0
Views
0
CrossRef citations to date
0
Altmetric
Review

Polypharmacology prediction: the long road toward comprehensively anticipating small-molecule selectivity to de-risk drug discovery

ORCID Icon & ORCID Icon
Received 15 Mar 2024, Accepted 02 Jul 2024, Published online: 14 Jul 2024

References

  • Farnaby W, Koegl M, Roy MJ, et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat Chem Biol. 2019;15(7):672–680. doi: 10.1038/s41589-019-0294-6
  • Khan S, Zhang X, Lv D, et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat Med. 2019;25(12):1938–1947. doi: 10.1038/s41591-019-0668-z
  • Burslem GM, Crews CM. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell. 2020;181(1):102–114. doi: 10.1016/j.cell.2019.11.031
  • Hong DS, Fakih MG, Strickler JH, et al. KRASG12C inhibition with sotorasib in advanced solid tumors. N Engl J Med. 2020;383(13):1207–1217. doi: 10.1056/NEJMoa1917239
  • Gao X, Burris HA III, Vuky J, et al. Phase 1/2 study of ARV-110, an androgen receptor (AR) PROTAC degrader, in metastatic castration-resistant prostate cancer (MCRPC). J Clin Oncol. 2022;40(6_suppl):17–17. doi: 10.1200/JCO.2022.40.6_suppl.017
  • Hughes J, Rees S, Kalindjian S, et al. Principles of early drug discovery. Br J Pharmacol. 2011;162(6):1239–1249. doi: 10.1111/j.1476-5381.2010.01127.x
  • Reyes Gaido OE, Pavlaki N, Granger JM, et al. An improved reporter identifies ruxolitinib as a potent and cardioprotective camkii inhibitor. Sci Transl Med. 2023;15:701. doi: 10.1126/scitranslmed.abq7839
  • Médard G, Sheltzer JM. Ricolinostat is not a highly selective HDAC6 Inhibitor. Nat Cancer. 2023;4(6):807–808. doi: 10.1038/s43018-023-00582-3
  • Lin A, Giuliano CJ, Palladino A, et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med. 2019;11(509). doi: 10.1126/scitranslmed.aaw8412
  • Lu K, Derbyshire ER, States U. Tafenoquine: a step toward malaria elimination kuan-yi. Biochemistry. 2021;59(8):911–920. doi: 10.1021/acs.biochem.9b01105.Tafenoquine
  • Cowell AN, Winzeler EA. Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Med. 2019;2019(1):1–18. doi: 10.1186/s13073-019-0673-3
  • Cowell AN, Winzeler EA. The genomic architecture of antimalarial drug resistance. Brief Funct Genomics. 2019;18(May):314–328. doi: 10.1093/bfgp/elz008
  • Mathews ES, John ARO. Tackling resistance: emerging antimalarials and new parasite targets in the era of elimination [version 1 ; peer review: 2 approved]. F1000Res. 2022;7:1–11. doi: 10.12688/f1000research.14874.1
  • Mullard A. FDA approvals. Nat Rev Drug Discov 2024. 2023;23(2):88–95. doi: 10.1038/d41573-024-00001-x
  • Moffat JG, Vincent F, Lee JA, et al. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov. 2017;16(8):531–543. doi: 10.1038/nrd.2017.111
  • Antolin AA, Sanfelice D, Crisp A, et al. The chemical probes portal: an expert review-based public resource to empower chemical probe assessment, selection and use. Nucleic Acids Res. 2023;51(D1):D1492–D1502. doi: 10.1093/nar/gkac909
  • Blagg J, Workman P. Choose and use your chemical probe wisely to explore cancer biology. Cancer Cell. 2017;32(1):9–25. doi: 10.1016/j.ccell.2017.06.005
  • di Micco P, Antolin AA, Mitsopoulos C, et al. CanSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Res. 2023;51(D1):D1212–D1219. doi: 10.1093/nar/gkac1004
  • Ackloo S, Antolin AA, Bartolome JM, et al. Target 2035 – an update on private sector contributions. RSC Med Chem. 2023;14(6):1002–1011. doi: 10.1039/D2MD00441K
  • Vincent F, Nueda A, Lee J, et al. Phenotypic drug discovery: recent successes, lessons learned and new directions. Nat Rev Drug Discov. 2022;21(12):899–914. doi: 10.1038/s41573-022-00472-w
  • Ravikumar B, Aittokallio T. Improving the efficacy-safety balance of polypharmacology in multi-target drug discovery. Expert Opin Drug Discov. 2018;13(2):179–192. doi: 10.1080/17460441.2018.1413089
  • Antolin A, Workman P, Mestres J, et al. Polypharmacology in precision oncology: current applications and future prospects. Curr Pharm Des. 2017;22(46):6935–6945. doi: 10.2174/1381612822666160923115828
  • Anighoro A, Bajorath J, Rastelli G. Polypharmacology: Challenges and opportunities in drug discovery. J Med Chem. 2014;57(19):7874–7887. doi: 10.1021/jm5006463
  • Mestres J, Gregori-Puigjané E, Valverde S, et al. Data completeness – the achilles heel of drug-target networks. Nat Biotechnol. 2008;26(9):983–984. doi: 10.1038/nbt0908-983
  • Peón A, Naulaerts S, Ballester PJ. Predicting the reliability of drug-target interaction predictions with maximum coverage of target space. Sci Rep. 2017;7(1):3820. doi: 10.1038/s41598-017-04264-w
  • Jalencas X, Mestres J. On the origins of drug polypharmacology. Medchemcomm. 2013;4(1):80–87. doi: 10.1039/C2MD20242E
  • Peters J-U. Polypharmacology – foe or friend? J Med Chem. 2013;56(22):8955–8971. doi: 10.1021/jm400856t
  • Finlayson K, Witchel HJ, McCulloch J, et al. Acquired QT interval prolongation and HERG: implications for drug discovery and development. Eur J Pharmacol. 2004;500(1–3):129–142. doi: 10.1016/j.ejphar.2004.07.019
  • Rudmann DG. On-target and off-target-based toxicologic effects. Toxicol Pathol. 2013;41(2):310–314. doi: 10.1177/0192623312464311
  • Roth BL, Sheffler DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov. 2004;3(4):353–359. doi: 10.1038/nrd1346
  • Capdeville R, Buchdunger E, Zimmermann J, et al. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov. 2002;1(7):493–502. doi: 10.1038/nrd839
  • Frantz SPD. Nature. 2005;437(7061):942–943. doi: 10.1038/437942a
  • Hopkins A, Mason J, Oovernigton J. Can we rationally design promiscuous drugs? Curr Opin Struct Biol. 2006;16(1):127–136. doi: 10.1016/j.sbi.2006.01.013
  • Oliveira LCB, Mulligan LM. Selpercatinib: first approved selective ret inhibitor. Cell. 2023;186(8):1517. doi: 10.1016/j.cell.2023.02.040
  • Wirth LJ, Sherman E, Robinson B, et al. Efficacy of selpercatinib in RET-Altered thyroid cancers. N Engl J Med. 2020;383(9):825–835. doi: 10.1056/NEJMoa2005651
  • Retsevmo. Assessment Report EMA/9037/2021). Amsterdam; 2020.
  • George MA, Qureshi S, Omene C, et al. Clinical and pharmacologic differences of CDK4/6 inhibitors in breast cancer. Front Oncol. 2021:11. doi: 10.3389/fonc.2021.693104
  • Hafner M, Mills CE, Subramanian K, et al. Multiomics profiling establishes the polypharmacology of FDA-Approved CDK4/6 inhibitors and the potential for differential clinical activity. Cell Chem Biol. 2019;26(8):1067–1080.e8. doi: 10.1016/j.chembiol.2019.05.005
  • Freeman-Cook K, Hoffman RL, Miller N, et al. Expanding control of the tumor cell cycle with a CDK2/4/6 inhibitor. Cancer Cell. 2021;39(10):1404–1421.e11. doi: 10.1016/j.ccell.2021.08.009
  • Whitebread S, Hamon J, Bojanic D, et al. Keynote review: In Vitro safety pharmacology profiling: an essential tool for successful drug development. drug discov today. Drug Discov Today. 2005;10(21):1421–1433. doi: 10.1016/S1359-6446(05)03632-9
  • Antolin AA, Clarke PA, Collins I, et al. Evolution of kinase polypharmacology across HSP90 drug discovery. Cell Chem Biol. 2021;28(10):1433–1445.e3. doi: 10.1016/j.chembiol.2021.05.004
  • Froloff N. Probing drug action using in vitro pharmacological profiles. Trends Biotechnol. 2005;23(10):488–490. doi: 10.1016/j.tibtech.2005.07.004
  • Davis MI, Hunt JP, Herrgard S, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011;29(11):1046–1051. doi: 10.1038/nbt.1990
  • Eurofins disco very – drug discovery services. [cited 2024 Feb 19]. Available from: https://www.eurofinsdiscovery.com/
  • Lu K. Chemoproteomics: towards global drug target profiling. Chembiochem. 2020;21(22):3189–3191. doi: 10.1002/cbic.202000439
  • Klaeger S, Heinzlmeir S, Wilhelm M, et al. The target landscape of clinical kinase drugs. Sci (1979). 2017;358:6367. doi: 10.1126/science.aan4368
  • Knezevic CE, Wright G, Remsing Rix LL, et al. Proteome-wide profiling of clinical PARP inhibitors reveals compound-specific secondary targets. Cell Chem Biol. 2016;23(12):1490–1503. doi: 10.1016/j.chembiol.2016.10.011
  • Antolin AA, Ameratunga M, Banerji U, et al. The kinase polypharmacology landscape of clinical PARP inhibitors. Sci Rep. 2020;10(1):2585. doi: 10.1038/s41598-020-59074-4
  • Molina DM, Jafari R, Ignatushchenko M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Sci (1979). 5640;341(6141):84–87. doi: 10.1126/science.1233606
  • Prabhu N, Dai L, Nordlund P. CETSA in integrated proteomics studies of cellular processes. Curr Opin Chem Biol. 2020;54:54–62. doi: 10.1016/j.cbpa.2019.11.004
  • Keiser MJ, Setola V, Irwin JJ, et al. Predicting new molecular targets for known drugs. Nature. 2009;462(7270):175–181. doi: 10.1038/nature08506
  • Reker D, Perna AM, Rodrigues T, et al. Revealing the macromolecular targets of complex natural products. Nat Chem. 2014;6(12):1072–1078. doi: 10.1038/nchem.2095
  • Bender A, Glen RC. Molecular similarity: a key technique in molecular informatics. Org Biomol Chem. 2004;2(22):3204. doi: 10.1039/b409813g
  • Awale M, Reymond J-L. Web-based 3D-Visualization of the DrugBank chemical space. J Cheminform. 2016;8(1):25. doi: 10.1186/s13321-016-0138-2
  • Jiménez-Luna J, Grisoni F, Weskamp N, et al. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opin Drug Discov. 2021;16(9):949–959. doi: 10.1080/17460441.2021.1909567
  • Jayatunga MKP, Xie W, Ruder L, et al. AI in small-molecule drug discovery: a coming wave? Nat Rev Drug Discov. 2022;21(3):175–176. doi: 10.1038/d41573-022-00025-1
  • Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–477. doi: 10.1038/s41573-019-0024-5
  • Dara S, Dhamercherla S, Jadav SS, et al. Machine learning in drug discovery: a review. Vol. 55. Springer Netherlands; 2022. doi: 10.1007/s10462-021-10058-4
  • Blanco-González A, Cabezón A, Seco-González A, et al. The role of ai in drug discovery: challenges, opportunities, and strategies. Pharmaceuticals. 0572;16(6):891. doi: 10.3390/ph16060891
  • Bender A, Cortes-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? part 2: a discussion of chemical and biological data. Drug Discov Today. 2021;26(4):1040–1052. doi: 10.1016/j.drudis.2020.11.037
  • Chen WL. Chemoinformatics: past, present, and future †. J Chem Inf Model. 2006;46(6):2230–2255. doi: 10.1021/ci060016u
  • Wheeler DL. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2006;34(90001):D173–D180. doi: 10.1093/nar/gkj158
  • Warr WAC. ChEMBL. An interview with John Overington, team leader, chemogenomics at the European bioinformatics institute outstation of the European molecular biology laboratory (EMBL-EBI). J Comput Aided Mol Des. 2009;23(4):195–198. doi: 10.1007/s10822-009-9260-9
  • Paolini GV, Shapland RHB, van Hoorn WP, et al. Global mapping of pharmacological space. Nat Biotechnol. 2006;24(7):805–815. doi: 10.1038/nbt1228
  • Mestres J, Martín-Couce L, Gregori-Puigjané E, et al. Ligand-based approach to in silico pharmacology: nuclear receptor profiling. J Chem Inf Model. 2006;46(6):2725–2736. doi: 10.1021/ci600300k
  • Bernstein FC, Koetzle TF, Williams GJB, et al. The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977;112(3):535–542. doi: 10.1016/S0022-2836(77)80200-3
  • Li H, Gao Z, Kang L, et al. TarFisDock: a web server for identifying drug targets with docking approach. In: Server W. editor. Nucleic acids res. Vol. 34. 7321. p. W219–W224. doi: 10.1093/nar/gkl114
  • Pabon NA, Xia Y, Estabrooks SK, et al. Predicting protein targets for drug-like compounds using transcriptomics. PLoS Comput Biol. 2018;14(12):e1006651. doi: 10.1371/journal.pcbi.1006651
  • Piazza I, Beaton N, Bruderer R, et al. A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Nat Commun. 2020;11(1):4200. doi: 10.1038/s41467-020-18071-x
  • Chowdhury S, Zielinski DC, Dalldorf C, et al. Empowering drug off-target discovery with metabolic and structural analysis. Nat Commun. 2023;14(1):3390. doi: 10.1038/s41467-023-38859-x
  • Hunter P. The “industrial” revolution in biomedical research. EMBO Rep. 2020;21(2). doi: 10.15252/embr.202050003
  • Bourne PE, Lorsch JR, Green ED. Perspective: sustaining the big-data ecosystem. Nature. 2015;527(7576):S16–S17. doi: 10.1038/527S16a
  • Gupta R, Srivastava D, Sahu M, et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Vol. 25. Springer International Publishing; 2021. doi: 10.1007/s11030-021-10217-3
  • Stefan SM, Rafehi M. The big data challenge – and how polypharmacology supports the translation from pre-clinical research into clinical use against neurodegenerative diseases and beyond. Neural Regen Res. 2024;19(8):1647–1648. doi: 10.4103/1673-5374.387984
  • Rocca-Serra P, Gu W, Ioannidis V, et al. The FAIR cookbook – the essential resource for and by FAIR doers. Sci Data. 2023;10(1):292. doi: 10.1038/s41597-023-02166-3
  • Roszik J, Subbiah V. Mining public databases for precision oncology. Trends Cancer. 2018;4(7):463–465. doi: 10.1016/j.trecan.2018.04.008
  • Marti-Solano M, Birney E, Bril A, et al. Integrative knowledge management to enhance pharmaceutical R&D. Nat Rev Drug Discov. 2014;13(4):239–240. doi: 10.1038/nrd4290
  • Tiikkainen P, Bellis L, Light Y, et al. Estimating error rates in bioactivity databases. J Chem Inf Model. 2013;53(10):2499–2505. doi: 10.1021/ci400099q
  • Goudey B, Geard N, Verspoor K, et al. Propagation, detection and correction of errors using the sequence database network. Brief Bioinform. 2022;23:6. doi: 10.1093/bib/bbac416
  • Namasivayam V, Silbermann K, Wiese M, et al. C@PA: computer-aided pattern analysis to predict multitarget ABC transporter inhibitors. J Med Chem. 2021;64(6):3350–3366. doi: 10.1021/acs.jmedchem.0c02199
  • Namasivayam V, Silbermann K, Pahnke J, et al. Scaffold fragmentation and substructure hopping reveal potential, robustness, and limits of computer-aided pattern analysis (C@PA). Comput Struct Biotechnol J. 2021;19:3269–3283. doi: 10.1016/j.csbj.2021.05.018
  • Namasivayam V, Stefan K, Silbermann K, et al. Structural feature-driven pattern analysis for multitarget modulator landscapes. Bioinformatics. 2022;38(5):1385–1392. doi: 10.1093/bioinformatics/btab832
  • Stefan SM, Jansson PJ, Pahnke J, et al. A curated binary pattern multitarget dataset of focused ATP-Binding cassette transporter inhibitors. Sci Data. 2022;9(1):446. doi: 10.1038/s41597-022-01506-z
  • Stefan SM, Pahnke J, Namasivayam V. HD_BPMDS: a curated binary pattern multitarget dataset of huntington’s disease-targeting agents. J Cheminform. 2023;15(1):109. doi: 10.1186/s13321-023-00775-z
  • David L, Thakkar A, Mercado R, et al. Molecular representations in ai-driven drug discovery: a review and practical guide. J Cheminform. 2020;12(1):56. doi: 10.1186/s13321-020-00460-5
  • Dolciami D, Villasclaras-Fernandez E, Kannas C, et al. CanSAR chemistry registration and standardization pipeline. J Cheminform. 2022;14(1):28. doi: 10.1186/s13321-022-00606-7
  • Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model. 2010;50(5):742–754. doi: 10.1021/ci100050t
  • Durant JL, Leland BA, Henry DR, et al. Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci. 2002;42(6):1273–1280. doi: 10.1021/ci010132r
  • Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol. 2007;152(1):9–20. doi: 10.1038/sj.bjp.0707305
  • Yap CW. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem. 2011;32(7):1466–1474. doi: 10.1002/jcc.21707
  • Dong J, Cao D-S, Miao H-Y, et al. ChemDes: an integrated web-based platform for molecular descriptor and fingerprint computation. J Cheminform. 2015;7(1):60. doi: 10.1186/s13321-015-0109-z
  • Landrum G. RDKIT: cheminformatics and machine-learning software in c++ and python. for the current version, see. Available from: https://www.rdkit.org
  • Stefan K, Namasivayam V, Stefan SM. Computer-aided pattern scoring – a multitarget dataset-driven workflow to predict ligands of orphan targets. Sci Data. 2024;11(1):530. doi: 10.1038/s41597-024-03343-8
  • Shen J, Nicolaou CA. Molecular property prediction: recent trends in the era of artificial intelligence. Drug Discov Today Technol. 2019;32–33:29–36. doi: 10.1016/j.ddtec.2020.05.001
  • Ruddigkeit L, van Deursen R, Blum LC, et al. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model. 2012;52(11):2864–2875. doi: 10.1021/ci300415d
  • Grygorenko OO, Radchenko DS, Dziuba I, et al. Generating multibillion chemical space of readily accessible screening compounds. iScience. 3625;23(11):101681. doi: 10.1016/j.isci.2020.101681
  • REAL Space - Enamine. [cited 2024 May 01]. Available from: https://enamine.net/compound-collections/real-compounds/real-space-navigator
  • Irwin JJ, Tang KG, Young J, et al. ZINC20 – A free ultralarge-scale chemical database for ligand discovery. J Chem Inf Model. 2020;60(12):6065–6073. doi: 10.1021/acs.jcim.0c00675
  • Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012;40(D1):D1100–D1107. doi: 10.1093/nar/gkr777
  • Gilson MK, Liu T, Baitaluk M, et al. BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 2016;44(D1):D1045–D1053. doi: 10.1093/nar/gkv1072
  • Papadatos G, Davies M, Dedman N, et al. SureChEMBL: a large-scale, chemically annotated patent document database. nucleic acids res. 2016;44(D1):D1220–D1228. doi: 10.1093/nar/gkv1253
  • EMBL-EBI. ChEMBL database. 2024. [cited 2024 Apr 24]. Available from: https://www.ebi.ac.uk/chembl/
  • Liu T, Lin YLX, Wen X, et al. BindingDB: a web-accessible database of experimentally determined protein ligand binding affinities. Nucleic Acids Res. 2007;35:D198. doi: 10.1093/nar/gkl999
  • Binding Database. [cited 2024 Apr 24]. Available from: https://www.bindingdb.org/rwd/bind/index.jsp
  • CanSAR.Ai | the cancer drug discovery platform. [cited 2024 Apr 24]. Available from: https://cansar.ai/
  • Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202–D1213. doi: 10.1093/nar/gkv951
  • PubChem. [cited 2024 Apr 24]. Available from: https://pubchem.ncbi.nlm.nih.gov/
  • Hu L, Benson ML, Smith RD, et al. Binding MOAD (mother of all databases). proteins: structure, function, and bioinformatics. 2005;60(3):333–340. doi: 10.1002/prot.20512
  • Binding MOAD – The Mother of All Databases. [cited 2024 Apr 24]. Available from: https://bindingmoad.org/
  • Harding SD, Armstrong JF, Faccenda E, et al. The IUPHAR/BPS guide to PHARMACOLOGY in 2022: curating pharmacology for COVID-19, malaria and antibacterials. Nucleic Acids Res. 2022;50(D1):D1282–D1294. doi: 10.1093/nar/gkab1010
  • IUPHAR/BPS Guide to PHARMACOLOGY. [cited 2024 Apr 24]. Available from: https://www.guidetopharmacology.org/
  • Mayr A, Klambauer G, Unterthiner T, et al. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem Sci. 2018;9(24):5441–5451. doi: 10.1039/C8SC00148K
  • Zdrazil B, Felix E, Hunter F, et al. The ChEMBL database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids Res. 2024;52(D1):D1180–D1192. doi: 10.1093/nar/gkad1004
  • Wootten D, Christopoulos A, Marti-Solano M, et al. Mechanisms of signalling and biased agonism in g protein-coupled receptors. Nat Rev Mol Cell Biol. 2018;19(10):638–653. doi: 10.1038/s41580-018-0049-3
  • Kalliokoski T, Kramer C, Vulpetti A, et al. Comparability of mixed IC50 data – a statistical analysis. PLoS One. 2013;8(4):e61007. doi: 10.1371/journal.pone.0061007
  • Landrum GA, Riniker S. Combining IC50 or ki values from different sources is a source of significant noise. J Chem Inf Model. 2024;64(5):1560–1567. doi: 10.1021/acs.jcim.4c00049
  • Koch O. Use of secondary structure element information in drug design: polypharmacology and conserved motifs in protein-ligand binding and protein-protein interfaces. Future Med Chem. 2011;3(6):699–708. doi: 10.4155/fmc.11.26
  • Dahlin JL, Auld DS, Rothenaigner I, et al. Nuisance compounds in cellular assays. Cell Chem Biol. 2021;28(3):356–370. doi: 10.1016/j.chembiol.2021.01.021
  • Reinecke M, Brear P, Vornholz L, et al. Chemical proteomics reveals the target landscape of 1,000 kinase inhibitors. Nat Chem Biol. 2023;20(5):577–585. doi: 10.1038/s41589-023-01459-3
  • Müller S, Ackloo S, Arrowsmith CH, et al. Donated chemical probes for open science. Elife. 2018:7. doi: 10.7554/eLife.34311
  • Williamson AR. Creating a structural genomics consortium. nat struct biol. 2000;7:953–953. doi: 10.1038/80726
  • Kuhn P, Wilson K, Patch MG, et al. The genesis of high-throughput structure-based drug discovery using protein crystallography. Curr Opin Chem Biol. 2002;6(5):704–710. doi: 10.1016/S1367-5931(02)00361-7
  • Burley SK, Bhikadiya C, Bi C, et al. RCSB protein data bank (rcsb.Org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023;51(D1):D488–D508. doi: 10.1093/nar/gkac1077
  • Porta-Pardo E, Ruiz-Serra V, Valentini S, et al. The structural coverage of the human proteome before and after AlphaFold. PLoS Comput Biol. 2022;18(1):e1009818. doi: 10.1371/journal.pcbi.1009818
  • Strzyz P. Lasker award for AlphaFold. Nat Rev Mol Cell Biol. 2023;24(11):774–774. doi: 10.1038/s41580-023-00671-2
  • AlphaFold protein structure database. [cited 2024 Apr 24]. Available from: https://alphafold.ebi.ac.uk/
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi: 10.1038/s41586-021-03819-2
  • Fraser JS, Murcko MA. Structure is beauty, but not always truth. Cell. 2024;187(3):517–520. doi: 10.1016/j.cell.2024.01.003
  • Vander Meersche Y, Cretin G, Gheeraert A, et al. ATLAS: protein flexibility description from atomistic molecular dynamics simulations. Nucleic Acids Res. 2024;52(D1):D384–D392. doi: 10.1093/nar/gkad1084
  • Antolin AA, Carotti A, Nuti R, et al. Exploring the effect of parp-1 flexibility in docking studies. J Mol Graph Model. 2013;45:192–201. doi: 10.1016/j.jmgm.2013.08.006
  • Ward JJ, Sodhi JS, McGuffin LJ, et al. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol. 2004;337(3):635–645. doi: 10.1016/j.jmb.2004.02.002
  • Helliwell JR. Error estimates in atom coordinates and b factors in macromolecular crystallography. Curr Res Struct Biol. 2023;6:100111. doi: 10.1016/j.crstbi.2023.100111
  • Clark JJ, Orban ZJ, Carlson HA. Predicting binding sites from unbound versus bound protein structures. Sci Rep. 2020;10(1):15856. doi: 10.1038/s41598-020-72906-7
  • Salentin S, Haupt VJ, Daminelli S, et al. Polypharmacology rescored: protein–ligand interaction profiles for remote binding site similarity assessment. Prog Biophys Mol Biol. 2014;116(2–3):174–186. doi: 10.1016/j.pbiomolbio.2014.05.006
  • Yang J, Cai Y, Zhao K, et al. Concepts and applications of chemical fingerprint for hit and lead screening. Drug Discov Today. 2022;27(11):103356. doi: 10.1016/j.drudis.2022.103356
  • Karelina M, Noh JJ, Dror RO. How accurately can one predict drug binding modes using alphafold models? Elife. 2023. doi: 10.1101/2023.05.18.541346
  • Scardino V, Di Filippo JI, Cavasotto CN. How good are alphafold models for docking-based virtual screening? iScience. 0174;26(1):105920. doi: 10.1016/j.isci.2022.105920
  • Terwilliger TC, Liebschner D, Croll TI, et al. AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination. Nat Methods. 2024;21(1):110–116. doi: 10.1038/s41592-023-02087-4
  • Lyu J, Kapolka N, Gumpper R, et al. AlphaFold2 structures template ligand discovery. doi: 10.1101/2023.12.20.572662
  • Callaway E. AlphaFold found thousands of possible psychedelics. Will its predictions help drug discovery? Nature. 2024;626(7997):14–15. doi: 10.1038/d41586-024-00130-8
  • Lyu J, Kapolka N, Gumpper R, et al. AlphaFold2 structures guide prospective ligand discovery. Science (1979). 2024;384(6702). doi: 10.1126/science.adn6354
  • Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630(8016):493–500. doi: 10.1038/s41586-024-07487-w
  • AlphaFold3 – why did nature publish it without Its Code? Nature. 2024;629(8013):728–728. doi: 10.1038/d41586-024-01463-0
  • Vandereyken K, Sifrim A, Thienpont B, et al. Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet. 2023;24(8):494–515. doi: 10.1038/s41576-023-00580-2
  • Petrone PM, Simms B, Nigsch F, et al. Rethinking molecular similarity: comparing compounds on the basis of biological activity. ACS Chem Biol. 2012;7(8):1399–1409. doi: 10.1021/cb3001028
  • Cortes Cabrera A, Lucena-Agell D, Redondo-Horcajo M, et al. Aggregated compound biological signatures facilitate phenotypic drug discovery and target elucidation. ACS Chem Biol. 2016;11(11):3024–3034. doi: 10.1021/acschembio.6b00358
  • Huang R, Xia M, Sakamuru S, et al. Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization. Nat Commun. 2016;7(1):10425. doi: 10.1038/ncomms10425
  • Workman P. The NCI-60 human tumor cell line screen: a catalyst for progressive evolution of models for discovery and development of cancer drugs. Cancer Res. 2023;83(19):3170–3173. doi: 10.1158/0008-5472.CAN-23-2612.
  • Morris J, Kunkel MW, White SL, et al. Targeted investigational oncology agents in the NCI-60: a phenotypic systems–based resource. Mol Cancer Ther. 2023;22(11):1270–1279. doi: 10.1158/1535-7163.MCT-23-0267
  • Shankavaram UT, Varma S, Kane D, et al. CellMiner: a relational database and query tool for the NCI-60 cancer cell lines. BMC Genomics. 2009;10(1):277. doi: 10.1186/1471-2164-10-277
  • Barretina J, Caponigro G, Stransky N, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–607. doi: 10.1038/nature11003
  • Cancer cell line encyclopedia (CCLE). [cited 2024 Apr 24]. Available from: https://depmap.org/portal/ccle/
  • Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483(7391):570–575. doi: 10.1038/nature11005
  • Dempster JM, Pacini C, Pantel S, et al. Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets. Nat Commun. 2019;10(1):5817. doi: 10.1038/s41467-019-13805-y
  • Iorio F, Knijnenburg TA, Vis DJ, et al. A landscape of pharmacogenomic interactions in cancer. Cell. 2016;166(3):740–754. doi: 10.1016/j.cell.2016.06.017
  • Seashore-Ludlow B, Rees MG, Cheah JH, et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 6324;5(11):1210–1223. doi: 10.1158/2159-8290.CD-15-0235
  • Cancer therapeutics response portal. [cited 2024 Apr 24]. Available from: https://portals.broadinstitute.org/ctrp.v2.1/
  • Ghandi M, Huang FW, Jané-Valbuena J, et al. Next-generation characterization of the cancer cell line encyclopedia. Nature. 2019;569(7757):503–508. doi: 10.1038/s41586-019-1186-3
  • Li H, Ning S, Ghandi M, et al. The landscape of cancer cell line metabolism. nat med. 2019;25(5):850–860. doi: 10.1038/s41591-019-0404-8
  • Gonçalves E, Poulos RC, Cai Z, et al. Pan-cancer proteomic map of 949 human cell lines. Cancer Cell. 2022;40(8):835–849.e8. doi: 10.1016/j.ccell.2022.06.010
  • Tsherniak A, Vazquez F, Montgomery PG, et al. Defining a cancer dependency map. Cell. 2017;170(3):564–576.e16. doi: 10.1016/j.cell.2017.06.010
  • Behan FM, Iorio F, Picco G, et al. Prioritization of cancer therapeutic targets using crispr–cas9 screens. Nature. 2019;568(7753):511–516. doi: 10.1038/s41586-019-1103-9
  • Project score database. [cited 2024 Apr 24]. Available from: https://www.sanger.ac.uk/tool/project-score-database/
  • Pacini C, Duncan E, Gonçalves E, et al. A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization. Cancer Cell. 2024;42(2):301–316.e9. doi: 10.1016/j.ccell.2023.12.016
  • Gonçalves E, Segura‐Cabrera A, Pacini C, et al. Drug mechanism‐of‐action discovery through the integration of pharmacological and crispr screens. Mol Syst Biol. 2020;16(7). doi: 10.15252/msb.20199405
  • Corsello SM, Nagari RT, Spangler RD, et al. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat Cancer. 2020;1(2):235–248. doi: 10.1038/s43018-019-0018-6
  • ATCC Cell Lines. Over 3,600 Cell Lines from Over 1,400 Species. [cited 2024 Apr 24]. Available from:https://www.atcc.org/
  • Sigma-Aldrich mammalian cell lines. [cited 2024 Apr 24]. Available from: https://www.sigmaaldrich.com/
  • Cell lines | thermo fisher scientific. [cited 2024 Apr 24]. Available from: https://www.thermofisher.com/
  • Lamb J, Crawford ED, Peck D, et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science (1979). 2006;313(5795):1929–1935. doi: 10.1126/science.1132939
  • Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: l1000 platform and the first 1,000,000 profiles. Cell. 2017;171(6):1437–1452.e17. doi: 10.1016/j.cell.2017.10.049
  • Mitchell DC, Kuljanin M, Li J, et al. A proteome-wide atlas of drug mechanism of action. Nat Biotechnol. 2023;41(6):845–857. doi: 10.1038/s41587-022-01539-0
  • Bush EC, Ray F, Alvarez MJ, et al. PLATE-Seq for genome-wide regulatory network analysis of high-throughput screens. Nat Commun. 2017;8(1):105. doi: 10.1038/s41467-017-00136-z
  • Hu LZ, Douglass E, Turunen M, et al. Elucidating compound mechanism of action and polypharmacology with a large-scale perturbational profile compendium. bioRxiv. 5876. doi: 10.1101/2023.10.08.561457
  • DeepCoverMOA. [cited 2024 Apr24]. Available from: https://wren.hms.harvard.edu/DeepCoverMOA/
  • Holbrook‐Smith D, Durot S, Sauer U. High‐throughput metabolomics predicts drug–target relationships for eukaryotic proteins. Mol Syst Biol. 2022;18(2). doi: 10.15252/msb.202110767
  • Srivatsan SR, McFaline-Figueroa JL, Ramani V, et al. Massively multiplex chemical transcriptomics at single-cell resolution. Science (1979). 0328;367(6473):45–51. doi: 10.1126/science.aax6234
  • McFarland JM, Paolella BR, Warren A, et al. Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action. Nat Commun. 2020;11(1):4296. doi: 10.1038/s41467-020-17440-w
  • Cimini BA, Chandrasekaran SN, Kost-Alimova M, et al. Optimizing the cell painting assay for image-based profiling. Nat Protoc. 2023;18(7):1981–2013. doi: 10.1038/s41596-023-00840-9
  • Bray M-A, Gustafsdottir SM, Rohban MH, et al. A dataset of images and morphological profiles of 30 000 small-molecule treatments using the cell painting assay. Gigascience. 2017;6(12). doi: 10.1093/gigascience/giw014
  • Broad institute. JUM-Cell painting consortium. 2021. [cited 2024 feb 16]. Available from: https://jump-cellpainting.broadinstitute.org/
  • Vidal M, Cusick ME, Barabási A-L. Interactome networks and human disease. Cell. 2011;144(6):986–998. doi: 10.1016/j.cell.2011.02.016
  • Vidal M. How much of the human protein interactome remains to be mapped? Sci Signal. 2016;9:427. doi: 10.1126/scisignal.aaf6030
  • Luck K, Kim D-K, Lambourne L, et al. A reference map of the human binary protein interactome. Nature. 2020;580(7803):402–408. doi: 10.1038/s41586-020-2188-x
  • Trisciuzzi D, Villoutreix BO, Siragusa L, et al. Targeting protein-protein interactions with low molecular weight and short peptide modulators: insights on disease pathways and starting points for drug discovery. Expert Opin Drug Discov. 2023;18(7):737–752. doi: 10.1080/17460441.2023.2218641
  • Bryant P, Pozzati G, Elofsson A. Improved prediction of protein-protein interactions using AlphaFold2. Nat Commun. 2022;13(1):1265. doi: 10.1038/s41467-022-28865-w
  • DrugBank Online. DrugBank Online | Database for Drug and Drug Target Info. DrugBank Online. [cited 2024 Apr 24]. Available from: https://go.drugbank.com/
  • Zhou Y, Zhang Y, Lian X, et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 2022;50(D1):D1398–D1407. doi: 10.1093/nar/gkab953
  • TTD: therapeutic target database. [cited 2024-Apr-24]. Available from: https://idrblab.net/ttd/
  • Reactome pathway database. [cited 2024-Apr-24]. Available from: https://reactome.org/
  • Corsello SM, Bittker JA, Liu Z, et al. The drug repurposing hub: a next-generation drug library and information resource. Nat Med. 2017;23(4):405–408. doi: 10.1038/nm.4306
  • Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5(12):993–996. doi: 10.1038/nrd2199
  • Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017;16(1):19–34. doi: 10.1038/nrd.2016.230
  • Gillespie M, Jassal B, Stephan R, et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50(D1):D687–D692. doi: 10.1093/nar/gkab1028
  • Kanehisa M, Goto S, Furumichi M, et al. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010;38(suppl_1):D355–D360. doi: 10.1093/nar/gkp896
  • Szklarczyk D, Franceschini A, Wyder S, et al. STRING V10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447–D452. doi: 10.1093/nar/gku1003
  • STRING: functional protein association networks. [cited 2024-april-24]. Available from: https://string-db.org/
  • Szklarczyk D, Santos A, von Mering C, et al. STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016;44(D1):D380–D384. doi: 10.1093/nar/gkv1277
  • Oughtred R, Rust J, Chang C, et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2853;30(1):187–200. doi: 10.1002/pro.3978
  • BioGRID | database of protein, chemical, and genetic interactions. [cited 2024-april-24]. Available from: https://thebiogrid.org/
  • Oprea TI, Nielsen SK, Ursu O, et al. Associating drugs, targets and clinical outcomes into an integrated network affords a new platform for computer-aided drug repurposing. Mol Inform. 2011;30(2–3):100–111. doi: 10.1002/minf.201100023
  • Kuhn M, Letunic I, Jensen LJ, et al. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016;44(D1):D1075–D1079. doi: 10.1093/nar/gkv1075
  • SIDER side effect resource. [cited 2024-Apr-24]. Available from: http://sideeffects.embl.de/
  • Fang H, Su Z, Wang Y, et al. Exploring the FDA adverse event reporting system to generate hypotheses for monitoring of disease characteristics. Clin Pharmacol Ther. 2014;95(5):496–498. doi: 10.1038/clpt.2014.17
  • Sutherland JJ, Yonchev D, Fekete A, et al. A preclinical secondary pharmacology resource illuminates target-adverse drug reaction associations of marketed drugs. Nat Commun. 2023;14(1):4323. doi: 10.1038/s41467-023-40064-9
  • Zhou M, Zheng C, Xu R. Combining phenome-driven drug-target interaction prediction with patients’ electronic health records-based clinical corroboration toward drug discovery. Bioinformatics. 2020;36(Supplement_1):i436–i444. doi: 10.1093/bioinformatics/btaa451
  • WHO. WHO international clinical trials registry platform. [cited 2024-Jan-07]. Available from: http://who.int/ictrp/en/
  • Berman HM. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–242. doi: 10.1093/nar/28.1.235
  • Rcsb Pdb. [cited 2024-Apr-24]. Available from: https://www.rcsb.org/
  • Desaphy J, Bret G, Rognan D, et al. Sc-PDB: a 3D-Database of ligandable binding sites – 10 years on. Nucleic Acids Res. 2015;43(D1):D399–D404. doi: 10.1093/nar/gku928
  • scPDB. [cited 2024-april-24]. Available from: http://bioinfo-pharma.u-strasbg.fr/scPDB
  • Drug repurposing hub. [cited 2024-Apr-24]. Available from: https://clue.io/repurposing
  • ZINC database – docking.Org. [cited 2024-Apr-24]. Available from: https://zinc.docking.org/
  • KEGG: kyoto encyclopedia of genes and genomes. [cited 2024-Apr-24]. Available from: https://www.genome.jp/kegg/
  • Chemical probes portal. [cited 2024-Apr-24]. Available from: https://www.chemicalprobes.org/
  • Liu T, Lin Y, Wen X, et al. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 2007;35(Database):D198–D201. doi: 10.1093/nar/gkl999
  • Jones MM, Castle-Clarke S, Brooker D, et al. The Structural genomics consortium: a knowledge platform for drug discovery: a summary. Rand Health Q. 2014;4(3):19.
  • Structural Genomics Consortium: SGC. [cited 2024-Apr-24]. Available from: https://www.thesgc.org/
  • Stathias V, Turner J, Koleti A, et al. LINCS data portal 2.0: next generation access point for perturbation-response signatures. Nucleic Acids Res. 2020;48(D1):D431–D439. doi: 10.1093/nar/gkz1023
  • NIH LINCS Program. [cited 2024-Apr-24]. Available from: https://lincsproject.org/
  • [clue.io]. [cited 2024-Apr-24]. Available from: https://clue.io/
  • Davis AP, Wiegers TC, Johnson RJ, et al. Comparative toxicogenomics database (CTD): update 2023. Nucleic Acids Res. 2023;51(D1):D1257–D1262. doi: 10.1093/nar/gkac833
  • Tox21. [cited 2024-Apr-24]. Available from: https://ntp.niehs.nih.gov/whatwestudy/tox21
  • Su G, Burant CF, Beecher CW, et al. Integrated Metabolome and Transcriptome Analysis of the NCI60 Dataset. BMC Bioinformatics. 2011;12(S1):S36. doi: 10.1186/1471-2105-12-S1-S36
  • NCI-60 Human Tumor Cell Lines Screen. [cited 2024-Apr]. Available from: https://dtp.cancer.gov/discovery_development/nci-60/
  • Ljosa V, Sokolnicki KL, Carpenter AE. Annotated High-Throughput Microscopy Image Sets for Validation. Nat Methods. 2012;9(7):637–637. doi: 10.1038/nmeth.2083
  • A dataset of images and morphological profiles of 30 000 small-molecule treatments using the Cell Painting assay. [cited 2024-Apr-24]. Available from: https://bbbc.broadinstitute.org/BBBC047
  • Chandrasekaran SN, Ackerman J, Alix E, et al. JUMP Cell Painting Dataset: Morphological Impact of 136,000 Chemical and Genetic Perturbations. bioRxiv. 2023. doi: 10.1101/2023.03.23.534023
  • JUMP-Cell Painting Consortium. [cited 2024-Apr-24]. Available from: https://jump-cellpainting.broadinstitute.org/cell-painting
  • STITCH database – EMBL Heidelberg. [cited 2024-Apr24]. Available from: http://stitch.embl.de/
  • ICTRP Search Portal. [cited 2024-Apr-24]. Available from: https://trialsearch.who.int/Default.aspx
  • Jenkins JL, Bender A, Davies JW. In silico target fishing: predicting biological targets from chemical structure. Drug Discov Today Technol. 2006;3(4):413–421. doi: 10.1016/j.ddtec.2006.12.008
  • Sydow D, Burggraaff L, Szengel A, et al. Advances and challenges in computational target prediction. J Chem Inf Model. 2019;59(5):1728–1742. doi: 10.1021/acs.jcim.8b00832
  • Fujita T. In memoriam Professor Corwin Hansch: birth pangs of QSAR before 1961. J Comput Aided Mol Des. 2011;25(6):509–517. doi: 10.1007/s10822-011-9450-0
  • Johnson MA, Maggiora GM. Concepts and Applications of Molecular Similarity. New York (NY); 1991. doi: 10.1002/jcc.540130415
  • Willett P. Evaluation of Molecular Similarity and Molecular Diversity Methods Using Biological Activity Data. Methods Mol Biol. 2004:51–63. doi: 10.1385/1-59259-802-1:051
  • Bender A, Mussa HY, Glen RC, et al. Similarity Searching of Chemical Databases Using Atom Environment Descriptors (MOLPRINT 2D): Evaluation of Performance. J Chem Inf Comput Sci. 2004;44(5):1708–1718. doi: 10.1021/ci0498719
  • Hopkins AL. Predicting promiscuity. Nature. 2009;462(7270):167–168. doi: 10.1038/462167a
  • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2
  • Keiser MJ, Roth BL, Armbruster BN, et al. Relating protein pharmacology by ligand chemistry. Nat Biotechnol. 2007;25(2):197–206. doi: 10.1038/nbt1284
  • Berger SI, Iyengar R. Role of Systems Pharmacology in Understanding Drug Adverse Events. WIREs Syst Biol and Med. 2011;3(2):129–135. doi: 10.1002/wsbm.114
  • Cameron RT, Coleman RG, Day JP, et al. Chemical informatics uncovers a new role for moexipril as a novel inhibitor of CAMP phosphodiesterase-4 (PDE4). Biochem Pharmacol. 2013;85(9):1297–1305. doi: 10.1016/j.bcp.2013.02.026
  • Grisoni F, Merk D, Friedrich L, et al. Design of natural‐product‐inspired multitarget ligands by machine learning. ChemMedChem. 2019;14(12):1129–1134. doi: 10.1002/cmdc.201900097
  • Reker D, Rodrigues T, Schneider P, et al. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci. 2014;111(11):4067–4072. doi: 10.1073/pnas.1320001111
  • Schneider P, Schneider G. A computational method for unveiling the target promiscuity of pharmacologically active compounds. Angew Chem. 2017;129(38):11678–11682. doi: 10.1002/ange.201706376
  • Hu H, Serra C, Zhang W, et al. Identification of differential biological activity and synergy between the PARP inhibitor rucaparib and its major metabolite. Cell Chem Biol. 2024;31(5):973–988.e4. doi: 10.1016/j.chembiol.2024.01.007
  • Rifaioglu AS, Nalbat E, Atalay V, et al. DEEPScreen: high performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem Sci. 2020;11(9):2531–2557. doi: 10.1039/C9SC03414E
  • Dakshanamurthy S, Issa NT, Assefnia S, et al. Predicting new indications for approved drugs using a proteochemometric method. J Med Chem. 2012;55(15):6832–6848. doi: 10.1021/jm300576q
  • De Franchi E, Schalon C, Messa M, et al. Binding of protein kinase inhibitors to synapsin I inferred from pair-wise binding site similarity measurements. PLoS One. 2010;5(8):e12214. doi: 10.1371/journal.pone.0012214
  • Reisen F, Sauty de Chalon A, Pfeifer M, et al. Linking phenotypes and modes of action through high-content screen fingerprints. Assay Drug Dev Technol. 2015;13(7):415–427. doi: 10.1089/adt.2015.656
  • Cheng F, Liu C, Jiang J, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol. 2012;8(5):e1002503. doi: 10.1371/journal.pcbi.1002503
  • Campillos M, Kuhn M, Gavin A-C, et al. Drug target identification using side-effect similarity. Science. (1979). 2008;321(5886):263–266. doi: 10.1126/science.1158140
  • Hert J, Keiser MJ, Irwin JJ, et al. Quantifying the relationships among drug classes. J Chem Inf Model. 2008;48(4):755–765. doi: 10.1021/ci8000259
  • Lounkine E, Keiser MJ, Whitebread S, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature. 2012;486(7403):361–367. doi: 10.1038/nature11159
  • Antolín AA, Jalencas X, Yélamos J, et al. Identification of pim kinases as novel targets for PJ34 with confounding effects in PARP biology. ACS Chem Biol. 2012;7(12):1962–1967. doi: 10.1021/cb300317y
  • Antolín AA, Mestres J. Distant polypharmacology among MLP chemical probes. ACS Chem Biol. 2015;10(2):395–400. doi: 10.1021/cb500393m
  • Nickel J, Gohlke B-O, Erehman J, et al. SuperPred: update on drug classification and target prediction. Nucleic Acids Res. 2014;42(W1):W26–W31. doi: 10.1093/nar/gku477
  • Gfeller D, Grosdidier A, Wirth M, et al. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014;42(W1):W32–W38. doi: 10.1093/nar/gku293
  • Gong J, Cai C, Liu X, et al. ChemMapper: A versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method. Bioinformatics. 2013;29(14):1827–1829. doi: 10.1093/bioinformatics/btt270
  • Rarey M, Dixon JS. Feature trees: a new molecular similarity measure based on tree matching. J Comput Aided Mol Des. 1998;12(5):471–490. doi: 10.1023/A:1008068904628
  • Ciriaco F, Gambacorta N, Trisciuzzi D, et al. PLATO: a predictive drug discovery web platform for efficient target fishing and bioactivity profiling of small molecules. Int J Mol Sci. 2022;23(9):5245. doi: 10.3390/ijms23095245
  • Bajorath J. Representation and identification of activity cliffs. Expert Opin Drug Discov. 2017;12(9):879–883. doi: 10.1080/17460441.2017.1353494
  • Martin YC, Kofron JL, Traphagen LM. Do structurally similar molecules have similar biological activity? J Med Chem. 2002;45(19):4350–4358. doi: 10.1021/jm020155c
  • Hansch C, Muir RM, Fujita T, et al. Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients. Nature. 1962;194(4824):178–180. doi: 10.1038/194178b0
  • Hansch C, Muir RM, Fujita T, et al. The correlation of biological activity of plant growth regulators and chloromycetin derivatives with hammett constants and partition coefficients. J Am Chem Soc. 1963;719(18):2817–2824. doi: 10.1021/ja00901a033
  • Free SM, Wilson JW. A mathematical contribution to structure-activity studies. J Med Chem. 1964;7(4):395–399. doi: 10.1021/jm00334a001
  • Kopecký J, Boček K, Vlachová D. Chemical structure and biological activity on M-and p-disubstituted derivatives of benzene. Nature. 1965;207(5000):981. doi: 10.1038/207981a0
  • Kopecký J, Boček K. A correlation between constants used in structure-activity relationships. Specialia. 1967;1967(2):125. doi: 10.1007/BF02135956
  • Fujita T, Iwasa J, Hansch C. A new substituent constant, Ir, derived from partition coefficients. J Am Chem Soc. 1964;86(23):5175–5180. doi: 10.1021/ja01077a028
  • Winter R, Montanari F, Noé F, et al. Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations. Chem Sci. 2019;10(6):1692–1701. doi: 10.1039/C8SC04175J
  • Wu Z, Ramsundar B, Feinberg EN, et al. MoleculeNet: a benchmark for molecular machine learning. Chem Sci. 2018;9(2):513–530. doi: 10.1039/C7SC02664A
  • Svetnik V, Liaw A, Tong C, et al. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 6418;43(6):1947–1958. doi: 10.1021/ci034160g
  • Schürer SC, Muskal SM. Kinome-wide activity modeling from diverse public high-quality data sets. J Chem Inf Model. 2013;53(1):27–38. doi: 10.1021/ci300403k
  • Lapins M, Wikberg JE. Kinome-wide interaction modelling using alignment-based and alignment-Independent approaches for kinase description and linear and non-linear data analysis techniques. BMC Bioinformatics. 2010;11(1):339. doi: 10.1186/1471-2105-11-339
  • Nigsch F, Bender A, Jenkins JL, et al. Ligand-target prediction using winnow and Naive Bayesian Algorithms and the implications of overall performance statistics. J Chem Inf Model. 2008;48(12):2313–2325. doi: 10.1021/ci800079x
  • Nidhi Glick N, Glick M, Davies J, et al. Prediction of biological targets for compounds using multiple-category bayesian models trained on chemogenomics databases. J Chem Inf Model. 2006;46(3):1124–1133. doi: 10.1021/ci060003g
  • Wale N, Karypis G. Target fishing for chemical compounds using target-ligand activity data and ranking based methods. J Chem Inf Model. 2009;49(10):2190–2201. doi: 10.1021/ci9000376
  • Burbidge R, Trotter M, Buxton B, et al. Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Comput Chem. 2001;26(1):5–14. doi: 10.1016/S0097-8485(01)00094-8
  • Janssen APA, Grimm SH, Wijdeven RHM, et al. Drug discovery maps, a machine learning model that visualizes and predicts kinome–inhibitor interaction landscapes. J Chem Inf Model. 2019;59(3):1221–1229. doi: 10.1021/acs.jcim.8b00640
  • Stork C, Chen Y, Šícho M, et al. Hit Dexter 2.0: machine-learning models for the prediction of frequent hitters. J Chem Inf Model. 2019;59(3):1030–1043. doi: 10.1021/acs.jcim.8b00677
  • Stork C, Embruch G, Šícho M, et al. NERDD: a web portal providing access to in Silico Tools for drug discovery. Bioinformatics. 2020;36(4):1291–1292. doi: 10.1093/bioinformatics/btz695
  • Yao Z-J, Dong J, Che Y-J, et al. Target net: A web service for predicting potential drug–target interaction profiling via multi-target SAR models. J Comput Aided Mol Des. 2016;30(5):413–424. doi: 10.1007/s10822-016-9915-2
  • Lee K, Lee M, Kim D. Utilizing random forest QSAR models with optimized parameters for target identification and its application to target-fishing server. BMC Bioinformatics. 2017;18(S16):567. doi: 10.1186/s12859-017-1960-x
  • Yamanishi Y, Araki M, Gutteridge A, et al. Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics. 2008;24(13):i232–i240. doi: 10.1093/bioinformatics/btn162
  • Mervin L. PIDGIN Version 2: Prediction IncluDinG INactivity Version 2. [cited 2023-may-04]. Available from: https://github.com/lhm30/PIDGINv2
  • van Tilborg D, Brinkmann H, Criscuolo E, et al. Deep learning for low-data drug discovery: hurdles and opportunities. Curr Opin Struct Biol. 2024;86:102818. doi: 10.1016/j.sbi.2024.102818
  • Dou B, Zhu Z, Merkurjev E, et al. Machine learning methods for small data challenges in molecular science. Chem Rev. 2023;123(13):8736–8780. doi: 10.1021/acs.chemrev.3c00189
  • Du M, Xie X, Luo J, et al. Meta-learning-based inductive logistic matrix completion for prediction of kinase inhibitors. J Cheminform. 2024;16(1):44. doi: 10.1186/s13321-024-00838-9
  • Manallack DT, Pitt WR, Gancia E, et al. Selecting screening candidates for kinase and G protein-coupled receptor targets using neural networks. J Chem Inf Comput Sci. 2002;42(5):1256–1262. doi: 10.1021/ci020267c
  • Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model. 2013;53(7):1563–1575. doi: 10.1021/ci400187y
  • Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints. 2015. doi: 10.48550/arXiv.1509.09292
  • Awale M, Reymond J-L. The polypharmacology browser PPB2: target prediction combining nearest neighbors with machine learning. J Chem Inf Model. 2019Jan 28;59(1):10–17. doi: 10.1021/acs.jcim.8b00524
  • Li Z, Li X, Liu X, et al. KinomeX: a web application for predicting kinome-wide polypharmacology effect of small molecules. Bioinformatics. 2019;35(24):5354–5356. doi: 10.1093/bioinformatics/btz519
  • Stevens E. Medicinal chemistry: the modern drug discovery process. Pearson Higher Ed; 2013.
  • Pinzi L, Caporuscio F, Rastelli G. Selection of protein conformations for structure-based polypharmacology studies. Drug Discov Today. 2018;23(11):1889–1896. doi: 10.1016/j.drudis.2018.08.007
  • Hawkins PCD, Skillman AG, Nicholls A. Comparison of Shape-Matching and Docking as Virtual Screening Tools. J Med Chem. 2007;50(1):74–82. doi: 10.1021/jm0603365
  • Chen YZ, Zhi DG. Ligand-Protein Inverse Docking and Its Potential Use in the Computer Search of Protein Targets of a Small Molecule. Proteins: Struct, Function, and Genet. 2001;43(2):217–226. doi: 10.1002/1097-0134(20010501)43:2<217:AID-PROT1032>3.0.CO;2-G
  • Ellingson SR, Smith JC, Baudry J. VinaMPI: facilitating multiple receptor high-throughput virtual docking on high-performance computers. J Comput Chem. 2013;34(25):2212–2221. doi: 10.1002/jcc.23367
  • Wang J-C, Chu P-Y, Chen C-M, et al. IdTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucleic Acids Res. 2012;40(W1):W393–W399. doi: 10.1093/nar/gks496
  • Santiago DN, Pevzner Y, Durand AA, et al. Virtual target screening: validation using kinase inhibitors. J Chem Inf Model. 2012;52(8):2192–2203. doi: 10.1021/ci300073m
  • Schomburg KT, Bietz S, Briem H, et al. Facing the challenges of structure-based target prediction by inverse virtual screening. J Chem Inf Model. 2014;54(6):1676–1686. doi: 10.1021/ci500130e
  • Schalon C, Surgand J-S, Kellenberger E, et al. A simple and fuzzy method to align and compare druggable ligand-binding sites. Proteins Struct Funct Bioinform. 2008;71(4):1755–1778. doi: 10.1002/prot.21858
  • Brakoulias A, Jackson RM. Towards a structural classification of phosphate binding sites in protein-nucleotide complexes: an automated all-against-all structural comparison using geometric matching. Proteins Struct Funct Bioinform. 2004;56(2):250–260. doi: 10.1002/prot.20123
  • Weill N, Rognan D. Alignment-free ultra-high-throughput comparison of druggable protein−ligand binding sites. J Chem Inf Model. 2010;50(1):123–135. doi: 10.1021/ci900349y
  • Goodford PJ. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem. 1985;28(7):849–857. doi: 10.1021/jm00145a002
  • Siragusa L, Cross S, Baroni M, et al. BioGPS: navigating biological space to predict polypharmacology, off-targeting, and selectivity. Proteins: Struct, Function, and Bioinf. 2015;83(3):517–532. doi: 10.1002/prot.24753
  • Trisciuzzi D, Siragusa L, Baroni M, et al. An integrated machine learning model to spot peptide binding pockets in 3D protein screening. J Chem Inf Model. 2022;62(24):6812–6824. doi: 10.1021/acs.jcim.2c00583
  • Wong F, Krishnan A, Zheng EJ, et al. Benchmarking AlphaFold‐enabled molecular docking predictions for antibiotic discovery. Mol Syst Biol. 2022;18(9). doi: 10.15252/msb.202211081
  • Miller EB, Hwang H, Shelley M, et al. Enabling structure-based drug discovery utilizing predicted models. Cell. 2024;187(3):521–525. doi: 10.1016/j.cell.2023.12.034
  • Flachsenberg F, Ehrt C, Gutermuth T, et al. Redocking the PDB. J Chem Inf Model. 2024;64(1):219–237. doi: 10.1021/acs.jcim.3c01573
  • Hu Y, Bajorath J. High-resolution view of compound promiscuity. F1000Res. 2013;2:144. doi: 10.12688/f1000research.2-144.v1
  • Wassermann AM, Lounkine E, Davies JW, et al. The opportunities of mining historical and collective data in drug discovery. Drug Discov Today. 2015;20(4):422–434. doi: 10.1016/j.drudis.2014.11.004
  • Bertoni M, Duran-Frigola M, Badia-I-Mompel P, et al. Bioactivity descriptors for uncharacterized chemical compounds. Nat Commun. 2021;12:1. doi: 10.1038/s41467-021-24150-4
  • Kauvar LM, Higgins DL, Villar HO, et al. Predicting ligand binding to proteins by affinity fingerprinting. Chem Biol. 1995;2(2):107–118. doi: 10.1016/1074-5521(95)90283-X
  • Iorio F, Bosotti R, Scacheri E, et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci. 2010;107(33):14621–14626. doi: 10.1073/pnas.1000138107
  • Douglass EF, Allaway RJ, Szalai B, et al. A community challenge for a pancancer drug mechanism of action inference from perturbational profile data. Cell Rep Med. Cell Rep Med. 2022;3(1):100492. doi: 10.1016/j.xcrm.2021.100492
  • Chandrasekaran SN, Ceulemans H, Boyd JD, et al. Image-based profiling for drug discovery: due for a machine-learning upgrade? Nat Rev Drug Discov Nat Res Febr 1. 2021;20(2):145–159. doi: 10.1038/s41573-020-00117-w
  • Akbarzadeh M, Deipenwisch I, Schoelermann B, et al. Morphological profiling by means of the cell painting assay enables identification of tubulin-targeting compounds. Cell Chem Biol. 2022;29(6):1053–1064.e3. doi: 10.1016/j.chembiol.2021.12.009
  • Trapotsi M-A, Mervin LH, Afzal AM, et al. Comparison of chemical structure and cell morphology information for multitask bioactivity predictions. J Chem Inf Model. 2021;61(3):1444–1456. doi: 10.1021/acs.jcim.0c00864
  • Moshkov N, Becker T, Yang K, et al. Predicting compound activity from phenotypic profiles and chemical structures. Nat Commun. 2023;14(1):1967. doi: 10.1038/s41467-023-37570-1
  • Duran-Frigola M, Pauls E, Guitart-Pla O, et al. Extending the small-molecule similarity principle to all levels of biology with the chemical checker. Nat Biotechnol. 2020;38(9):1087–1096. doi: 10.1038/s41587-020-0502-7
  • Szalai B, Subramanian V, Holland CH, et al. Signatures of cell death and proliferation in perturbation transcriptomics data – from confounding factor to effective prediction. Nucleic Acids Res. 2019;47(19):10010–10026. doi: 10.1093/nar/gkz805
  • Yıldırım MA, Goh K-I, Cusick ME, et al. Drug – target network. Nat Biotechnol. 2007;25(10):1119–1126. doi: 10.1038/nbt1338
  • Wu Z, Li W, Liu G, et al. Network-based methods for prediction of drug-target interactions. Front Pharmacol. 2018;9. doi: 10.3389/fphar.2018.01134
  • Chen X, Liu M-X, Yan G-Y. Drug–target interaction prediction by random walk on the heterogeneous network. Mol Biosyst. 2012;8(7):1970. doi: 10.1039/c2mb00002d
  • Li Z-C, Huang M-H, Zhong W-Q, et al. Identification of drug–target interaction from interactome network with ‘guilt-by-association’ principle and topology features. Bioinformatics. 2016;32(7):1057–1064. doi: 10.1093/bioinformatics/btv695
  • Prinz J, Vogt I, Adornetto G, et al. A novel drug-mouse phenotypic similarity method detects molecular determinants of drug effects. PLoS Comput Biol. 2016;12(9):e1005111. doi: 10.1371/journal.pcbi.1005111
  • Zhou M, Chen Y, Xu R, et al. A drug-side effect context-sensitive network approach for drug target prediction. Bioinformatics. 2019;35(12):2100–2107. doi: 10.1093/bioinformatics/bty906
  • van Westen GJP, Wegner JK, IJzerman AP, et al. Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets. Medchemcomm. 2011;2(1):16–30. doi: 10.1039/C0MD00165A
  • Cortés-Ciriano I, Ain QU, Subramanian V, et al. Polypharmacology modelling using proteochemometrics (PCM): recent methodological developments, applications to target families, and future prospects. Medchemcomm. 2015;6(1):24–50. doi: 10.1039/C4MD00216D
  • Bongers BJ, IJzerman AP, Van Westen GJP. Proteochemometrics – recent developments in bioactivity and selectivity modeling. Drug Discov Today Technol. 2019;32–33:89–98. doi: 10.1016/j.ddtec.2020.08.003.
  • Atas Guvenilir H, Doğan T. How to approach machine learning-based prediction of drug/Compound–target interactions. J Cheminform. 2023;15(1):16. doi: 10.1186/s13321-023-00689-w
  • Lopez-Del Rio A, Picart-Armada S, Perera-Lluna A. Balancing data on deep learning-based proteochemometric activity classification. J Chem Inf Model. 2021;61(4):1657–1669. doi: 10.1021/acs.jcim.1c00086
  • Liu X, Ouyang S, Yu B, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010;38(suppl_2):W609–W614. doi: 10.1093/nar/gkq300
  • Yu JL, Dai QQ, Li GB. Deep learning in target prediction and Drug Repositioning: recent advances and challenges. Drug Discov Today. 2022;27(7):1796–1814. doi: 10.1016/j.drudis.2021.10.010
  • Seal S, Yang H, Trapotsi M-A, et al. Merging bioactivity predictions from cell morphology and chemical fingerprint models using similarity to training Data. J Cheminform. 2023;15(1):56. doi: 10.1186/s13321-023-00723-x
  • Prinz J, Koohi-Moghadam M, Sun H, et al. Novel neural network approach to predict drug-target interactions based on drug side effects and genome-wide association studies. Hum Hered. 2018;83(2):79–91. doi: 10.1159/000492574
  • Zeng X, Zhu S, Hou Y, et al. Network-based prediction of drug–target interactions using an arbitrary-order proximity embedded deep forest. Bioinformatics. 2020;36(9):2805–2812. doi: 10.1093/bioinformatics/btaa010
  • Peng J, Li J, Shang X. A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network. BMC Bioinformatics. 2020;21(S13):394. doi: 10.1186/s12859-020-03677-1
  • Noh H, Shoemaker JE, Gunawan R. Network perturbation analysis of gene transcriptional profiles reveals protein targets and mechanism of action of drugs and influenza a viral infection. Nucleic Acids Res. 2018;46(6):e34–e34. doi: 10.1093/nar/gkx1314
  • Isik Z, Baldow C, Cannistraci CV, et al. Drug target prioritization by perturbed gene expression and network information. Sci Rep. 2015;5(1):17417. doi: 10.1038/srep17417
  • Lo Y-C, Senese S, Damoiseaux R, et al. 3D chemical similarity networks for structure-based target prediction and scaffold hopping. ACS Chem Biol. 2016;11(8):2244–2253. doi: 10.1021/acschembio.6b00253
  • Singh N, Villoutreix BO. A hybrid docking and machine learning approach to enhance the performance of virtual screening carried out on protein–protein interfaces. Int J Mol Sci. 2022;23(22):14364. doi: 10.3390/ijms232214364
  • Bender A, Schneider N, Segler M, et al. Evaluation guidelines for machine learning tools in the chemical sciences. Nat Rev Chem. 8367;6(6):428–442. doi: 10.1038/s41570-022-00391-9
  • Stroobants A, Mervin LH, Engkvist O, et al. An industrial evaluation of proteochemometric modelling: predicting drug-target affinities for kinases. Artif Intel in the Life Sci. 2023;4:100079. doi: 10.1016/j.ailsci.2023.100079
  • Antolin AA, Tym JE, Komianou A, et al. Objective, quantitative, data-driven assessment of chemical probes. Cell Chem Biol. 2018;25(2):194–205.e5. doi: 10.1016/j.chembiol.2017.11.004
  • Ballester PJ. The AI revolution in chemistry is not that far away. Nature. 2023;624(7991):252–252. doi: 10.1038/d41586-023-03948-w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.