencephalogr Clin Neurophysiol. 1985 Jul;61(1):61–70. doi: 10.1016/0013-4694(85)91073-9
  • Kaitin KI, Kilduff TS, Dement WC. Sleep fragmentation in canine narcolepsy. Sleep. 1986;9(1 Pt 2):116–119. doi: 10.1093/sleep/9.1.116
  • Lucas EA, Foutz AS, Dement WC, et al. Sleep cycle organization in narcoleptic and normal dogs. Physiol Behav. 1979;23(4):737–743. doi: 10.1016/0031-9384(79)90168-9
  • Nishino S, Riehl J, Hong J, et al. Is narcolepsy a REM sleep disorder? Analysis of sleep abnormalities in narcoleptic Dobermans. Neurosci Res. 2000 Dec;38(4):437–446. doi: 10.1016/s0168-0102(00)00195-4
  • Ripley B, Fujiki N, Okura M, et al. Hypocretin levels in sporadic and familial cases of canine narcolepsy. Neurobiol Dis. 2001;8(3):525–534. PMID: 11442359. doi: 10.1006/nbdi.2001.0389
  • Available from: https://www.ema.europa.eu/en/documents/scientific-discussion/xyrem-epar-scientific-discussion_en.pdf
  • Mignot E, Nishino S, Guilleminault C, et al. Modafinil binds to the dopamine uptake carrier site with low affinity. Sleep. 1994;17(5):436–437. doi: 10.1093/sleep/17.5.436
  • Randomized trial of modafinil as a treatment for the excessive daytime somnolence of narcolepsy: US modafinil in narcolepsy multicenter study group. Neurology. 2000;54(5):1166–1175. doi: 10.1212/wnl.54.5.1166
  • Broughton RJ, Fleming JA, George CF, et al. Randomized, double-blind, placebo-controlled crossover trial of modafinil in the treatment of excessive daytime sleepiness in narcolepsy. Neurology. 1997;49(2):444–451. doi: 10.1212/wnl.49.2.444
  • Mitler MM, Harsh J, Hirshkowitz M, et al. Long-term efficacy and safety of modafinil (PROVIGIL((R))) for the treatment of excessive daytime sleepiness associated with narcolepsy. Sleep Med. 2000;1(3):231–243. doi: 10.1016/s1389-9457(00)00031-9
  • Harsh JR, Hayduk R, Rosenberg R, et al. The efficacy and safety of armodafinil as treatment for adults with excessive sleepiness associated with narcolepsy. Curr Med Res Opin. 2006;22(4):761–774. doi: 10.1185/030079906X100050
  • Black JE, Hull SG, Tiller J, et al. The long-term tolerability and efficacy of armodafinil in patients with excessive sleepiness associated with treated obstructive sleep apnea, shift work disorder, or narcolepsy: an open-label extension study. J Clin Sleep Med. 2010;6(5):458–566. doi: 10.5664/jcsm.27935
  • A randomized, double blind, placebo-controlled multicenter trial comparing the effects of three doses of orally administered sodium oxybate with placebo for the treatment of narcolepsy. Sleep. 2002;25(1):42–49.
  • Xyrem&reg T, Group IS, Xyrem International Study Group. A double-blind, placebo-controlled study demonstrates sodium oxybate is effective for the treatment of excessive daytime sleepiness in narcolepsy. J Clin Sleep Med. 2005;1(4):391–397. doi: 10.5664/jcsm.26368
  • A 12-month, open-label, multicenter extension trial of orally administered sodium oxybate for the treatment of narcolepsy. Sleep. 2003;26(1):31–35.
  • Black J, Houghton WC. Sodium oxybate improves excessive daytime sleepiness in narcolepsy. Sleep. 2006;29(7):939–946. doi: 10.1093/sleep/29.7.939
  • Plazzi G, Ruoff C, Lecendreux M, et al. Treatment of paediatric narcolepsy with sodium oxybate: a double-blind, placebo-controlled, randomised-withdrawal multicentre study and open-label investigation. Lancet Child Adolesc Health. 2018;2(7):483–494. doi: 10.1016/S2352-4642(18)30133-0
  • Lecendreux M, Plazzi G, Dauvilliers Y, et al. Long-term safety and maintenance of efficacy of sodium oxybate in the treatment of narcolepsy with cataplexy in pediatric patients. J Clin Sleep Med. 2022;18(9):2217–2227. doi: 10.5664/jcsm.10090
  • Bogan RK, Thorpy MJ, Dauvilliers Y, et al. Efficacy and safety of calcium, magnesium, potassium, and sodium oxybates (lower-sodium oxybate [LXB]; JZP-258) in a placebo-controlled, double-blind, randomized withdrawal study in adults with narcolepsy with cataplexy. Sleep. 2021;44(3):zsaa206. doi: 10.1093/sleep/zsaa206
  • Bogan RK, Foldvary-Schaefer N, Skowronski R, et al. Long-term safety and tolerability during a Clinical Trial and open-label extension of low-sodium oxybate in participants with Narcolepsy with cataplexy. CNS Drugs. 2023;37(4):323–335. doi: 10.1007/s40263-023-00992-y
  • Kushida CA, Shapiro CM, Roth T, et al. Once-nightly sodium oxybate (FT218) demonstrated improvement of symptoms in a phase 3 randomized clinical trial in patients with narcolepsy. Sleep. 2022;45(6):zsab200. doi: 10.1093/sleep/zsab200
  • Stern T, Roy A, Shapiro C, et al. 0579 long-term safety of once-nightly oxybate for narcolepsy: RESTORE Study Interim Analysis of Data. Sleep. 2023;46(Supplement_1):A254–5. doi: 10.1093/sleep/zsad077.0579
  • Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/214755Orig1s000lbl.pdf
  • Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212690s000lbl.pdf
  • Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021196s030lbl.pdf
  • Baladi MG, Forster MJ, Gatch MB, et al. Characterization of the neurochemical and behavioral effects of solriamfetol (JZP-110), a Selective Dopamine and norepinephrine reuptake inhibitor. J Pharmacol Exp Ther. 2018;366(2):367–376. doi: 10.1124/jpet.118.248120
  • Hasan S, Pradervand S, Ahnaou A, et al. How to keep the brain awake? The complex molecular pharmacogenetics of wake promotion. Neuropsychopharmacology. 2009;34(7):1625–1640. doi: 10.1038/npp.2009.3
  • Bogan RK, Feldman N, Emsellem HA, et al. Effect of oral JZP-110 (ADX-N05) treatment on wakefulness and sleepiness in adults with narcolepsy. Sleep Med. 2015;16(9):1102–1108. doi: 10.1016/j.sleep.2015.05.013
  • Ruoff C, Swick TJ, Doekel R, et al. Effect of oral JZP-110 (ADX-N05) on Wakefulness and sleepiness in adults with narcolepsy: a phase 2b study. Sleep. [2016 Jul 1];39(7):1379–1387. doi: 10.5665/sleep.5968
  • Thorpy MJ, Shapiro C, Mayer G, et al. A randomized study of solriamfetol for excessive sleepiness in narcolepsy. Ann Neurol. 2019;85(3):359–370. doi: 10.1002/ana.25423
  • Malhotra A, Shapiro C, Pepin JL, et al. Long-term study of the safety and maintenance of efficacy of solriamfetol (JZP-110) in the treatment of excessive sleepiness in participants with narcolepsy or obstructive sleep apnea. Sleep. 2020;43(2):zsz220. doi: 10.1093/sleep/zsz220
  • Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211230s000lbl.pdf
  • Schwartz JC. The histamine H3 receptor: from discovery to clinical trials with pitolisant. Br J Pharmacol. 2011;163(4):713–721. doi: 10.1111/j.1476-5381.2011.01286.x
  • Riddy DM, Cook AE, Shackleford DM, et al. Drug-receptor kinetics and sigma-1 receptor affinity differentiate clinically evaluated histamine H3 receptor antagonists. Neuropharmacology. 2019;144:244–255. doi: 10.1016/j.neuropharm.2018.10.028
  • Dauvilliers Y, Bassetti C, Lammers GJ, et al. HARMONY I study group. Pitolisant versus placebo or modafinil in patients with narcolepsy: a double-blind, randomised trial. Lancet Neurol. 2013;12(11):1068–1075. doi: 10.1016/S1474-4422(13)70225-4
  • Kollb-Sielecka M, Demolis P, Emmerich J, et al. The European Medicines Agency review of pitolisant for treatment of narcolepsy: summary of the scientific assessment by the Committee for Medicinal Products for human use. Sleep Med. 2017;33:125–129. doi: 10.1016/j.sleep.2017.01.002
  • Szakacs Z, Dauvilliers Y, Mikhaylov V, et al. HARMONY-CTP study group. Safety and efficacy of pitolisant on cataplexy in patients with narcolepsy: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017 Mar;16(3):200–207. doi: 10.1016/S1474-4422(16)30333-7
  • Syed YY. Pitolisant: first global approval. Drugs. 2016;76(13):1313–1318. doi: 10.1007/s40265-016-0620-1
  • Dauvilliers Y, Lecendreux M, Lammers GJ, et al. Safety and efficacy of pitolisant in children aged 6 years or older with narcolepsy with or without cataplexy: a double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2023;22(4):303–311. doi: 10.1016/S1474-4422(23)00036-4
  • Triller A, Pizza F, Lecendreux M, et al. Real-world treatment of pediatric narcolepsy with pitolisant: a retrospective, multicenter study. Sleep Med. 2023;103:62–68. doi: 10.1016/j.sleep.2023.01.015
  • Inocente C, Arnulf I, Bastuji H, et al. Pitolisant, an inverse agonist of the histamine H3 receptor: an alternative stimulant for narcolepsy-cataplexy in teenagers with refractory sleepiness. Clin Neuropharmacol. 2012;35(2):55–60. doi: 10.1097/WNF.0b013e318246879d
  • Dauvilliers Y, Arnulf I, Szakacs Z, et al. HARMONY III study group. Long-term use of pitolisant to treat patients with narcolepsy: harmony III study. Sleep. 2019;42(11):zsz174. doi: 10.1093/sleep/zsz174
  • Sarfraz N, Okuampa D, Hansen H, et al. pitolisant, a novel histamine-3 receptor competitive antagonist, and inverse agonist, in the treatment of excessive daytime sleepiness in adult patients with narcolepsy. Health Psychol Res. 2022;10(3):34222. doi: 10.52965/001c.34222
  • Sakai N, Nishino S. Comparison of Solriamfetol and modafinil on Arousal and anxiety-related behaviors in narcoleptic mice. Neurotherapeutics. 2023;20(2):546–563. doi: 10.1007/s13311-022-01328-2
  • Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98(3):365–376. doi: 10.1016/s0092-8674(00)81965-0
  • Arias-Carrión O, Drucker-Colín R, Murillo-Rodríguez E. Survival rates through time of hypocretin grafted neurons within their projection site. Neurosci Lett. [2006 Aug 14];404(1–2):93–97. doi: 10.1016/j.neulet.2006.05.017
  • Arias-Carrión O, Murillo-Rodríguez E, Androutsellis-Theotokis A. Effects of hypocretin/orexin cell transplantation on narcoleptic-like sleep behavior in rats. PLoS One. 2014;9(4):e95342. doi: 10.1371/journal.pone.0095342
  • Equihua-Benítez AC, Equihua-Benítez JA, Guzmán-Vásquez K, et al. Orexin cell transplant reduces behavioral arrest severity in narcoleptic mice. Brain Res. 2020;1745:146951. doi: 10.1016/j.brainres.2020.146951
  • Baier PC, Hallschmid M, Seeck-Hirschner M, et al. Effects of intranasal hypocretin-1 (orexin A) on sleep in narcolepsy with cataplexy. Sleep Med. 2011;12(10):941–946. doi: 10.1016/j.sleep.2011.06.015
  • Saitoh T, Sakurai T. The present and future of synthetic orexin receptor agonists. Peptides. 2023;167:171051. doi: 10.1016/j.peptides.2023.171051
  • Thomas SV, Hilleman DE, Malesker MA. Insomnia treatment update with a focus on orexin receptor antagonists. US Pharm. 2022;47(5):43–48.
  • Benade V, Daripelli S, Tirumalasetty C, et al. SUVN-G3031, a histamine H3 receptor inverse agonist produces wake promoting effect in orexin-2-saporin lesioned rats. Sleep. 2019;42(Supplement_1):A22. doi: 10.1093/sleep/zsz067.053
  • Nirogi R, Benade V, Daripelli S, et al. Samelisant (SUVN-G3031), a potent, selective and orally active histamine H3 receptor inverse agonist for the potential treatment of narcolepsy: pharmacological and neurochemical characterisation. Psychopharmacol (Berl). 2021;238(6):1495–1511. doi: 10.1007/s00213-021-05779-x
  • http://www.suven.com/pdf/SUVENNewsRelease30102023.pdf [accessed 2023 Nov 15].
  • Nirogi R, Bhyrapuneni G, Abraham R, et al. SUVN-G3031, a potent and selective histamine H3 receptor inverse agonist-phase-2 investigational new drug for the treatment of narcolepsy-differentiating factors with competitor clinical candidates. Sleep. 2019;42(Supplement_1):A57. doi: 10.1093/sleep/zsz067.138
  • Ben-Joseph RH, Saad R, Black J, et al. Cardiovascular burden of narcolepsy disease (CV-BOND): a real-world evidence study. Sleep. [2023 Oct 11];46(10):zsad161. doi: 10.1093/sleep/zsad161
  • Inoue Y, Uchiyama M, Umeuchi H, et al. Optimal dose determination of enerisant (TS-091) for patients with narcolepsy: two randomized, double-blind, placebo-controlled trials. BMC Psychiatry. 2022;22(1):141. doi: 10.1186/s12888-022-03785-7
  • Abad VC. An evaluation of sodium oxybate as a treatment option for narcolepsy. Expert Opin Pharmacother. 2019;20(10):1189–1199. doi: 10.1080/14656566.2019.1617273
  • Wang YG, Swick TJ, Carter LP, et al. Safety overview of postmarketing and clinical experience of sodium oxybate (xyrem): abuse, misuse, dependence, and diversion. J Clin Sleep Med. 2009;5(4):365–371. doi: 10.5664/jcsm.27549
  • van der Hoeven AE, Fronczek R, Schinkelshoek MS, et al. Intermediate hypocretin-1 cerebrospinal fluid levels and typical cataplexy: their significance in the diagnosis of narcolepsy type 1. Sleep. 2022;45(5):zsac052. doi: 10.1093/sleep/zsac052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.