44
Views
0
CrossRef citations to date
0
Altmetric
Review

Artificial intelligence for small molecule anticancer drug discovery

, , , &
Received 22 Apr 2024, Accepted 07 Jun 2024, Published online: 18 Jun 2024

References

  • Hoelder S, Clarke PA, Workman P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol. 2012;6(2):155–176. doi: 10.1016/j.molonc.2012.02.004
  • Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021;6(1):201. doi: 10.1038/s41392-021-00572-w
  • Yap TA, Workman P. Exploiting the cancer genome: strategies for the discovery and clinical development of targeted molecular therapeutics. Annu Rev Pharmacol Toxicol. 2012;52(1):549–573. doi: 10.1146/annurev-pharmtox-010611-134532
  • Vatansever S, Schlessinger A, Wacker D, et al. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: state-of-the-arts and future directions. Med Res Rev. 2021;41(3):1427–1473. doi: 10.1002/med.21764
  • Dowden H, Munro J. Trends in clinical success rates and therapeutic focus. Nat Rev Drug Discov. 2019;18(7):495–496. doi: 10.1038/d41573-019-00074-z
  • Yang X, Wang Y, Byrne R, et al. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019;119(18):10520–10594. doi: 10.1021/acs.chemrev.8b00728
  • Deng J, Yang Z, Ojima I, et al. Artificial intelligence in drug discovery: applications and techniques. Brief Bioinform. 2022;23(1):bbab430. doi: 10.1093/bib/bbab430
  • Lv Q, Zhou F, Liu X, et al. Artificial intelligence in small molecule drug discovery from 2018 to 2023: does it really work? Bioorg Chem. 2023;141:106894. doi: 10.1016/j.bioorg.2023.106894
  • Van Drie JH. Computer-aided drug design: the next 20 years. J Comput Aided Mol Des. 2007;21(10–11):591–601. doi: 10.1007/s10822-007-9142-y
  • Talele TT, Khedkar SA, Rigby AC. Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr Top Med Chem. 2010;10(1):127–141. doi: 10.2174/156802610790232251
  • Hansch C, Maloney PP, Fujita T, et al. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature. 1962;194(4824):178–180. doi: 10.1038/194178b0
  • Carracedo-Reboredo P, Liñares-Blanco J, Rodríguez-Fernández N, et al. A review on machine learning approaches and trends in drug discovery. Comput Struct Biotechnol J. 2021;19:4538–4558. doi: 10.1016/j.csbj.2021.08.011
  • Bruce CL, Melville JL, Pickett SD, et al. Contemporary QSAR classifiers compared. J Chem Inf Model. 2007;47(1):219–227. doi: 10.1021/ci600332j
  • Alom MZ, Taha TM, Yakopcic C, et al. The history began from alexnet: a comprehensive survey on deep learning approaches. arXiv:1803.01164. 2018.
  • Ma J, Sheridan RP, Liaw A, et al. Deep neural nets as a method for quantitative structure–activity relationships. J Chem Inf Model. 2015;55(2):263–274. doi: 10.1021/ci500747n
  • Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019;37(9):1038–1040. doi: 10.1038/s41587-019-0224-x
  • Kirkpatrick P. Artificial intelligence makes a splash in small-molecule drug discovery. Biopharma Deal. 2022;2022:d43747–022–00104–00107. doi: 10.1038/d43747-022-00104-7
  • Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell. 2020;180(4):688–702.e13. doi: 10.1016/j.cell.2020.01.021
  • Wong F, Zheng EJ, Valeri JA, et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature. 2024;626(7997):177–185. doi: 10.1038/s41586-023-06887-8
  • Taylor AM, Williams BR, Giordanetto F, et al. Identification of GDC-1971 (RLY-1971), a SHP2 inhibitor designed for the treatment of solid tumors. J Med Chem. 2023;66(19):13384–13399. doi: 10.1021/acs.jmedchem.3c00483
  • Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024:1–3. doi: 10.1038/s41586-024-07487-w.
  • Ren F, Ding X, Zheng M, et al. AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel CDK20 small molecule inhibitor. Chem Sci. 2023;14(6):1443–1452. doi: 10.1039/D2SC05709C
  • You Y, Lai X, Pan Y, et al. Artificial intelligence in cancer target identification and drug discovery. Signal Transduct Target Ther. 2022;7(1):156. doi: 10.1038/s41392-022-00994-0
  • Jin S, Zeng X, Xia F, et al. Application of deep learning methods in biological networks. Brief Bioinform. 2021;22(2):1902–1917. doi: 10.1093/bib/bbaa043
  • Zhu Y, Shen X, Pan W. Network-based support vector machine for classification of microarray samples. BMC Bioinformatics. 2009;10(1):1–11. doi: 10.1186/1471-2105-10-S1-S21
  • Wang T, Shao W, Huang Z, et al. MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nat Commun. 2021;12(1):3445. doi: 10.1038/s41467-021-23774-w
  • Xuan P, Pan S, Zhang T, et al. Graph convolutional network and convolutional neural network based method for predicting lncrna-disease associations. Cells. 2019;8(9):1012. doi: 10.3390/cells8091012
  • Sanchez R, Mackenzie SA. Integrative network analysis of differentially methylated and expressed genes for biomarker identification in leukemia. Sci Rep. 2020;10(1):2123. doi: 10.1038/s41598-020-58123-2
  • Sinkala M, Mulder N, Martin D. Machine learning and network analyses reveal disease subtypes of pancreatic cancer and their molecular characteristics. Sci Rep. 2020;10(1):1212. doi: 10.1038/s41598-020-58290-2
  • Jeon J, Nim S, Teyra J, et al. A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Med. 2014;6(7):1–18. doi: 10.1186/s13073-014-0057-7
  • Tong Z, Zhou Y, Wang J. Identifying potential drug targets in hepatocellular carcinoma based on network analysis and one-class support vector machine. Sci Rep. 2019;9(1):1–9. doi: 10.1038/s41598-019-46540-x
  • Raies A, Tulodziecka E, Stainer J, et al. DrugnomeAI Is an ensemble machine-learning framework for predicting druggability of candidate drug targets. Commun Biol. 2022;5(1):1291. doi: 10.1038/s42003-022-04245-4
  • Nada H, Kim S, Lee K. PT-finder: a multi-modal neural network approach to target identification. Comput Biol Med. 2024;174:108444. doi: 10.1016/j.compbiomed.2024.108444
  • Gfeller D, Grosdidier A, Wirth M, et al. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014;42(W1):W32–W38. doi: 10.1093/nar/gku293
  • Mouchlis VD, Afantitis A, Serra A, et al. Advances in de novo drug design: from conventional to machine learning methods. Int J Mol Sci. 2021;22(4):1676. doi: 10.3390/ijms22041676
  • Segler MHS, Kogej T, Tyrchan C, et al. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci. 2018;4(1):120–131. doi: 10.1021/acscentsci.7b00512.
  • Olivecrona M, Blaschke T, Engkvist O, et al. Molecular De-novo design through deep reinforcement learning. J Cheminformatics. 2017;9(1):1–14. doi: 10.1186/s13321-017-0235-x
  • Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv. 2018;4(7):eaap7885. doi: 10.1126/sciadv.aap7885
  • Bai Q, Liu S, Tian Y, et al. Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. Wiley Interdiscip Rev Comput Mol Sci. 2022;12(3):3. doi: 10.1002/wcms.1581
  • Li Y, Zhang L, Liu Z. Multi-objective de novo drug design with conditional graph generative model. J Cheminformatics. 2018;10(1):1–24. doi: 10.1186/s13321-018-0287-6
  • Khemchandani Y, O’Hagan S, Samanta S, et al. Computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach. J Cheminformatics. 2020;12(1):1–17. doi: 10.1186/s13321-020-00454-3
  • You J, Liu B, Ying Z, et al. Graph convolutional policy network for goal-directed molecular graph generation. 32nd Conference on Neural Information Processing Systems (NeurIPS 2018); Montréal, Canada; 2018.p. 31.
  • Putin E, Asadulaev A, Ivanenkov Y, et al. Reinforced adversarial neural computer for de novo molecular design. J Chem Inf Model. 2018;58(6):1194–1204. doi: 10.1021/acs.jcim.7b00690
  • Guimaraes GL, Sanchez-Lengeling B, Outeiral C, et al. Objective-reinforced generative adversarial networks (organ) for sequence generation models. ArXiv Prepr. ArXiv170510843. 2017.
  • Sanchez-Lengeling B, Outeiral C, Guimaraes GL, et al. Optimizing distributions over molecular space. an objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). ChemRxiv. 2017. doi: 10.26434/chemrxiv.5309668.v3
  • De Cao N, Kipf T. MolGAN: an implicit generative model for small molecular graphs. ArXiv Prepr. ArXiv180511973. 2018.
  • Putin E, Asadulaev A, Vanhaelen Q, et al. Adversarial threshold neural computer for molecular de novo design. Mol Pharm. 2018;15(10):4386–4397. doi: 10.1021/acs.molpharmaceut.7b01137
  • Gómez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci. 2018;4(2):268–276. doi: 10.1021/acscentsci.7b00572
  • Lim J, Ryu S, Kim JW, et al. Molecular generative model based on conditional variational autoencoder for de novo molecular design. J Cheminformatics. 2018;10(1):1–9. doi: 10.1186/s13321-018-0286-7
  • Born J, Manica M, Oskooei A, et al. PaccMannRL: de novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning. iScience. 2021;24(4):102269. doi: 10.1016/j.isci.2021.102269
  • Bagal V, Aggarwal R, Vinod PK, et al. MolGPT: molecular generation using a transformer-decoder model. J Chem Inf Model. 2022;62(9):2064–2076. doi: 10.1021/acs.jcim.1c00600
  • Kadurin A, Aliper A, Kazennov A, et al. The cornucopia of meaningful leads: applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget. 2017;8(7):10883–10890. doi: 10.18632/oncotarget.14073
  • Kadurin A, Nikolenko S, Khrabrov K, et al. An advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol Pharm. 2017;14(9):3098–3104. doi: 10.1021/acs.molpharmaceut.7b00346
  • Prykhodko O, Johansson SV, Kotsias P-C, et al. A de novo molecular generation method using latent vector based generative adversarial network. J Cheminformatics. 2019;11(1):1–13. doi: 10.1186/s13321-019-0397-9
  • Li Y, Liu Y, Wu J, et al. Discovery of potent, selective, and orally bioavailable small-molecule inhibitors of CDK8 for the treatment of cancer. J Med Chem. 2023;66(8):5439–5452. doi: 10.1021/acs.jmedchem.2c01718
  • Lyne PD. Structure-based virtual screening: an overview. Drug Discov Today. 2002;7(20):1047–1055. doi: 10.1016/S1359-6446(02)02483-2
  • Oliveira TAD, Silva MPD, Maia EHB, et al. Virtual screening algorithms in drug discovery: a review focused on machine and deep learning methods. Drugs Drug Candidates. 2023;2(2):311–334. doi: 10.3390/ddc2020017
  • Ain QU, Aleksandrova A, Roessler FD, et al. Machine‐learning scoring functions to improve structure‐based binding affinity prediction and virtual screening. Wiley Interdiscip Rev Comput Mol Sci. 2015;5(6):405–424. doi: 10.1002/wcms.1225
  • Dara S, Dhamercherla S, Jadav SS, et al. Machine learning in drug discovery: a review. Artif Intell Rev. 2022;55(3):1947–1999. doi: 10.1007/s10462-021-10058-4
  • Wójcikowski M, Ballester PJ, Siedlecki P. Performance of machine-learning scoring functions in structure-based virtual screening. Sci Rep. 2017;7(1):1–10. doi: 10.1038/srep46710
  • Li G-B, Yang L-L, Wang W-J, et al. ID-score: a new empirical scoring function based on a comprehensive set of descriptors related to protein–ligand interactions. J Chem Inf Model. 2013;53(3):592–600. doi: 10.1021/ci300493w
  • Durrant JD, McCammon JA. NNScore 2.0: A neural-network receptor–ligand scoring function. J Chem Inf Model. 2011;51(11):2897–2903. doi: 10.1021/ci2003889
  • Wijewardhane PR, Jethava KP, Fine JA, et al. Combined molecular graph neural network and structural docking selects potent programmable cell death protein 1/programmable death-ligand 1 (PD-1/PD-L1 Small Molecule Inhibitors; preprint; Chemistry, 2020. doi: 10.26434/chemrxiv.12083907.v1
  • Zhan W, Li D, Che J, et al. Integrating docking scores, interaction profiles and molecular descriptors to improve the accuracy of molecular docking: toward the discovery of novel Akt1 inhibitors. Eur J Med Chem. 2014;75:11–20. doi: 10.1016/j.ejmech.2014.01.019
  • Durrant JD, Carlson KE, Martin TA, et al. Neural-network scoring functions identify structurally novel estrogen-receptor ligands. J Chem Inf Model. 2015;55(9):1953–1961. doi: 10.1021/acs.jcim.5b00241
  • Wang S, Xu F, Li Y, et al. KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers. Bioinformatics. 2021;37(Supplement_1):i418–i425. doi: 10.1093/bioinformatics/btab271
  • Cerchia C, Lavecchia A. New avenues in artificial-intelligence-assisted drug discovery. Drug Discov Today. 2023;28(4):103516. doi: 10.1016/j.drudis.2023.103516
  • Xie Q-Q, Zhong L, Pan Y-L, et al. Combined SVM-based and docking-based virtual screening for retrieving novel inhibitors of c-met. Eur J Med Chem. 2011;46(9):3675–3680. doi: 10.1016/j.ejmech.2011.05.031
  • Valarmathi T, Premkumar R, Meera MR, et al. Quantum chemical and molecular docking studies on 1-amino-5-chloroanthraquinone: a targeted drug therapy for thyroid cancer. Spectrochim Acta A Mol Biomol Spectrosc. 2021;255:119659. doi: 10.1016/j.saa.2021.119659
  • Adon T, Shanmugarajan D, Ather H, et al. Virtual screening for identification of dual inhibitors against CDK4/6 and aromatase enzyme. Molecules. 2023;28(6):2490. doi: 10.3390/molecules28062490
  • Yu M, Gu Q, Xu J. Discovering new PI3Kα inhibitors with a strategy of combining ligand-based and structure-based virtual screening. J Comput Aided Mol Des. 2018;32(2):347–361. doi: 10.1007/s10822-017-0092-8
  • Fan C, Huang Y. Identification of novel potential scaffold for class I HDACs inhibition: an in-silico protocol based on virtual screening, molecular dynamics, mathematical analysis and machine learning. Biochem Biophys Res Commun. 2017;491(3):800–806. doi: 10.1016/j.bbrc.2017.07.051
  • Ren M, Li D, Liu G, et al. Discovery novel VEGFA inhibitors through structure-based virtual screening and verify the ability to inhibit the proliferation, invasion and migration of gastric cancer. J Saudi Chem Soc. 2023;2023(4):101674. doi: 10.1016/j.jscs.2023.101674
  • Johnson MA, Maggiora GM. Concepts and Applications in Molecular Similarity. (NY): Wiley; 1990.
  • Valentini E, D’Aguanno S, Di Martile M, et al. Targeting the anti-apoptotic bcl-2 family proteins: machine learning virtual screening and biological evaluation of new small molecules. Theranostics. 2022;12(5):2427–2444. doi: 10.7150/thno.64233
  • Di Stefano M, Galati S, Ortore G, et al. Machine learning-based virtual screening for the identification of CDK5 inhibitors. Int J Mol Sci. 2022;23(18):10653. doi: 10.3390/ijms231810653
  • Zhang H, Huang J, Chen R, et al. Ligand- and structure-based identification of novel CDK9 inhibitors for the potential treatment of leukemia. Bioorg Med Chem. 2022;72:116994. doi: 10.1016/j.bmc.2022.116994
  • Bahi M, Batouche M. Deep learning for ligand-based virtual screening in drug discovery. In: 2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS). IEEE: Tebessa; 2018. p. 1–5. doi: 10.1109/PAIS.2018.8598488
  • Xu Y, Chen P, Lin X, et al. Discovery of CDK4 inhibitors by convolutional neural networks. Future Med Chem. 2019;11(3):165–177. doi: 10.4155/fmc-2018-0478
  • Lu M, Yin J, Zhu Q, et al. Artificial intelligence in pharmaceutical sciences. Eng. 2023:S2095809923001649. doi: 10.1016/j.eng.2023.01.014
  • Kimber TB, Chen Y, Volkamer A. Deep learning in virtual screening: recent applications and developments. Int J Mol Sci. 2021;22(9):4435. doi: 10.3390/ijms22094435
  • Pandiyan S, Wang L. A comprehensive review on recent approaches for cancer drug discovery associated with artificial intelligence. Comput Biol Med. 2022;150:106140. doi: 10.1016/j.compbiomed.2022.106140
  • Paul D, Sanap G, Shenoy S, et al. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80–93. doi: 10.1016/j.drudis.2020.10.010
  • Hamdi A, Colas P. Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol Sci. 2012;33(2):109–118. doi: 10.1016/j.tips.2011.10.008
  • Omidfar K, Daneshpour M. Advances in phage display technology for drug discovery. Expert opinion on drug discovery. 2015;10(6):651–669.
  • Wang F, Liu D, Wang H, et al. Computational screening for active compounds targeting Protein sequences: methodology and experimental validation. J Chem Inf Model. 2011;51(11):2821–2828. doi: 10.1021/ci200264h
  • Yu H, Chen J, Xu X, et al. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One. 2012;7(5):e37608. doi: 10.1371/journal.pone.0037608
  • Öztürk H, Özgür A, Ozkirimli E. DeepDTA: deep drug–target binding affinity prediction. Bioinformatics. 2018;34(17):i821–i829. doi: 10.1093/bioinformatics/bty593
  • Wen M, Zhang Z, Niu S, et al. Deep-learning-based drug–target interaction prediction. J Proteome Res. 2017;16(4):1401–1409. doi: 10.1021/acs.jproteome.6b00618
  • Lee I, Keum J, Nam H. DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences. PLoS Comput Biol. 2019;15(6):e1007129. doi: 10.1371/journal.pcbi.1007129
  • Gao KY, Fokoue A, Luo H, et al. Interpretable drug target prediction using deep neural representation. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence; International Joint Conferences on Artificial Intelligence Organization; Stockholm, Sweden; 2018. p. 3371–3377. doi: 10.24963/ijcai.2018/468
  • Rifaioglu AS, Atas H, Martin MJ, et al. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform. 2019;20(5):1878–1912. doi: 10.1093/bib/bby061
  • Wang C, Liu J, Luo F, et al. Pairwise input neural network for target-ligand interaction prediction. In: 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); Belfast, UK. IEEE; 2014. p. 67–70. doi: 10.1109/BIBM.2014.6999129
  • Hinnerichs T, Hoehndorf R, Wren J. DTI-voodoo: machine learning over interaction networks and ontology-based background knowledge predicts drug–target interactions. Bioinformatics. 2021;37(24):4835–4843. doi: 10.1093/bioinformatics/btab548
  • Wen T, Wang J, Lu R, et al. Validation, and evaluation of a deep learning model to screen cyclin-dependent kinase 12 inhibitors in cancers. Eur J Med Chem. 2023;2023:115199. doi: 10.1016/j.ejmech.2023.115199
  • Nguyen T, Le H, Quinn TP, et al. GraphDTA: predicting drug–target binding affinity with graph neural networks. Bioinformatics. 2021;37(8):1140–1147. doi: 10.1093/bioinformatics/btaa921
  • Nguyen TM, Nguyen T, Le TM, et al. Gefa: early fusion approach in drug-target affinity prediction. IEEE/ACM Trans Comput Biol Bioinform. 2021;19(2):718–728. doi: 10.1109/TCBB.2021.3094217
  • Yang Z, Zhong W, Zhao L, et al. MGraphDTA: deep multiscale graph neural network for explainable drug–target binding affinity prediction. Chem Sci. 2022;13(3):816–833. doi: 10.1039/D1SC05180F
  • Zang Q, Mansouri K, Williams AJ, et al. In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning. J Chem Inf Model. 2017;57(1):36–49. doi: 10.1021/acs.jcim.6b00625
  • Panapitiya G, Girard M, Hollas A, et al. Evaluation of deep learning architectures for aqueous solubility prediction. ACS Omega. 2022;7(18):15695–15710. doi: 10.1021/acsomega.2c00642
  • Kamlet MJ, Doherty RM, Abboud J-LM, et al. Linear solvation energy relationships: 36. molecular properties governing solubilities of organic nonelectrolytes in water. J Pharm Sci. 1986;75(4):338–349. doi: 10.1002/jps.2600750405
  • Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model. 2015:28.
  • Francoeur PG, Koes DR. SolTranNet–A machine learning tool for fast aqueous solubility prediction. J Chem Inf Model. 2021;61(6):2530–2536. doi: 10.1021/acs.jcim.1c00331
  • Suenderhauf C, Hammann F, Maunz A, et al. Combinatorial QSAR modeling of human intestinal absorption. Mol Pharm. 2011;8(1):213–224. doi: 10.1021/mp100279d
  • Dixon SL, Duan J, Smith E, et al. AutoQSAR: an automated machine learning tool for best-practice quantitative structure–activity relationship modeling. Future Med Chem. 2016;8(15):1825–1839. doi: 10.4155/fmc-2016-0093
  • Wang N-N, Dong J, Deng Y-H, et al. ADME properties evaluation in drug discovery: prediction of caco-2 cell permeability using a combination of NSGA-II and boosting. J Chem Inf Model. 2016;56(4):763–773. doi: 10.1021/acs.jcim.5b00642
  • Zhou T, Jhamb S, Liang X, et al. Prediction of acid dissociation constants of organic compounds using group contribution methods. Chem Eng Sci. 2018;183:95–105. doi: 10.1016/j.ces.2018.03.005
  • Cumming JG, Davis AM, Muresan S, et al. Chemical predictive modelling to improve compound quality. Nat Rev Drug Discov. 2013;12(12):948–962. doi: 10.1038/nrd4128
  • Ramana PV, Krishna YR, Mouli KC. Experimental FT-IR and UV–Vis spectroscopic studies and molecular docking analysis of anti-cancer drugs exemestane and pazopanib. J Mol Struct. 2022;2022:133051. doi: 10.1016/j.molstruc.2022.133051
  • Moroy G, Martiny VY, Vayer P, et al. Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today. 2012;17(1–2):44–55. doi: 10.1016/j.drudis.2011.10.023
  • Bisson WH, Cheltsov AV, Bruey-Sedano N, et al. Discovery of antiandrogen activity of nonsteroidal scaffolds of marketed drugs. Proc Natl Acad Sci. 2007;104(29):11927–11932. doi: 10.1073/pnas.0609752104
  • Jimenez-Carretero D, Abrishami V, Fernández-de-Manuel L, et al. Tox_(R)CNN: deep learning-based nuclei profiling tool for drug toxicity screening. PLoS Comput Biol. 2018;14(11):e1006238. doi: 10.1371/journal.pcbi.1006238
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. doi: 10.1038/srep42717
  • Fu L, Shi S, Yi J, et al. ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024:gkae236. doi: 10.1093/nar/gkae236
  • Yi J, Shi S, Fu L, et al. OptADMET: a web-based tool for substructure modifications to improve ADMET properties of lead compounds. Nat Protoc. 2024;19(4):1105–1121. doi: 10.1038/s41596-023-00942-4
  • Li B, Dai C, Wang L, et al. A novel drug repurposing approach for non-small cell lung cancer using deep learning. PLoS One. 2020;15(6):e0233112. doi: 10.1371/journal.pone.0233112
  • Zeng X, Zhu S, Lu W, et al. Target identification among known drugs by deep learning from heterogeneous networks. Chem Sci. 2020;11(7):1775–1797. doi: 10.1039/C9SC04336E
  • Cheng F, Zhao J, Fooksa M, et al. A network-based drug repositioning infrastructure for precision cancer medicine through targeting significantly mutated genes in the human cancer genomes. J Am Med Inform Assoc. 2016;23(4):681–691. doi: 10.1093/jamia/ocw007
  • Napolitano F, Zhao Y, Moreira VM, et al. Drug repositioning: a machine-learning approach through data integration. J Cheminformatics. 2013;5(1):1–9. doi: 10.1186/1758-2946-5-30
  • Cui C, Ding X, Wang D, et al. Drug repurposing against breast cancer by integrating drug-exposure expression profiles and drug–drug links based on graph neural network. Bioinformatics. 2021;37(18):2930–2937. doi: 10.1093/bioinformatics/btab191
  • Iorio F, Bosotti R, Scacheri E, et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci. 2010;107(33):14621–14626. doi: 10.1073/pnas.1000138107
  • Persidis A. The benefits of drug repositioning. Drug Discovery World. 2011;12:9–12.
  • Bhinder B, Gilvary C, Madhukar NS, et al. Artificial intelligence in cancer research and precision medicine. Cancer Discov. 2021;11(4):900–915. doi: 10.1158/2159-8290.CD-21-0090
  • Patel V, Shah M. Artificial intelligence and machine learning in drug discovery and development. Intell Med. 2022;2(3):134–140. doi: 10.1016/j.imed.2021.10.001
  • Margulis E, Dagan-Wiener A, Ives RS, et al. Intense bitterness of molecules: machine learning for expediting drug discovery. Comput Struct Biotechnol J. 2021;19:568–576. doi: 10.1016/j.csbj.2020.12.030
  • Ali M, Aittokallio T. Machine learning and feature selection for drug response prediction in precision oncology applications. Biophys Rev. 2019;11(1):31–39. doi: 10.1007/s12551-018-0446-z
  • Dawood M, Vu QD, Young LS, et al. Cancer drug sensitivity prediction from routine histology images. NPJ Precis Oncol. 2024;8(1):5. doi: 10.1038/s41698-023-00491-9.
  • Huang C, Mezencev R, McDonald JF, et al. Open source machine-learning algorithms for the prediction of optimal cancer drug therapies. PLoS One. 2017;12(10):e0186906. doi: 10.1371/journal.pone.0186906
  • Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–477. doi: 10.1038/s41573-019-0024-5
  • Chen W, Liu X, Zhang S, et al. Artificial intelligence for drug discovery: resources, methods, and applications. Mol Ther Nucleic Acids. 2023;31:691–702. doi: 10.1016/j.omtn.2023.02.019
  • Bhat AA, Nisar S, Mukherjee S, et al. Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics. J Transl Med. 2022;20(1):534. doi: 10.1186/s12967-022-03765-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.