158
Views
0
CrossRef citations to date
0
Altmetric
Review

An update on lipophilic efficiency as an important metric in drug design

Received 10 May 2024, Accepted 12 Jun 2024, Published online: 26 Jun 2024

References

  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–715. doi: 10.1038/nrd1470
  • Maurer TS, Edwards M, Hepworth D, et al. Designing small molecules for therapeutic success: A contemporary perspective. Drug Discov Today. 2022;27(2):538–546. doi: 10.1016/j.drudis.2021.09.017
  • Meanwell NA. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem Res Toxicol. 2011;24(9):1420–1456. doi: 10.1021/tx200211v
  • Taylor D. The pharmaceutical industry and the future of drug development. In: Hester RE, Harrison RM, editors. Pharmaceuticals in the Environment. The Royal Society of Chemistry; 2015. doi: 10.1039/9781782622345-00001
  • Stepan AF, Walker DP, Bauman J, et al. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem Res Toxicol. 2011;24(9):1345–1410. doi: 10.1021/tx200168d
  • Hughes JD, Blagg J, Price DA, et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett. 2008;18(17):4872–4875. doi: 10.1016/j.bmcl.2008.07.071
  • Freeman-Cook KD, Hoffman RL, Johnson TW. Lipophilic efficiency: the most important efficiency metric in medicinal chemistry. Future Med Chem. 2013;5(2):113–115. doi: 10.4155/fmc.12.208
  • Maurer TS, Smith D, Beaumont K, et al. Dose predictions for drug design. J Med Chem. 2020;63(12):6423–6435. doi: 10.1021/acs.jmedchem.9b01365
  • Miller RR, Madeira M, Wood HB, et al. Integrating the impact of lipophilicity on potency and pharmacokinetic parameters enables the use of diverse chemical space during small molecule drug optimization. J Med Chem. 2020;63(21):12156–12170. doi: 10.1021/acs.jmedchem.9b01813
  • Waring MJ. Lipophilicity in drug discovery. Expert Opin Drug Discov. 2010;5(3):235–248. doi: 10.1517/17460441003605098
  • Arnott JA, Planey SL. The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov. 2012;7(10):863–875. doi: 10.1517/17460441.2012.714363
  • Wenlock MC, Potter T, Barton P, et al. A method for measuring the lipophilicity of compounds in mixtures of 10. J Biomol Screen. 2011;16(3):348–355. doi: 10.1177/1087057110396372
  • Smith DDA, Kalgutkar AS, van de Waterbeemd H, et al. Physicochemistry. In: Smith, DA, Allerton, C, Kalgutkar, AS, et al., editors. Methods and principles in medicinal chemistry, pharmacokinetics and metabolism in drug design. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2012. p. 1–17.
  • Manallack DT. The pK(a) distribution of drugs: application to drug discovery. Perspect Medicin Chem. 2007;1:25–38. doi: 10.1177/1177391X0700100003
  • Johnson TW, Gallego RA, Edwards MP. Lipophilic efficiency as an important metric in drug design. J Med Chem. 2018;61(15):6401–6420. doi: 10.1021/acs.jmedchem.8b00077
  • Liu X, Testa B, Fahr A. Lipophilicity and its relationship with passive drug permeation. Pharm Res. 2011;28(5):962–977. doi: 10.1007/s11095-010-0303-7
  • Waring MJ. Defining optimum lipophilicity and molecular weight ranges for drug candidates-Molecular weight dependent lower logD limits based on permeability. Bioorg Med Chem Lett. 2009;19(10):2844–2851. doi: 10.1016/j.bmcl.2009.03.109
  • Freire E. Do enthalpy and entropy distinguish first in class from best in class? Drug Discov Today. 2008;13(19–20):869–874. doi: 10.1016/j.drudis.2008.07.005
  • Ruben AJ, Kiso Y, Freire E. Overcoming roadblocks in lead optimization: a thermodynamic perspective. Chem Biol Drug Des. 2006;67(1):2–4. doi: 10.1111/j.1747-0285.2005.00314.x
  • Motiejunas D, Wade RC. 4.09 - Structural, Energetic, and Dynamic Aspects of Ligand–Receptor Interactions. In: Taylor JB, Triggle DJ, editors. Comprehensive medicinal chemistry II. Elsevier; 2007. p. 193–213. doi: 10.1016/B0-08-045044-X/00250-9
  • Martin MT, Koza-Taylor P, Di L, et al. Early drug-induced liver injury risk screening: “Free,” as good as it gets. Toxicol Sci. 2022;188(2):208–218. doi: 10.1093/toxsci/kfac054
  • Norman BH. Drug Induced Liver Injury (DILI). Mechanisms and medicinal chemistry avoidance/mitigation strategies. J Med Chem. 2020;63(20):11397–11419. doi: 10.1021/acs.jmedchem.0c00524
  • Edwards MP, Price DA, et al. Chapter 23 - Role of Physicochemical Properties and Ligand Lipophilicity Efficiency in Addressing Drug Safety Risks. In: Macor JE, editor. Annual Reports in Medicinal Chemistry. Vol. 45. Academic Press; 2010. p. 380–391. doi: 10.1016/S0065-7743(10)45023-X
  • Johnson TW, Dress KR, Edwards M. Using the Golden Triangle to optimize clearance and oral absorption. Bioorg Med Chem Lett. 2009;19(19):5560–5564. doi: 10.1016/j.bmcl.2009.08.045
  • Yukawa T, Naven R. Utility of physicochemical properties for the prediction of toxicological outcomes: Takeda perspective. ACS Med Chem Lett. 2020;11(2):203–209. doi: 10.1021/acsmedchemlett.9b00536
  • Shamovsky I, Connolly S, David L, et al. Overcoming undesirable HERG potency of chemokine receptor antagonists using baseline lipophilicity relationships. J Med Chem. 2008;51(5):1162–1178. doi: 10.1021/jm070543k
  • Dash RP, Thomas JA, Rosenfeld C, et al. Protein binding and stability of drug candidates: The Achilles’ heel in in vitro potency assays. Eur J Drug Metab Pharmacokinet. 2020;45(4):427–432. doi: 10.1007/s13318-020-00619-3
  • van de Waterbeemd H, Smith DA, Jones BC. Lipophilicity in PK design: methyl, ethyl, futile. J Comput Aided Mol Des. 2001;15(3):273–286. doi: 10.1023/a:1008192010023.
  • Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov. 2007;6(11):881–890. doi: 10.1038/nrd2445
  • Hopkins AL, Keseru GM, Leeson PD, et al. The role of ligand efficiency metrics in drug discovery. Nat Rev Drug Discov. 2014;13(2):105–121. doi: 10.1038/nrd4163
  • Leeson PD, Bento AP, Gaulton A, et al. Target-based evaluation of “drug-like” properties and ligand efficiencies. J Med Chem. 2021;64(11):7210–7230. doi: 10.1021/acs.jmedchem.1c00416
  • Ryckmans T, Edwards MP, Horne VA, et al. Rapid assessment of a novel series of selective CB(2) agonists using parallel synthesis protocols: a Lipophilic Efficiency (LipE) analysis. Bioorg Med Chem Lett. 2009;19(15):4406–4409. doi: 10.1016/j.bmcl.2009.05.062
  • Stepan AF, Kauffman GW, Keefer CE, et al. Evaluating the differences in cycloalkyl ether metabolism using the design parameter “lipophilic metabolism efficiency” (LipMetE) and a matched molecular pairs analysis. J Med Chem. 2013;56(17):6985–6990. doi: 10.1021/jm4008642
  • Cecere G, Guasch L, Olivares-Morales AM, et al. LipMetE (Lipophilic Metabolism Efficiency) as a simple guide for half-life and dosing regimen prediction of oral drugs. ACS Med Chem Lett. 2022;13(9):1444–1451. doi: 10.1021/acsmedchemlett.2c00183
  • Tarcsay A, Nyiri K, Keseru GM. Impact of lipophilic efficiency on compound quality. J Med Chem. 2012;55(3):1252–1260. doi: 10.1021/jm201388p
  • Bagdanoff JT, Chen Z, Acker M, et al. Optimization of fused bicyclic allosteric SHP2 inhibitors. J Med Chem. 2019;62(4):1781–1792. doi: 10.1021/acs.jmedchem.8b01725
  • Harada K, Mizukami J, Watanabe T, et al. Lead generation and optimization of novel GPR119 agonists with a spirocyclic cyclohexane structure. Bioorg Med Chem Lett. 2019;29(3):373–379. doi: 10.1016/j.bmcl.2018.12.041
  • Hoegenauer K, Kallen J, Jimenez-Nunez E, et al. Structure-based and property-driven optimization of N-Aryl Imidazoles toward potent and selective oral RORgammat inhibitors. J Med Chem. 2019;62(23):10816–10832. doi: 10.1021/acs.jmedchem.9b01291
  • Sarver P, Acker M, Bagdanoff JT, et al. 6-amino-3-methylpyrimidinones as potent, selective, and orally efficacious SHP2 inhibitors. J Med Chem. 2019;62(4):1793–1802. doi: 10.1021/acs.jmedchem.8b01726
  • Mammoliti O, Palisse A, Joannesse C, et al. Discovery of the S1P2 Antagonist GLPG2938 (1-[2-Ethoxy-6-(trifluoromethyl)-4-pyridyl]-3-[[5-methyl-6-[1-methyl-3-(trifluoromethyl)pyrazol-4-yl]pyridazin-3-yl]methyl]urea), a Preclinical Candidate for the Treatment of Idiopathic Pulmonary Fibrosis. J Med Chem. 2021;64(9):6037–6058. doi: 10.1021/acs.jmedchem.1c00138
  • Tawada M, Fushimi M, Masuda K, et al. Discovery of a Novel and Brain-Penetrant O-GlcNAcase inhibitor via virtual screening, structure-based analysis, and rational lead optimization. J Med Chem. 2021;64(2):1103–1115. doi: 10.1021/acs.jmedchem.0c01712
  • Humphreys PG, Anderson NA, Bamborough P, et al. Identification and optimization of a ligand-efficient Benzoazepinone Bromodomain and Extra Terminal (BET) family acetyl-lysine mimetic into the oral candidate quality molecule I-BET432. J Med Chem. 2022;65(22):15174–15207. doi: 10.1021/acs.jmedchem.2c01102
  • Kajita Y, Ikeda S, Yoshikawa M, et al. Discovery of Novel 3-Piperidinyl Pyridine derivatives as highly potent and selective Cholesterol 24-Hydroxylase (CH24H) Inhibitors. J Med Chem. 2022;65(4):3343–3358. doi: 10.1021/acs.jmedchem.1c01898
  • Zhang W, Vadlakonda S, Wu M, et al. Discovery and optimization of orally bioavailable and potent plasma Kallikrein inhibitors bearing a quaternary carbon. Bioorg Med Chem. 2022;73:117035. doi: 10.1016/j.bmc.2022.117035
  • Bradley E, Fusani L, Chung CW, et al. Structure-guided design of a domain-selective bromodomain and extra Terminal N-Terminal Bromodomain chemical probe. J Med Chem. 2023;66(23):15728–15749. doi: 10.1021/acs.jmedchem.3c00906
  • Gallego RA, Bernier L, Chen H, et al. Design and synthesis of functionally Active 5-Amino-6-Aryl Pyrrolopyrimidine inhibitors of hematopoietic progenitor kinase 1. J Med Chem. 2023;66(7):4888–4909. doi: 10.1021/acs.jmedchem.2c02038
  • Tamayo NA, Bourbeau MP, Allen JR, et al. Targeting the mitotic kinesin KIF18A in chromosomally unstable cancers: hit optimization toward an in vivo chemical probe. J Med Chem. 2022;65(6):4972–4990. doi: 10.1021/acs.jmedchem.1c02030
  • Murphy ST, Atienza J, Brown JW, et al. Optimization of mTOR inhibitors using property-based drug design and free-Wilson analysis for improved in vivo efficacy. ACS Med Chem Lett. 2023;14(11):1544–1550. doi: 10.1021/acsmedchemlett.3c00351
  • Barnes L, Blaber H, Brooks DTK, et al. Free-Wilson analysis of comprehensive data on phosphoinositide-3-kinase (PI3K) inhibitors reveals importance of N-methylation for PI3Kdelta activity. J Med Chem. 2019;62(22):10402–10422. doi: 10.1021/acs.jmedchem.9b01499
  • Hopkins BT, Bame E, Bell N, et al. Utilizing structure based drug design and metabolic soft spot identification to optimize the in vitro potency and in vivo pharmacokinetic properties leading to the discovery of novel reversible Bruton’s tyrosine kinase inhibitors. Bioorg Med Chem. 2021;44:116275. doi: 10.1016/j.bmc.2021.116275
  • Casimiro-Garcia A, Allais C, Brennan A, et al. Discovery of a series of pyrimidine carboxamides as inhibitors of Vanin-1. J Med Chem. 2022;65(1):757–784. doi: 10.1021/acs.jmedchem.1c01849
  • Futatsugi K, Cabral S, Kung DW, et al. Discovery of Ervogastat (PF-06865571): a potent and selective inhibitor of Diacylglycerol Acyltransferase 2 for the treatment of non-alcoholic Steatohepatitis. J Med Chem. 2022;65(22):15000–15013. doi: 10.1021/acs.jmedchem.2c01200
  • Goldberg FW, Kettle JG, Lamont GM, et al. Discovery of clinical candidate AZD0095, a selective inhibitor of Monocarboxylate Transporter 4 (MCT4) for oncology. J Med Chem. 2023;66(1):384–397. doi: 10.1021/acs.jmedchem.2c01342
  • Humphreys PG, Atkinson SJ, Bamborough P, et al. Design, synthesis, and characterization of I-BET567, a Pan-Bromodomain and extra terminal (BET) Bromodomain oral candidate. J Med Chem. 2022;65(3):2262–2287. doi: 10.1021/acs.jmedchem.1c01747
  • Shen S, Hadley M, Ustinova K, et al. Discovery of a New Isoxazole-3-hydroxamate-based histone deacetylase 6 inhibitor SS-208 with antitumor activity in syngeneic melanoma mouse models. J Med Chem. 2019;62(18):8557–8577. doi: 10.1021/acs.jmedchem.9b00946
  • Cheng H, Orr STM, Bailey S, et al. Structure-based drug design and synthesis of PI3Kalpha-selective inhibitor (PF-06843195). J Med Chem. 2021;64(1):644–661. doi: 10.1021/acs.jmedchem.0c01652
  • Noonepalle S, Shen S, Ptacek J, et al. Rational design of suprastat: a novel selective histone deacetylase 6 inhibitor with the ability to potentiate immunotherapy in melanoma models. J Med Chem. 2020;63(18):10246–10262. doi: 10.1021/acs.jmedchem.0c00567
  • Clegg MA, Bamborough P, Chung CW, et al. Application of Atypical Acetyl-lysine Methyl Mimetics in the development of selective inhibitors of the Bromodomain-Containing Protein 7 (BRD7)/Bromodomain-Containing Protein 9 (BRD9) Bromodomains. J Med Chem. 2020;63(11):5816–5840. doi: 10.1021/acs.jmedchem.0c00075
  • Goldberg FW, Finlay MRV, Ting AKT, et al. The discovery of 7-Methyl-2-[(7-methyl[1,2,4]triazolo[1,5-a]pyridin-6-yl)amino]-9-(tetrahydro-2H-pyran-4-yl)-7,9-dihydro-8H-purin-8-one (AZD7648), a potent and selective DNA-Dependent Protein Kinase (DNA-PK) Inhibitor. J Med Chem. 2020;63(7):3461–3471. doi: 10.1021/acs.jmedchem.9b01684
  • Goldberg FW, Ting AKT, Beattie D, et al. Optimization of hERG and pharmacokinetic properties for basic Dihydro-8H-purin-8-one inhibitors of DNA-PK. ACS Med Chem Lett. 2022;13(8):1295–1301. doi: 10.1021/acsmedchemlett.2c00172
  • Davoren JE, Nason D, Coe J, et al. Discovery and lead optimization of Atropisomer D1 agonists with reduced desensitization. J Med Chem. 2018;61(24):11384–11397. doi: 10.1021/acs.jmedchem.8b01622
  • Cisar JS, Pietsch C, DeRatt LG, et al. N-Heterocyclic 3-pyridyl carboxamide inhibitors of DHODH for the treatment of acute myelogenous leukemia. J Med Chem. 2022;65(16):11241–11256. doi: 10.1021/acs.jmedchem.2c00788
  • Cioffi CL, Racz B, Varadi A, et al. Design, synthesis, and preclinical efficacy of novel nonretinoid antagonists of retinol-binding Protein 4 in the mouse model of hepatic steatosis. J Med Chem. 2019;62(11):5470–5500. doi: 10.1021/acs.jmedchem.9b00352
  • Xiao P, Duan Z, Liu Z, et al. Rational design of RNA Demethylase FTO inhibitors with enhanced Antileukemia drug-like properties. J Med Chem. 2023;66(14):9731–9752. doi: 10.1021/acs.jmedchem.3c00543
  • Islam MS, Ghawas HM, El-Senduny FF, et al. Synthesis of new thiazolo-pyrrolidine-(spirooxindole) tethered to 3-acylindole as anticancer agents. Bioorg Chem. 2019;82:423–430. doi: 10.1016/j.bioorg.2018.10.036
  • Protopopov MV, Vdovin VS, Starosyla SA, et al. Flavone inspired discovery of benzylidenebenzofuran-3(2H)-ones (aurones) as potent inhibitors of human protein kinase CK2. Bioorg Chem. 2020;102:104062. doi: 10.1016/j.bioorg.2020.104062
  • Epplin MP, Mohan A, Harris LD, et al. Discovery of dihydropyrrolo[1,2-a]pyrazin-3(4H)-one-based second-generation GluN2C- and GluN2D-selective positive allosteric modulators (PAMs) of the N-methyl-d-aspartate (NMDA) receptor. J Med Chem. 2020;63(14):7569–7600. doi: 10.1021/acs.jmedchem.9b01733
  • Girst G, Otvos SB, Fulop F, et al. Pharmacokinetics-driven evaluation of the antioxidant activity of Curcuminoids and their major reduced metabolites-a medicinal chemistry approach. Molecules. 2021;26(12). doi: 10.3390/molecules26123542
  • Kutkat O, Kandeil A, Moatasim Y, et al. In vitro and in vivo antiviral studies of New Heteroannulated 1,2,3-Triazole glycosides targeting the neuraminidase of influenza a viruses. Pharmaceuticals (Basel). 2022;(15):3. doi: 10.3390/ph15030351
  • Oboh E, Teixeira JE, Schubert TJ, et al. Structure-Activity relationships of replacements for the triazolopyridazine of Anti-Cryptosporidium lead SLU-2633. Bioorg Med Chem. 2023;86:117295. doi: 10.1016/j.bmc.2023.117295
  • Eskandrani R, Al-Rasheed LS, Ansari SA, et al. Targeting transcriptional CDKs 7, 8, and 9 with Anilinopyrimidine derivatives as anticancer agents: design, synthesis, biological evaluation and in silico studies. Molecules. 2023;28(11). doi: 10.3390/molecules28114271
  • Hegazy A, Mahmoud SH, Elshaier Y, et al. Antiviral activities of plant-derived indole and beta-carboline alkaloids against human and avian influenza viruses. Sci Rep. 2023;13(1):1612. doi: 10.1038/s41598-023-27954-0
  • Li Z, Xu X, Hou J, et al. Structure-based optimization of free fatty acid receptor 1 agonists bearing thiazole scaffold. Bioorg Chem. 2018;77:429–435. doi: 10.1016/j.bioorg.2018.01.039
  • Babin V, Tournier BB, Davis A, et al. Design of iodinated radioligands for SPECT imaging of central human 5-HT(4)R using a ligand lipophilicity efficiency approach. Bioorg Chem. 2020;96:103582. doi: 10.1016/j.bioorg.2020.103582
  • Mavrova A, Dimov S, Sulikovska I, et al. Design, Cytotoxicity and Antiproliferative Activity of 4-Amino-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylates against MFC-7 and MDA-MB-231 breast cancer cell lines. Molecules. 2022;27(10). doi: 10.3390/molecules27103314
  • Ji X, Ge L, Ma R, et al. Screening potential ligands of endothelin receptor a from Choerospondias axillaris and evaluation of their drug-like properties by affinity chromatographic methods. J Pharm Biomed Anal. 2023;226:115240. doi: 10.1016/j.jpba.2023.115240
  • Li Z, Liu C, Shi W, et al. Identification of highly potent and orally available free fatty acid receptor 1 agonists bearing isoxazole scaffold. Bioorg Med Chem. 2018;26(3):703–711. doi: 10.1016/j.bmc.2017.12.030
  • Kim HS, Ortiz D, Kadayat TM, et al. Optimization of orally bioavailable Antileishmanial 2,4,5-Trisubstituted Benzamides. J Med Chem. 2023;66(11):7374–7386. doi: 10.1021/acs.jmedchem.3c00056
  • Miyajima Y, Noguchi-Yachide T, Ochiai K, et al. Physicochemical characterization of B-hydroxyphenyl phosphine borane derivatives and their evaluation as nuclear estrogen receptor ligands. RSC Med Chem. 2024;15(1):119–126. doi: 10.1039/d3md00350g
  • Li Z, Hao Y, Yang C, et al. Design, synthesis, and evaluation of potent RIPK1 inhibitors with in vivo anti-inflammatory activity. Eur J Med Chem. 2022;228:114036. doi: 10.1016/j.ejmech.2021.114036
  • Bachovchin KA, Sharma A, Bag S, et al. Improvement of aqueous solubility of lapatinib-derived analogues: identification of a Quinolinimine lead for human African Trypanosomiasis drug development. J Med Chem. 2019;62(2):665–687. doi: 10.1021/acs.jmedchem.8b01365
  • Dhameliya TM, Patel KI, Tiwari R, et al. Design, synthesis, and biological evaluation of benzo[d]imidazole-2-carboxamides as new anti-TB agents. Bioorg Chem. 2021;107:104538. doi: 10.1016/j.bioorg.2020.104538
  • Wang C, Pei Y, Wang L, et al. Discovery of (1H-Pyrazolo[3,4-c]pyridin-5-yl)sulfonamide Analogues as Hepatitis B Virus Capsid assembly modulators by conformation constraint. J Med Chem. 2020;63(11):6066–6089. doi: 10.1021/acs.jmedchem.0c00292
  • Rahman MS, Esfahani SH, Nozohouri S, et al. Structure-activity relationship studies of functionalized aromatic peptidomimetics as neurolysin activators. Bioorg Med Chem Lett. 2022;64:128669. doi: 10.1016/j.bmcl.2022.128669
  • Josa-Cullere L, Galan SRG, Cogswell TJ, et al. Phenotypic screening identifies a trisubstituted imidazo[1,2-a]pyridine series that induces differentiation in multiple AML cell lines. Eur J Med Chem. 2023;258:115509. doi: 10.1016/j.ejmech.2023.115509
  • Beveridge J, Tran E, Deora GS, et al. Novel Diarylthioether compounds as agents for the treatment of Chagas disease. J Med Chem. 2023;66(2):1522–1542. doi: 10.1021/acs.jmedchem.2c01725
  • Shahbazi Nia S, Hossain MA, Ji G, et al. Studies on diketopiperazine and dipeptide analogs as opioid receptor ligands. Eur J Med Chem. 2023;254:115309. doi: 10.1016/j.ejmech.2023.115309
  • Boudreau MW, Mulligan MP, Shapiro DJ, et al. Activators of the anticipatory unfolded protein response with enhanced selectivity for estrogen receptor positive breast cancer. J Med Chem. 2022;65(5):3894–3912. doi: 10.1021/acs.jmedchem.1c01730
  • Laghezza A, Luisi G, Caradonna A, et al. Virtual screening identification and chemical optimization of substituted 2-arylbenzimidazoles as new non-zinc-binding MMP-2 inhibitors. Bioorg Med Chem. 2020;28(3):115257. doi: 10.1016/j.bmc.2019.115257
  • Fernandes GFS, Campos DL, Da Silva IC, et al. Benzofuroxan derivatives as potent agents against multidrug-resistant mycobacterium tuberculosis. ChemMedchem. 2021;16(8):1268–1282. doi: 10.1002/cmdc.202000899
  • Mahy W, Patel M, Steadman D, et al. Screening of a custom-designed acid fragment library identifies 1-Phenylpyrroles and 1-Phenylpyrrolidines as inhibitors of Notum Carboxylesterase activity. J Med Chem. 2020;63(17):9464–9483. doi: 10.1021/acs.jmedchem.0c00660
  • Morozova A, Chan SC, Bayle S, et al. Development of potent and selective ULK1/2 inhibitors based on 7-azaindole scaffold with favorable in vivo properties. Eur J Med Chem. 2024;266:116101. doi: 10.1016/j.ejmech.2023.116101
  • Sharma LK, Yun MK, Subramanian C, et al. LipE guided discovery of isopropylphenyl pyridazines as pantothenate kinase modulators. Bioorg Med Chem. 2021;52:116504. doi: 10.1016/j.bmc.2021.116504
  • Kozlova A, Thabault L, Liberelle M, et al. Rational design of original fused-cycle selective inhibitors of Tryptophan 2,3-Dioxygenase. J Med Chem. 2021;64(15):10967–10980. doi: 10.1021/acs.jmedchem.1c00323
  • Dennis AS, V D W H, Walker DK. Pharmacokinetics and metabolism in drug design. 2006.
  • Wilson P, Stewart A, Flournoy V, et al. Liquid chromatographic determination of nystatin in pharmaceutical preparations. J AOAC Int. 2001;84(4):1050–1055. doi: 10.1093/jaoac/84.4.1050
  • Duan YJ, Fu L, Zhang XC, et al. Improved GNNs for Log D(7.4) prediction by transferring knowledge from low-fidelity data. J Chem Inf Model. 2023;63(8):2345–2359. doi: 10.1021/acs.jcim.2c01564
  • Gleeson MP. Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem. 2008;51(4):817–834. doi: 10.1021/jm701122q
  • Leung CS, Leung SS, Tirado-Rives J, et al. Methyl effects on protein-ligand binding. J Med Chem. 2012;55(9):4489–4500. doi: 10.1021/jm3003697
  • Kim SG, Novak RF. The induction of cytochrome P4502E1 by nitrogen- and sulfur-containing heterocycles: expression and molecular regulation. Toxicol Appl Pharmacol. 1993;120(2):257–265. doi: 10.1006/taap.1993.1110
  • Atz K, Cotos L, Isert C, et al. Prospective de novo drug design with deep interactome learning. Nat Commun. 2024;15(1):3408. doi: 10.1038/s41467-024-47613-w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.