53
Views
0
CrossRef citations to date
0
Altmetric
Review

Computer-aided drug discovery strategies for novel therapeutics for prostate cancer leveraging next-generating sequencing data

&
Pages 841-853 | Received 14 Mar 2024, Accepted 04 Jun 2024, Published online: 11 Jun 2024

References

  • Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. Ca A Cancer J Clinicians. 2023;73(1):17–48. doi: 10.3322/caac.21763
  • Keyes M, Crook J, Morton G, et al. Treatment options for localized prostate cancer. Can Fam Physician. 2013;59(12):1269–1274.
  • Siegel DA, O’Neil ME, Richards TB, et al. Prostate cancer incidence and survival, by stage and race/ethnicity — United States, 2001–2017. MMWR Morb Mortal Wkly Rep. 2020;69(41):1473–1480. doi: 10.15585/mmwr.mm6941a1
  • Vellky JE, Ricke WA. Development and prevalence of castration-resistant prostate cancer subtypes. Neoplasia. 2020;22(11):566–575. doi: 10.1016/j.neo.2020.09.002
  • Khoshkar Y, Westerberg M, Adolfsson J, et al. Mortality in men with castration-resistant prostate cancer—A long-term follow-up of a population-based real-world cohort. BJUI Compass. 2022;3(2):173–183. doi: 10.1002/bco2.116
  • Karaman B, Sippl W. Computational drug repurposing: current trends. Curr Med Chem. 2019;26(28):5389–5409. doi: 10.2174/0929867325666180530100332
  • Park K. A review of computational drug repurposing. Transl Clin Pharmacol. 2019;27(2):59–63. doi: 10.12793/tcp.2019.27.2.59
  • Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58. doi: 10.1038/nrd.2018.168
  • Azuaje F. Computational models for predicting drug responses in cancer research. Brief Bioinform. 2017;18(5):820–829. doi: 10.1093/bib/bbw065
  • Adam G, Rampášek L, Safikhani Z, et al. Machine learning approaches to drug response prediction: challenges and recent progress. npj Precis Onc. 2020;4(1):1–10. doi: 10.1038/s41698-020-0122-1
  • Barretina J, Caponigro G, Stransky N, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–607. doi: 10.1038/nature11003
  • Seashore-Ludlow B, Rees MG, Cheah JH, et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 2015;5(11):1210–1223. doi: 10.1158/2159-8290.CD-15-0235
  • Yang W, Soares J, Greninger P, et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41(D1):D955–D961. doi: 10.1093/nar/gks1111
  • Rees MG, Seashore-Ludlow B, Cheah JH, et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat Chem Biol. 2016;12(2):109–116. doi: 10.1038/nchembio.1986
  • Corsello SM, Nagari RT, Spangler RD, et al. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat Cancer. 2020;1(2):235–248. doi: 10.1038/s43018-019-0018-6
  • Mokou M, Frantzi M, Mischak H, et al. Developing novel drug candidates and repurposed drugs for prostate cancer based on molecular profiles. Curr Med Chem. 2021;28(40):8392–8415. doi: 10.2174/0929867328666210525162730
  • Abeshouse A, Ahn J, Akbani R, et al. The molecular taxonomy of primary prostate cancer. Cell. 2015;163(4):1011–1025. doi: 10.1016/j.cell.2015.10.025
  • Abida W, Cyrta J, Heller G, et al. Genomic correlates of clinical outcome in advanced prostate cancer. PNAS. 2019;116(23):11428–11436. doi: 10.1073/pnas.1902651116
  • Quigley DA, Dang HX, Zhao SG, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018;174(3):758–769.e9. doi: 10.1016/j.cell.2018.06.039
  • Lamb J, Crawford ED, Peck D, et al. The connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–1935. doi: 10.1126/science.1132939
  • Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. 2017;171(6):1437–1452.e17. doi: 10.1016/j.cell.2017.10.049
  • Chen B, Ma L, Paik H, et al. Reversal of cancer gene expression correlates with drug efficacy and reveals therapeutic targets. Nat Commun. 2017;8(1):16022. doi: 10.1038/ncomms16022
  • Koudijs KKM, Terwisscha van Scheltinga AGT, Böhringer S, et al. Transcriptome signature reversion as a method to reposition drugs against cancer for precision oncology. Cancer J. 2019;25(2):116–120. doi: 10.1097/PPO.0000000000000370
  • Lotfi Shahreza M, Ghadiri N, Mousavi SR, et al. A review of network-based approaches to drug repositioning. Brief Bioinform. 2018;19(5):878–892. doi: 10.1093/bib/bbx017
  • Cheng F, Kovács IA, Barabási AL. Network-based prediction of drug combinations. Nat Commun. 2019;10(1):1197. doi: 10.1038/s41467-019-09186-x
  • Geeleher P, Cox NJ, Huang RS. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 2014;15(3):R47. doi: 10.1186/gb-2014-15-3-r47
  • Kaffenberger SD, Barbieri CE. Molecular subtyping of prostate cancer. Curr Opin Urol. 2016;26(3):213–218. doi: 10.1097/MOU.0000000000000285
  • Nevedomskaya E, Baumgart SJ, Haendler B. Recent advances in prostate cancer treatment and drug discovery. Int J Mol Sci. 2018;19(5):1359. doi: 10.3390/ijms19051359
  • Huang RH, Hong YK, Du H, et al. A machine learning framework develops a DNA replication stress model for predicting clinical outcomes and therapeutic vulnerability in primary prostate cancer. J Transl Med. 2023;21:20. doi: 10.1186/s12967-023-03872-7
  • Hwang KW, Yun JW, Kim HS. Unveiling the molecular landscape of FOXA1 mutant prostate cancer: insights and prospects for targeted therapeutic strategies. Int J Mol Sci. 2023;24(21):15823. doi: 10.3390/ijms242115823
  • Hartung M, Anastasi E, Mamdouh ZM, et al. Cancer driver drug interaction explorer. Nucleic Acids Res. 2022;50(W1):W138–W144. doi: 10.1093/nar/gkac384
  • Chandrasekar T, Yang JC, Gao AC, et al. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol. 2015;4(3):365–380. doi: 10.3978/j.issn.2223-4683.2015.05.02
  • Han H, Park CK, Choi YD, et al. Androgen-independent prostate cancer is sensitive to CDC42-PAK7 kinase inhibition. Biomedicines. 2022;11(1):101. doi: 10.3390/biomedicines11010101
  • Tsherniak A, Vazquez F, Montgomery PG, et al. Defining a cancer dependency map. Cell. 2017;170(3):564–576.e16. doi: 10.1016/j.cell.2017.06.010
  • Zhang W, Lee AM, Jena S, et al. Computational drug discovery for castration-resistant prostate cancers through in vitro drug response modeling. Proc Nat Acad Sci. 2023;120(17):e2218522120. doi: 10.1073/pnas.2218522120
  • Maeser D, Gruener RF, Huang RS. oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief Bioinform. 2021;22(6). doi: 10.1093/bib/bbab260
  • Granata I, Barboro P. Identification of molecular markers associated with prostate cancer subtypes: an integrative bioinformatics approach. Biomolecules. 2024;14(1):87. doi: 10.3390/biom14010087
  • Chang J, Jiang Z, Ma T, et al. Integrating transcriptomics and network analysis-based multiplexed drug repurposing to screen drug candidates for M2 macrophage-associated castration-resistant prostate cancer bone metastases. Front Immunol. 2022;13:989972. doi: 10.3389/fimmu.2022.989972
  • Coutinho I, Day TK, Tilley WD, et al. Androgen receptor signaling in castration-resistant prostate cancer: a lesson in persistence. Endocr Relat Cancer. 2016;23(12):T179–T197. doi: 10.1530/ERC-16-0422
  • Hoang DT, Iczkowski KA, Kilari D, et al. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: opportunities for therapeutic targeting from multiple angles. Oncotarget. 2016;8(2):3724–3745. doi: 10.18632/oncotarget.12554
  • Che M, Chaturvedi A, Munro SA, et al. Opposing transcriptional programs of KLF5 and AR emerge during therapy for advanced prostate cancer. Nat Commun. 2021;12(1):6377. doi: 10.1038/s41467-021-26612-1
  • Hu X, Chai X, Wang X, et al. Advances in the computational development of androgen receptor antagonists. Drug Discovery Today. 2020;25(8):1453–1461. doi: 10.1016/j.drudis.2020.04.004
  • Teply BA, Hauke RJ. Chemotherapy options in castration-resistant prostate cancer. Indian J Urol. 2016;32(4):262–270. doi: 10.4103/0970-1591.191239
  • Sekino Y, Teishima J. Molecular mechanisms of docetaxel resistance in prostate cancer. Cancer Drug Resist. 2020;3(4):676–685. doi: 10.20517/cdr.2020.37
  • Schnepp PM, Shelley G, Dai J, et al. Single-cell transcriptomics analysis identifies nuclear protein 1 as a regulator of docetaxel resistance in prostate cancer cells. Mol Cancer Res. 2020;18(9):1290–1301. doi: 10.1158/1541-7786.MCR-20-0051
  • Mazumder S, Mitra Ghosh T, Mukherjee UK, et al. Integrating pharmacogenomics data-driven computational drug prediction with single-cell RNAseq to demonstrate the efficacy of a NAMPT inhibitor against aggressive, taxane-resistant, and stem-like cells in lethal prostate cancer. Cancers (Basel). 2022;14(23):6009. doi: 10.3390/cancers14236009
  • Nomura M, Ohuchi M, Sakamoto Y, et al. Niacin restriction with NAMPT-inhibition is synthetic lethal to neuroendocrine carcinoma. Nat Commun. 2023;14(1):8095. doi: 10.1038/s41467-023-43630-3
  • Hongo H, Kosaka T, Suzuki Y, et al. Discovery of a new candidate drug to overcome cabazitaxel-resistant gene signature in castration-resistant prostate cancer by in silico screening. Prostate Cancer Prostatic Dis. 2023;26(1):59–66. doi: 10.1038/s41391-021-00426-0.
  • Hongo H, Kosaka T, Suzuki Y, et al. Topoisomerase II alpha inhibition can overcome taxane-resistant prostate cancer through DNA repair pathways. Sci Rep. 2021;11(1):22284. doi: 10.1038/s41598-021-01697-2.
  • Hongo H, Kosaka T, Takayama KI, et al. G-protein signaling of oxytocin receptor as a potential target for cabazitaxel-resistant prostate cancer. PNAS Nexus. 2024;3(1):002. doi: 10.1093/pnasnexus/pgae002
  • Schnepp PM, Ahmed A, Escara-Wilke J, et al. Transcription factor network analysis based on single cell RNA-seq identifies that trichostatin-a reverses docetaxel resistance in prostate cancer. BMC Cancer. 2021;21(1):1316. doi: 10.1186/s12885-021-09048-0
  • Zhang W, Maeser D, Lee A, et al. Integration of pan-cancer cell line and single-cell transcriptomic profiles enables inference of therapeutic vulnerabilities in heterogeneous tumors. Cancer Res. doi: 10.1158/0008-5472.CAN-23-3005
  • Merkens L, Sailer V, Lessel D, et al. Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation. J Exp Clin Cancer Res. 2022;41(1):46. doi: 10.1186/s13046-022-02255-y
  • Aparicio AM, Harzstark AL, Corn PG, et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res. 2013;19(13):3621–3630. doi: 10.1158/1078-0432.CCR-12-3791
  • Ostano P, Mello-Grand M, Sesia D, et al. Gene expression signature predictive of neuroendocrine transformation in prostate adenocarcinoma. Int J Mol Sci. 2020;21(3):1078. doi: 10.3390/ijms21031078
  • Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22(3):298–305. doi: 10.1038/nm.4045
  • Puca L, Bareja R, Prandi D, et al. Patient derived organoids to model rare prostate cancer phenotypes. Nat Commun. 2018;9(1):2404. doi: 10.1038/s41467-018-04495-z
  • Sulsenti R, Frossi B, Bongiovanni L, et al. Repurposing of the antiepileptic drug levetiracetam to restrain neuroendocrine prostate cancer and inhibit mast cell support to adenocarcinoma. Front Immunol. 2021;12:622001. doi: 10.3389/fimmu.2021.622001
  • Yamada Y, Beltran H. Clinical and biological features of neuroendocrine prostate cancer. Curr Oncol Rep. 2021;23(2):15. doi: 10.1007/s11912-020-01003-9
  • Wei L, Wang J, Lampert E, et al. Intratumoral and intertumoral genomic heterogeneity of multifocal localized prostate cancer impacts molecular classifications and genomic prognosticators. Eur Urol. 2017;71(2):183–192. doi: 10.1016/j.eururo.2016.07.008
  • Haffner MC, Zwart W, Roudier MP, et al. Genomic and phenotypic heterogeneity in prostate cancer. Nat Rev Urol. 2021;18(2):79–92. doi: 10.1038/s41585-020-00400-w
  • Jamal-Hanjani M, Quezada SA, Larkin J, et al. Translational implications of tumor heterogeneity. Clin Cancer Res. 2015;21(6):1258–1266. doi: 10.1158/1078-0432.CCR-14-1429
  • Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94. doi: 10.1038/nrclinonc.2017.166
  • Li S, Wen Z, Li M, et al. Prediction of synergistic drug combinations for prostate cancer by transcriptomic and network characteristics. Front Pharmacol. 2021;12. doi: 10.3389/fphar.2021.634097
  • Stathias V, Jermakowicz AM, Maloof ME, et al. Drug and disease signature integration identifies synergistic combinations in glioblastoma. Nat Commun. 2018;9(1):5315. doi: 10.1038/s41467-018-07659-z
  • Bliss CI. The TOXICITY of POISONS APPLIED JOINTLY1. Ann Appl Biol. 1939;26(3):585–615. doi: 10.1111/j.1744-7348.1939.tb06990.x
  • Yadav B, Wennerberg K, Aittokallio T, et al. Searching for drug synergy in complex dose–response landscapes using an interaction potency model. Comput Struct Biotechnol J. 2015;13:504–513. doi: 10.1016/j.csbj.2015.09.001
  • Federico A, Fratello M, Scala G, et al. Integrated network pharmacology approach for drug combination discovery: a multi-cancer case study. Cancers (Basel). 2022;14(8):2043. doi: 10.3390/cancers14082043
  • Marwah VS, Kinaret PAS, Serra A, et al. INfORM: inference of NetwOrk response Modules. Bioinformatics. 2018;34(12):2136–2138. doi: 10.1093/bioinformatics/bty063
  • Palmer AC, Sorger PK. Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell. 2017;171(7):1678–1691.e13. doi: 10.1016/j.cell.2017.11.009
  • Plana D, Palmer AC, Sorger PK. Independent drug action in combination therapy: implications for precision oncology. Cancer Discovery. 2022;12(3):606–624. doi: 10.1158/2159-8290.CD-21-0212
  • Hwangbo H, Patterson SC, Dai A, et al. Additivity predicts the efficacy of most approved combination therapies for advanced cancer. Nat Cancer. 2023;4(12):1693–1704. doi: 10.1038/s43018-023-00667-z
  • Vasciaveo A, Arriaga JM, de Almeida FN, et al. OncoLoop: a network-based precision cancer medicine framework. Cancer Discov. 2023;13(2):386–409. doi: 10.1158/2159-8290.CD-22-0342
  • Cheng X, Zhao W, Zhu M, et al. Drug repurposing for cancer treatment through global propagation with a greedy algorithm in a multilayer network. Cancer Biol Med. 2022;19(1):74–89. doi: 10.20892/j.issn.2095-3941.2020.0218
  • Luo H, Wang J, Li M, et al. Computational drug repositioning with random walk on a heterogeneous network. IEEE/ACM Trans Comput Biol Bioinform. 2019;16(6):1890–1900. doi: 10.1109/TCBB.2018.2832078
  • Cüvitoğlu A, Isik Z. Network neighborhood operates as a drug repositioning method for cancer treatment. PeerJ. 2023;11:e15624. doi: 10.7717/peerj.15624
  • Noman AA, MdK I, Feroz T, et al. A systems biology approach for investigating significant biomarkers and drug targets common among patients with gonorrhea, chlamydia, and prostate cancer: a pilot study. Bioinform Biol Insights. 2023;17:11779322231214445. doi: 10.1177/11779322231214445
  • Tian S, Zhang J, Yuan S, et al. Exploring pharmacological active ingredients of traditional Chinese medicine by pharmacotranscriptomic map in ITCM. Brief Bioinform. 2023;24(2). doi: 10.1093/bib/bbad027
  • Tai S, Sun Y, Squires JM, et al. PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate. 2011;71(15):1668–1679. doi: 10.1002/pros.21383
  • Sampson N, Neuwirt H, Puhr M, et al. In vitro model systems to study androgen receptor signaling in prostate cancer. Endocr Relat Cancer. 2013;20(2):R49–R64. doi: 10.1530/ERC-12-0401
  • Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–1228. doi: 10.1016/j.cell.2015.05.001
  • Corella AN, Cabiliza Ordonio MVA, Coleman I, et al. Identification of therapeutic vulnerabilities in small-cell neuroendocrine prostate cancer. Clin Cancer Res. 2020;26(7):1667–1677. doi: 10.1158/1078-0432.CCR-19-0775
  • Bumbaca B, Li W. Taxane resistance in castration-resistant prostate cancer: mechanisms and therapeutic strategies. Acta Pharm Sin B. 2018;8(4):518–529. doi: 10.1016/j.apsb.2018.04.007
  • Cai M, Song XL, Li XA, et al. Current therapy and drug resistance in metastatic castration-resistant prostate cancer. Drug Resist Updat. 2023;68:100962. doi: 10.1016/j.drup.2023.100962
  • Chan JM, Zaidi S, Love JR, et al. Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. Science. 2022;377(6611):1180–1191. doi: 10.1126/science.abn0478
  • Aggarwal R, Rydzewski NR, Zhang L, et al. Prognosis associated with luminal and basal subtypes of metastatic prostate cancer. JAMA Oncol. 2021;7(11):1644–1652. doi: 10.1001/jamaoncol.2021.3987
  • Imamura J, Ganguly S, Muskara A, et al. Lineage plasticity and treatment resistance in prostate cancer: the intersection of genetics, epigenetics, and evolution. Front Endocrinol. 2023;14:1191311. doi: 10.3389/fendo.2023.1191311
  • Labrecque MP, Alumkal JJ, Coleman IM, et al. The heterogeneity of prostate cancers lacking AR activity will require diverse treatment approaches. Endocr Relat Cancer. 2021;28(8):T51–T66. doi: 10.1530/ERC-21-0002
  • Zhang W, Wang T, Wang Y, et al. Intratumor heterogeneity and clonal evolution revealed in castration-resistant prostate cancer by longitudinal genomic analysis. Transl Oncol. 2022;16:101311. doi: 10.1016/j.tranon.2021.101311
  • Kong W, Midena G, Chen Y, et al. Systematic review of computational methods for drug combination prediction. Computat Struct Biotechnol J. 2022;20:2807–2814. doi: 10.1016/j.csbj.2022.05.055
  • Devlies W, Claessens F. Tracking prostate cancer development at the single-cell level. Nat Rev Urol. 2020;17(10):545–546. doi: 10.1038/s41585-020-0358-0
  • He MX, Cuoco MS, Crowdis J, et al. Transcriptional mediators of treatment resistance in lethal prostate cancer. Nat Med. 2021;27(3):426–433. doi: 10.1038/s41591-021-01244-6
  • Wu Z, Lawrence PJ, Ma A, et al. Single-cell techniques and deep learning in predicting drug response. Trends Pharmacol Sci. 2020;41(12):1050–1065. doi: 10.1016/j.tips.2020.10.004
  • Schlam I, Moges R, Morganti S, et al. Next-generation antibody-drug conjugates for breast cancer: moving beyond HER2 and TROP2. Crit Rev Oncol Hematol. 2023;190:104090. doi: 10.1016/j.critrevonc.2023.104090
  • Lillard JW Jr, Moses KA, Mahal BA, et al. Racial disparities in black men with prostate cancer: a literature review. Cancer. 2022;128(21):3787–3795. doi: 10.1002/cncr.34433

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.