39
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeting guanine nucleotide exchange factors for novel cancer drug discovery

, , , , &
Pages 949-959 | Received 28 Feb 2024, Accepted 10 Jun 2024, Published online: 17 Jun 2024

References

  • Wennerberg K, Rossman KL, Der CJ. The ras superfamily at a glance. J Cell Sci. 2005;118(5):843–846. doi: 10.1242/jcs.01660
  • Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007;129(5):865–877. doi: 10.1016/j.cell.2007.05.018
  • Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science. 2001;294(5545):1299–1304. doi: 10.1126/science.1062023
  • Renault L, Guibert B, Cherfils J. Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Nature. 2003;426(6966):525–530. doi: 10.1038/nature02197
  • Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991;349(6305):117–127. doi: 10.1038/349117a0
  • Vigil D, Cherfils J, Rossman KL, et al. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer. 2010;10(12):842–857. doi: 10.1038/nrc2960
  • Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, et al. The structural basis of the activation of ras by sos. Nature. 1998;394(6691):337–343. doi: 10.1038/28548
  • Moore AR, Rosenberg SC, McCormick F, et al. RAS-targeted therapies: is the undruggable drugged? nature reviews drug discovery. Nat Rev Drug Discov. 2020;19(8):533–552. doi: 10.1038/s41573-020-0068-6
  • Swanson KD, Winter JM, Reis M, et al. SOS1 mutations are rare in human malignancies: implications for Noonan syndrome patients. Genes Chromosomes Cancer. 2008;47(3):253–259. doi: 10.1002/gcc.20527
  • Baltanás FC, Zarich N, Rojas-Cabañeros JM, et al. SOS GEFs in health and disease. Biochimica Et Biophysica Acta (BBA) – Reviews On Cancer. 2020;1874(2):188445. doi: 10.1016/j.bbcan.2020.188445
  • Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173(2):321–337.e310. doi: 10.1016/j.cell.2018.03.035
  • Cai D, Choi PS, Gelbard M, et al. Identification and characterization of oncogenic SOS1 mutations in lung adenocarcinoma. Mol Cancer Res. 2019;17(4):1002–1012. doi: 10.1158/1541-7786.MCR-18-0316
  • Ryan MB, Corcoran RB. Therapeutic strategies to target RAS-mutant cancers. Nat Rev Clin Oncol. 2018;15(11):709–720. doi: 10.1038/s41571-018-0105-0
  • Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3(1):11–22. doi: 10.1038/nrc969
  • Margarit SM, Sondermann H, Hall BE, et al. Structural evidence for feedback activation by Ras·GTP of the Ras-specific nucleotide exchange factor SOS. Cell. 2003;112(5):685–695. doi: 10.1016/S0092-8674(03)00149-1
  • Rojas JM, Oliva JL, Santos E. Mammalian son of sevenless guanine nucleotide exchange factors: old concepts and new perspectives. Genes Cancer. 2011;2(3):298–305. doi: 10.1177/1947601911408078
  • Jeng H-H, Taylor LJ, Bar-Sagi D. Sos-mediated cross-activation of wild-type Ras by oncogenic Ras is essential for tumorigenesis. Nat Commun. 2012;3(1):1168. doi: 10.1038/ncomms2173.
  • Depeille P, Henricks LM, van de Ven RAH, et al. RasGRP1 opposes proliferative EGFR–SOS1–Ras signals and restricts intestinal epithelial cell growth. Nat Cell Biol. 2015;17(6):804–815. doi: 10.1038/ncb3175
  • You X, Kong G, Ranheim EA, et al. Unique dependence on Sos1 in Kras (G12D) -induced leukemogenesis. Blood. 2018;132(24):2575–2579. doi: 10.1182/blood-2018-09-874107
  • Gómez C, Garcia-Navas R, Baltanás FC, et al. Critical requirement of SOS1 for development of BCR/ABL-Driven chronic myelogenous leukemia. Cancers (Basel). 2022;14(16):3893. doi: 10.3390/cancers14163893
  • Hofmann MH, Gmachl M, Ramharter J, et al. BI-3406, a Potent and Selective SOS1-KRAS Interaction Inhibitor, Is Effective in KRAS-Driven Cancers through Combined MEK Inhibition. Cancer Discov. 2021;11(1):142–157. doi: 10.1158/2159-8290.CD-20-0142
  • Ketcham JM, Haling J, Khare S, et al. Design and Discovery of MRTX0902, a potent, selective, brain-penetrant, and orally bioavailable inhibitor of the SOS1: KRAS protein-protein interaction. J Med Chem. 2022;65(14):9678–9690. doi: 10.1021/acs.jmedchem.2c00741
  • Sudhakar N, Yan L, Qiryaqos F, et al. The SOS1 Inhibitor MRTX0902 Blocks KRAS activation and demonstrates antitumor activity in cancers dependent on KRAS nucleotide loading. Mol Cancer Ther. 2024. doi: 10.1158/1535-7163.MCT-23-0870
  • Smith CR, Chen D, Christensen JG, et al. Discovery of five SOS2 fragment hits with binding modes determined by SOS2 X-Ray cocrystallography. J Med Chem. 2024;67(1):774–781. doi: 10.1021/acs.jmedchem.3c02140
  • Lake D, Corrêa SA, Müller J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol Life Sci. 2016;73(23):4397–4413. doi: 10.1007/s00018-016-2297-8
  • Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420(6916):629–635. doi: 10.1038/nature01148
  • Bustelo XR, Sauzeau V, Berenjeno IM. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays. 2007;29(4):356–370. doi: 10.1002/bies.20558
  • Haga RB, Ridley AJ. Rho GTPases: regulation and roles in cancer cell biology. Small GTPases. 2016;7(4):207–221. doi: 10.1080/21541248.2016.1232583
  • Liu B, Xiong J, Liu G, et al. High expression of Rac1 is correlated with partial reversed cell polarity and poor prognosis in invasive ductal carcinoma of the breast. Tumor Biol. 2017;39(7):1010428317710908. doi: 10.1177/1010428317710908
  • Stengel K, Zheng Y. Cdc42 in oncogenic transformation, invasion, and tumorigenesis. Cell Signal. 2011;23(9):1415–1423. doi: 10.1016/j.cellsig.2011.04.001
  • Fritz G, Brachetti C, Bahlmann F, et al. Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br J Cancer. 2002;87(6):635–644. doi: 10.1038/sj.bjc.6600510
  • Ji J, Feng X, Shi M, et al. Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer. Int J Oncol. 2015;46(3):1343–1353. doi: 10.3892/ijo.2015.2836
  • Pan Y, Bi F, Liu N, et al. Expression of seven main rho family members in gastric carcinoma. Biochem Biophys Res Commun. 2004;315(3):686–691. doi: 10.1016/j.bbrc.2004.01.108
  • Kamai T, Yamanishi T, Shirataki H, et al. Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clin Cancer Res. 2004;10(14):4799–4805. doi: 10.1158/1078-0432.CCR-0436-03
  • Liu SY, Yen CY, Yang SC, et al. Overexpression of Rac-1 small GTPase binding protein in oral squamous cell carcinoma. J Oral Maxillofac Surg. 2004;62(6):702–707. doi: 10.1016/j.joms.2004.02.002
  • Patel V, Rosenfeldt HM, Lyons R, et al. Persistent activation of Rac1 in squamous carcinomas of the head and neck: evidence for an EGFR/Vav2 signaling axis involved in cell invasion. Carcinogenesis. 2007;28(6):1145–1152. doi: 10.1093/carcin/bgm008
  • Takami Y, Higashi M, Kumagai S, et al. The activity of RhoA is correlated with lymph node metastasis in human colorectal cancer. Dig Dis Sci. 2008;53(2):467–473. doi: 10.1007/s10620-007-9887-0
  • Karlsson R, Pedersen ED, Wang Z, et al. Rho GTPase function in tumorigenesis. Biochim Biophys Acta. 2009;1796(2):91–98. doi: 10.1016/j.bbcan.2009.03.003
  • Zhang S, Tang Q, Xu F, et al. RhoA regulates G1-S progression of gastric cancer cells by modulation of multiple INK4 family tumor suppressors. Mol Cancer Res. 2009;7(4):570–580. doi: 10.1158/1541-7786.MCR-08-0248
  • Zandvakili I, Davis AK, Hu G, et al. Loss of RhoA exacerbates, rather than dampens, oncogenic K-Ras induced lung adenoma formation in mice. PLoS One. 2015;10(6):e0127923. doi: 10.1371/journal.pone.0127923
  • Santos JC, Profitós-Pelejà N, Sánchez-Vinces S, et al. RHOA therapeutic targeting in hematological cancers. Cells. 2023;12(3):433. doi: 10.3390/cells12030433
  • Schaefer A, Der CJ. RHOA takes the RHOad less traveled to cancer. Trends Cancer. 2022;8(8):655–669. doi: 10.1016/j.trecan.2022.04.005
  • Maldonado MDM, Dharmawardhane S. Targeting rac and Cdc42 GTPases in cancer. Cancer Res. 2018;78(12):3101–3111. doi: 10.1158/0008-5472.CAN-18-0619
  • Liang J, Oyang L, Rao S, et al. Rac1, a potential target for tumor Therapy. Front Oncol. 2021;11:11. doi: 10.3389/fonc.2021.674426
  • Erasmus JC, Smolarczyk K, Brezovjakova H, et al. Rac1-PAK1 regulation of Rab11 cycling promotes junction destabilization. J Cell Bio. 2021;220(6). doi: 10.1083/jcb.202002114
  • Yuan Y, Zhang H, Li D, et al. PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Lett. 2022;545:215813. doi: 10.1016/j.canlet.2022.215813
  • Mpilla GB, Uddin MH, Al-Hallak MN, et al. PAK4-NAMPT dual inhibition sensitizes pancreatic neuroendocrine tumors to Everolimus. Mol Cancer Ther. 2021;20(10):1836–1845. doi: 10.1158/1535-7163.MCT-20-1105
  • Maldonado MDM, Medina JI, Velazquez L, et al. Targeting Rac and Cdc42 GEFs in metastatic cancer. Front Cell Dev Biol. 2020;8:201. doi: 10.3389/fcell.2020.00201
  • Bannoura SF, Uddin MH, Nagasaka M, et al. Targeting KRAS in pancreatic cancer: new drugs on the horizon. Cancer Metastasis Rev. 2021;40(3):819–835. doi: 10.1007/s10555-021-09990-2
  • Joo E, Olson MF. Regulation and functions of the RhoA regulatory guanine nucleotide exchange factor GEF-H1. Small GTPases. 2021;12(5–6):358–371. doi: 10.1080/21541248.2020.1840889
  • Chen X-Y, Cheng A-Y, Wang Z-Y, et al. Dbl family RhoGEFs in cancer: different roles and targeting strategies. Biochem Pharmacol. 2024;223:116141. doi: 10.1016/j.bcp.2024.116141
  • Boissier P, Huynh-Do U. The guanine nucleotide exchange factor Tiam1: a janus-faced molecule in cellular signaling. Cell Signal. 2014;26(3):483–491. doi: 10.1016/j.cellsig.2013.11.034
  • Permtermsin C, Lalchungnunga H, Nakjang S, et al. Identification of TIAM1 as a potential synthetic-lethal-like Gene in a defined subset of hepatocellular carcinoma. Int J Mol Sci. 2023;24(7):6387. doi: 10.3390/ijms24076387
  • Worthylake DK, Rossman KL, Sondek J. Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature. 2000;408(6813):682–688. doi: 10.1038/35047014
  • Gao Y, Dickerson JB, Guo F, et al. Rational design and characterization of a rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A. 2004;101(20):7618–7623. doi: 10.1073/pnas.0307512101
  • Dütting S, Heidenreich J, Cherpokova D, et al. Critical off-target effects of the widely used Rac1 inhibitors NSC23766 and EHT1864 in mouse platelets. J Thromb Haemost. 2015;13(5):827–838. doi: 10.1111/jth.12861
  • Cardama GA, Comin MJ, Hornos L, et al. Preclinical development of novel Rac1-GEF signaling inhibitors using a rational design approach in highly aggressive breast cancer cell lines. Anticancer Agents Med Chem. 2014;14(6):840–851. doi: 10.2174/18715206113136660334
  • Niebel B, Wosnitza CI, Famulok M. RNA-aptamers that modulate the RhoGEF activity of Tiam1. Bioorg Med Chem. 2013;21(20):6239–6246. doi: 10.1016/j.bmc.2013.05.021
  • Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010;9(7):537–550. doi: 10.1038/nrd3141
  • Katzav S. Vav1: a hematopoietic signal transduction molecule involved in human malignancies. Int J Biochem Cell Biol. 2009;41(6):1245–1248. doi: 10.1016/j.biocel.2008.11.006
  • Al-Hawary SIS, Alsalamy A, Gupta R, et al. VAV3 in human cancers: Mechanism and clinical implication. Pathol Res Pract. 2023;248:154681. doi: 10.1016/j.prp.2023.154681
  • Movilla N, Dosil M, Zheng Y, et al. How vav proteins discriminate the GTPases Rac1 and RhoA from Cdc42. Oncogene. 2001;20(56):8057–8065. doi: 10.1038/sj.onc.1205000
  • Zeng RJ, Zheng CW, Gu JE, et al. RAC1 inhibition reverses cisplatin resistance in esophageal squamous cell carcinoma and induces downregulation of glycolytic enzymes. Mol Oncol. 2019;13(9):2010–2030. doi: 10.1002/1878-0261.12548
  • Dharmawardhane S, Hernandez E, Vlaar C. Development of EHop-016: a small molecule inhibitor of Rac. Enzymes. 2013;33(Pt A(Pt A)):117–146.
  • Montalvo-Ortiz BL, Castillo-Pichardo L, Hernández E, et al. Characterization of EHop-016, novel small molecule inhibitor of rac GTPase. J Biol Chem. 2012;287(16):13228–13238. doi: 10.1074/jbc.M111.334524
  • Castillo-Pichardo L, Humphries-Bickley T, De La Parra C, et al. The rac inhibitor EHop-016 inhibits mammary tumor growth and metastasis in a nude mouse Model. Transl Oncol. 2014;7(5):546–555. doi: 10.1016/j.tranon.2014.07.004
  • Humphries-Bickley T, Castillo-Pichardo L, Hernandez-O’Farrill E, et al. Characterization of a Dual Rac/Cdc42 Inhibitor MBQ-167 in Metastatic cancer. Mol Cancer Ther. 2017;16(5):805–818. doi: 10.1158/1535-7163.MCT-16-0442
  • Borrero-García LD, Del Mar Maldonado M, Medina-Velázquez J, et al. Rac inhibition as a novel therapeutic strategy for EGFR/HER2 targeted therapy resistant breast cancer. BMC Cancer. 2021;21(1):652. doi: 10.1186/s12885-021-08366-7
  • Cruz-Collazo A, Ruiz-Calderon JF, Picon H, et al. Efficacy of rac and Cdc42 Inhibitor MBQ-167 in Triple-negative breast cancer. Mol Cancer Ther. 2021;20(12):2420–2432. doi: 10.1158/1535-7163.MCT-21-0348
  • Medina JI, Cruz-Collazo A, Maldonado M, et al. Characterization of novel derivatives of MBQ-167, an Inhibitor of the GTP-binding Proteins Rac/Cdc42. Cancer Res Commun. 2022;2(12):1711–1726. doi: 10.1158/2767-9764.CRC-22-0303
  • Casalou C, Ferreira A, Barral DC. The Role of ARF family proteins and their regulators and effectors in cancer progression: a therapeutic perspective. Front Cell Dev Biol. 2020;8:217. doi: 10.3389/fcell.2020.00217
  • Chen P-W, Gasilina A, Yadav MP, et al. Control of cell signaling by arf GTPases and their regulators: focus on links to cancer and other GTPase families. Biochim Biophys Acta, Mol Cell Res. 2022;1869(2):119171. doi: 10.1016/j.bbamcr.2021.119171
  • Sztul E, Chen PW, Casanova JE, et al. ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol Biol Cell. 2019;30(11):1249–1271. doi: 10.1091/mbc.E18-12-0820
  • Sandilands E, Freckmann EC, Cumming EM, et al. The small GTPase ARF3 controls invasion modality and metastasis by regulating N-cadherin levels. J Cell Bio. 2023;222(4). doi: 10.1083/jcb.202206115
  • Casanova JE. Regulation of arf activation: the Sec7 family of guanine nucleotide exchange factors. Traf. 2007;8(11):1476–1485. doi: 10.1111/j.1600-0854.2007.00634.x
  • Donaldson JG, Finazzi D, Klausner RD. Brefeldin a inhibits golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature. 1992;360(6402):350–352. doi: 10.1038/360350a0
  • Zeghouf M, Guibert B, Zeeh JC, et al. Arf, Sec7 and Brefeldin A: a model towards the therapeutic inhibition of guanine nucleotide-exchange factors. Biochem Soc Trans. 2005;33(6):1265–1268. doi: 10.1042/BST0331265
  • Davis JE, Xie X, Guo J, et al. ARF1 promotes prostate tumorigenesis via targeting oncogenic MAPK signaling. Oncotarget. 2016;7(26):39834–39845. doi: 10.18632/oncotarget.9405
  • Boulay PL, Schlienger S, Lewis-Saravalli S, et al. ARF1 controls proliferation of breast cancer cells by regulating the retinoblastoma protein. Oncogene. 2011;30(36):3846–3861. doi: 10.1038/onc.2011.100
  • Gu G, Chen Y, Duan C, et al. Overexpression of ARF1 is associated with cell proliferation and migration through PI3K signal pathway in ovarian cancer. Oncol Rep. 2017;37(3):1511–1520. doi: 10.3892/or.2017.5388
  • Li R, Peng C, Zhang X, et al. Roles of Arf6 in cancer cell invasion, metastasis and proliferation. Life Sci. 2017;182:80–84. doi: 10.1016/j.lfs.2017.06.008
  • Hafner M, Schmitz A, Grüne I, et al. Inhibition of cytohesins by SecinH3 leads to hepatic insulin resistance. Nature. 2006;444(7121):941–944. doi: 10.1038/nature05415
  • Wang H, Xiao Y, Zhou W, et al. Integrated analysis and validation reveal CYTH4 as a potential prognostic biomarker in acute myeloid leukemia. Oncol Lett. 2024;27(3):103. doi: 10.3892/ol.2024.14236
  • Ren WX, Guo H, Lin SY, et al. Targeting cytohesin-1 suppresses acute myeloid leukemia progression and overcomes resistance to ABT-199. Acta Pharmacol Sin. 2024;45(1):180–192. doi: 10.1038/s41401-023-01142-2
  • Weizhong Z, Shuohui G, Hanjiao Q, et al. Inhibition of cytohesin-1 by siRNA leads to reduced IGFR signaling in prostate cancer. Braz J Med Biol Res. 2011;44(7):642–646. doi: 10.1590/S0100-879X2011007500072
  • Pan T, Sun J, Hu J, et al. Cytohesins/ARNO: the function in colorectal cancer cells. PLOS ONE. 2014;9(3):e90997. doi: 10.1371/journal.pone.0090997
  • Bill A, Schmitz A, König K, et al. Anti-proliferative effect of cytohesin inhibition in gefitinib-resistant lung cancer cells. PLoS One. 2012;7(7):e41179. doi: 10.1371/journal.pone.0041179
  • Dasso M. The Ran GTPase: theme and variations. Curr Biol. 2002;12(14):R502–508. doi: 10.1016/S0960-9822(02)00970-3
  • Hetzer M, Bilbao-Cortes D, Walther TC, et al. GTP hydrolysis by ran is required for nuclear envelope assembly. Mol Cell. 2000;5(6):1013–1024. doi: 10.1016/S1097-2765(00)80266-X
  • Carazo-Salas RE, Guarguaglini G, Gruss OJ, et al. Generation of GTP-bound ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature. 1999;400(6740):178–181. doi: 10.1038/22133
  • Fu X, Liang C, Li F, et al. The rules and functions of nucleocytoplasmic shuttling proteins. Int J Mol Sci. 2018;19(5):1445. doi: 10.3390/ijms19051445
  • Nachury MV, Weis K. The direction of transport through the nuclear pore can be inverted. Proc Nat Acad Sci. 1999;96(17):9622–9627. doi: 10.1073/pnas.96.17.9622
  • Izaurralde E, Kutay U, von Kobbe C, et al. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. Embo J. 1997;16(21):6535–6547. doi: 10.1093/emboj/16.21.6535
  • Bischoff FR, Ponstingl H. Catalysis of guanine nucleotide exchange on ran by the mitotic regulator RCC1. Nature. 1991;354(6348):80–82. doi: 10.1038/354080a0
  • Ohtsubo M, Okazaki H, Nishimoto T. The RCC1 protein, a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA. J Cell Bio. 1989;109(4 Pt 1):1389–1397. doi: 10.1083/jcb.109.4.1389
  • Makde RD, England JR, Yennawar HP, et al. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature. 2010;467(7315):562–566. doi: 10.1038/nature09321
  • Seki T, Hayashi N, Nishimoto T. RCC1 in the Ran pathway. J Biochem. 1996;120(2):207–214. doi: 10.1093/oxfordjournals.jbchem.a021400
  • El-Tanani M, Nsairat H, Mishra V, et al. Ran GTPase and its importance in cellular signaling and malignant phenotype. Int J Mol Sci. 2023;24(4):3065. doi: 10.3390/ijms24043065
  • Boudhraa Z, Carmona E, Provencher D, et al. Ran GTPase: a key player in tumor progression and metastasis. Front Cell Dev Biol. 2020;8:345. doi: 10.3389/fcell.2020.00345
  • Ren X, Jiang K, Zhang F. The multifaceted roles of RCC1 in Tumorigenesis. Front Mol Biosci. 2020;7:225. doi: 10.3389/fmolb.2020.00225
  • Bannoura SF, Aboukameel A, Khan HY, et al. Regulator of chromosome condensation (RCC1) a novel therapeutic target in pancreatic ductal adenocarcinoma drives tumor progression via the c-Myc-RCC1-Ran axis. bioRxiv. 2023 Dec 18;2023–12. doi: 10.1101/2023.12.18.572102
  • Warnecke B, Nagasaka M, Hallak MNA, et al. Multi-omic characterization of RCC1 expression and its association with molecular alterations, immune phenotypes, and cancer outcomes. J Clin Oncol. 2023;41(16_suppl):3128–3128. doi: 10.1200/JCO.2023.41.16_suppl.3128
  • Huang T, Yang Y, Song X, et al. PRMT6 methylation of RCC1 regulates mitosis, tumorigenicity, and radiation response of glioblastoma stem cells. Mol Cell. 2021;81(6):1276–1291.e9. doi: 10.1016/j.molcel.2021.01.015
  • Wu Y, Xu Z, Chen X, et al. RCC1 functions as a tumor facilitator in clear cell renal cell carcinoma by dysregulating cell cycle, apoptosis, and EZH2 stability. Cancer Med. 2023;12(19):19889–19903. doi: 10.1002/cam4.6594
  • Zhuang M, Li F, Liang H, et al. Targeting RCC1 to block the human soft-tissue sarcoma by disrupting nucleo-cytoplasmic trafficking of Skp2. Cell Death Dis. 2024;15(4):241. doi: 10.1038/s41419-024-06629-2
  • Gu S, Hou Y, Dovat K, et al. Synergistic effect of HDAC inhibitor chidamide with cladribine on cell cycle arrest and apoptosis by targeting HDAC2/c-Myc/RCC1 axis in acute myeloid leukemia. Exp Hematol Oncol. 2023;12(1):23. doi: 10.1186/s40164-023-00383-5
  • Haggag Y, Abu Ras B, El-Tanani Y, et al. Co-delivery of a RanGTP inhibitory peptide and doxorubicin using dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer cells. Expert Opin Drug Deliv. 2020;17(11):1655–1669. doi: 10.1080/17425247.2020.1813714
  • Haggag YA, Matchett KB, Falconer RA, et al. Novel ran-RCC1 inhibitory peptide-loaded nanoparticles have anti-cancer efficacy in vitro and in vivo. Cancers (Basel). 2019;11(2):222. doi: 10.3390/cancers11020222
  • Haggag YA, Matchett KB, Dakir EH, et al. Nano-encapsulation of a novel anti-Ran-GTPase peptide for blockade of regulator of chromosome condensation 1 (RCC1) function in MDA-MB-231 breast cancer cells. Int J Pharm. 2017;521(1–2):40–53. doi: 10.1016/j.ijpharm.2017.02.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.