170
Views
0
CrossRef citations to date
0
Altmetric
Review

Inhibitors and PROTACs of CDK2: challenges and opportunities

, , , , , , , , , & show all
Received 28 Apr 2024, Accepted 02 Jul 2024, Published online: 12 Jul 2024

References

  • De Vivo M, Bottegoni G, Berteotti A, et al. Cyclin-dependent kinases: bridging their structure and function through computations. Future Med Chem. 2011;3(12):1551–1559. doi: 10.4155/fmc.11.113
  • Gerosa R, De Sanctis R, Jacobs F, et al. Cyclin-dependent kinase 2 (CDK2) inhibitors and others novel CDK inhibitors (CDKi) in breast cancer: clinical trials, current impact, and future directions. Crit Rev Oncol Hematol. 2024;196:104324. doi: 10.1016/j.critrevonc.2024.104324
  • Whittaker SR, Mallinger A, Workman P, et al. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol Ther. 2017;173:83–105. doi: 10.1016/j.pharmthera.2017.02.008
  • Shi Z, Tian L, Qiang T, et al. From structure modification to drug launch: a systematic review of the ongoing development of cyclin-dependent kinase inhibitors for multiple cancer therapy. J Med Chem. 2022;65(9):6390–6418. doi: 10.1021/acs.jmedchem.1c02064
  • Ding L, Cao J, Lin W, et al. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int J Mol Sci. 2020;21(6):1960. doi: 10.3390/ijms21061960
  • Asghar U, Witkiewicz AK, Turner NC, et al. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015;14(2):130–146. doi: 10.1038/nrd4504
  • Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol. 2006;24(11):1770–1783. doi: 10.1200/JCO.2005.03.7689
  • Zhang Y, Li Z, Hao Q, et al. The Cdk2-c-Myc-miR-571 axis regulates DNA replication and genomic stability by targeting geminin. Cancer Res. 2019;79(19):4896–4910. doi: 10.1158/0008-5472.CAN-19-0020
  • Huang H, Regan KM, Lou Z, et al. CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science. 2006;314(5797):294–297. doi: 10.1126/science.1130512
  • Liang Y, Fan Y, Liu Y, et al. HNRNPU promotes the progression of hepatocellular carcinoma by enhancing CDK2 transcription. Exp Cell Res. 2021;409(1):112898. doi: 10.1016/j.yexcr.2021.112898
  • Chae HD, Yun J, Bang YJ, et al. Cdk2-dependent phosphorylation of the NF-Y transcription factor is essential for the expression of the cell cycle-regulatory genes and cell cycle G1/S and G2/M transitions. Oncogene. 2004;23(23):4084–4088. doi: 10.1038/sj.onc.1207482
  • Decker JT, Kandagatla P, Wan L, et al. Cyclin E overexpression confers resistance to trastuzumab through noncanonical phosphorylation of SMAD3 in HER2+ breast cancer. Cancer Biol Ther. 2020;21(11):994–1004. doi: 10.1080/15384047.2020.1818518
  • Liu F. Smad3 phosphorylation by cyclin-dependent kinases. Cytokine Growth Factor Rev. 2006;17(1–2):9–17. doi: 10.1016/j.cytogfr.2005.09.010
  • Tadesse S, Anshabo AT, Portman N, et al. Targeting CDK2 in cancer: challenges and opportunities for therapy. Drug Discov Today. 2020;25(2):406–413. doi: 10.1016/j.drudis.2019.12.001
  • Tadesse S, Caldon EC, Tilley W, et al. Cyclin-dependent kinase 2 inhibitors in cancer therapy: an update. J Med Chem. 2019;62(9):4233–4251. doi: 10.1021/acs.jmedchem.8b01469
  • Xie Z, Hou S, Yang X, et al. Lessons learned from past cyclin-dependent kinase drug discovery efforts. J Med Chem. 2022;65(9):6356–6389. doi: 10.1021/acs.jmedchem.1c02190
  • Patel DA, Patel SS, Patel HD. Advances in synthesis and biological evaluation of CDK2 inhibitors for cancer therapy. Bioorg Chem. 2024;143:107045. doi: 10.1016/j.bioorg.2023.107045
  • Echalier A, Cot E, Camasses A, et al. An integrated chemical biology approach provides insight into Cdk2 functional redundancy and inhibitor sensitivity. Chem Biol. 2012;19(8):1028–1040. doi: 10.1016/j.chembiol.2012.06.015
  • Bártová I, Otyepka M, Kríz Z, et al. Activation and inhibition of cyclin-dependent kinase-2 by phosphorylation; a molecular dynamics study reveals the functional importance of the glycine-rich loop. Protein Sci. 2004;13(6):1449–1457. doi: 10.1110/ps.03578504
  • Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014;15(6):122. doi: 10.1186/gb4184
  • Vijayan RS, He P, Modi V, et al. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. J Med Chem. 2015;58(1):466–479. doi: 10.1021/jm501603h
  • Brown NR, Noble ME, Lawrie AM, et al. Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J Biol Chem. 1999;274(13):8746–8756. doi: 10.1074/jbc.274.13.8746
  • Huse M, Kuriyan J. The conformational plasticity of protein kinases. Cell. 2002;109(3):275–282. doi: 10.1016/S0092-8674(02)00741-9
  • Holmes JK, Solomon MJ. The role of Thr160 phosphorylation of Cdk2 in substrate recognition. Eur J Biochem. 2001;268(17):4647–4652. doi: 10.1046/j.1432-1327.2001.02392.x
  • Burley SK, Bhikadiya C, Bi C, et al. RCSB protein data bank (Rcsb.Org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023;51(D1):D488–D508. doi: 10.1093/nar/gkac1077
  • Modi V, Dunbrack RL. Kincore: a web resource for structural classification of protein kinases and their inhibitors. Nucleic Acids Res. 2022;50(D1):D654–D664. doi: 10.1093/nar/gkab920
  • Echalier A, Endicott JA, Noble ME. Recent developments in cyclin-dependent kinase biochemical and structural studies. Biochim Biophys Acta. 2010;1804(3):511–519. doi: 10.1016/j.bbapap.2009.10.002
  • Łukasik P, Baranowska-Bosiacka I, Kulczycka K, et al. Inhibitors of cyclin-dependent kinases: types and their mechanism of action. Int J Mol Sci. 2021;22(6):2806. doi: 10.3390/ijms22062806
  • Icard P, Fournel L, Wu Z, et al. Interconnection between metabolism and cell cycle in cancer. Trends Biochem Sci. 2019;44(6):490–501. doi: 10.1016/j.tibs.2018.12.007
  • Sánchez-Martínez C, Gelbert LM, Lallena MJ, et al. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg Med Chem Lett. 2015;25(17):3420–3435. doi: 10.1016/j.bmcl.2015.05.100
  • Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23(1):74–88. doi: 10.1038/s41580-021-00404-3
  • Morrison L, Loibl S, Turner NC. The CDK4/6 inhibitor revolution – a game-changing era for breast cancer treatment. Nat Rev Clin Oncol. 2024;21(2):89–105. doi: 10.1038/s41571-023-00840-4
  • Peyressatre M, Prével C, Pellerano M, et al. Targeting cyclin-dependent kinases in human cancers: from small molecules to peptide inhibitors. Cancers (Basel). 2015;7(1):179–237. doi: 10.3390/cancers7010179
  • Boward B, Wu T, Dalton S. Concise review: control of cell fate through cell cycle and pluripotency networks. Stem Cells. 2016;34(6):1427–1436. doi: 10.1002/stem.2345
  • Ekundayo B, Bleichert F. Origins of DNA replication. PLOS Genet. 2019;15(9):e1008320. doi: 10.1371/journal.pgen.1008320
  • Khamidullina AI, Abramenko YE, Bruter AV, et al. Key proteins of replication stress response and cell cycle control as cancer therapy targets. Int J Mol Sci. 2024;25(2):1263. doi: 10.3390/ijms25021263
  • Hossain M, Bhalla K, Stillman B. Multiple, short protein binding motifs in ORC1 and CDC6 control the initiation of DNA replication. Mol Cell. 2021;81(9):1951–1969.e6. doi: 10.1016/j.molcel.2021.03.003
  • Mailand N, Diffley JF. CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell. 2005;122(6):915–926. doi: 10.1016/j.cell.2005.08.013
  • Fagundes R, Teixeira LK. Cyclin E/CDK2: DNA replication, replication stress and genomic instability. Front Cell Dev Biol. 2021;9:774845. doi: 10.3389/fcell.2021.774845
  • Kelly RL, Huehls AM, Venkatachalam A, et al. Intra-S phase checkpoint kinase Chk1 dissociates replication proteins treslin and TopBP1 through multiple mechanisms during replication stress. J Biol Chem. 2022;298(4):101777. doi: 10.1016/j.jbc.2022.101777
  • Arora M, Moser J, Hoffman TE, et al. Rapid adaptation to CDK2 inhibition exposes intrinsic cell-cycle plasticity. Cell. 2023;186(12):2628–2643. doi: 10.1016/j.cell.2023.05.013
  • Petersen BO, Lukas J, Sørensen CS, et al. Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. Embo J. 1999;18(2):396–410. doi: 10.1093/emboj/18.2.396
  • Paolinelli R, Mendoza-Maldonado R, Cereseto A, et al. Acetylation by GCN5 regulates CDC6 phosphorylation in the S phase of the cell cycle. Nat Struct Mol Biol. 2009;16(4):412–420. doi: 10.1038/nsmb.1583
  • Lim N, Townsend PA. Cdc6 as a novel target in cancer: oncogenic potential, senescence and subcellular localisation. Int J Cancer. 2020;147(6):1528–1534. doi: 10.1002/ijc.32900
  • Patmanidi AL, Champeris Tsaniras S, Karamitros D, et al. Concise review: geminin-a tale of two tails: DNA replication and transcriptional/epigenetic regulation in stem cells. Stem Cells. 2017;35(2):299–310. doi: 10.1002/stem.2529
  • Teixeira LK, Wang X, Li Y, et al. Cyclin E deregulation promotes loss of specific genomic regions. Curr Biol. 2015;25(10):1327–1333. doi: 10.1016/j.cub.2015.03.022
  • Keck JM, Summers MK, Tedesco D, et al. Cyclin E overexpression impairs progression through mitosis by inhibiting APC(Cdh1). J Cell Biol. 2007;178(3):371–385. doi: 10.1083/jcb.200703202
  • Sonntag R, Giebeler N, Nevzorova YA, et al. Cyclin E1 and cyclin-dependent kinase 2 are critical for initiation, but not for progression of hepatocellular carcinoma. Proc Natl Acad Sci USA. 2018;115(37):9282–9287. doi: 10.1073/pnas.1807155115
  • Chu C, Geng Y, Zhou Y, et al. Cyclin E in normal physiology and disease states. Trends Cell Biol. 2021;31(9):732–746. doi: 10.1016/j.tcb.2021.05.001
  • Au-Yeung G, Lang F, Azar WJ, et al. Selective targeting of cyclin E1-amplified high-grade serous ovarian cancer by cyclin-dependent kinase 2 and AKT inhibition. Clin Cancer Res. 2017;23(7):1862–1874. doi: 10.1158/1078-0432.CCR-16-0620
  • Yin X, Yu J, Zhou Y, et al. Identification of CDK2 as a novel target in treatment of prostate cancer. Future Oncol. 2018;14(8):709–718. doi: 10.2217/fon-2017-0561
  • Du J, Widlund HR, Horstmann MA, et al. Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell. 2004;6(6):565–576. doi: 10.1016/j.ccr.2004.10.014
  • Yamamoto H, Monden T, Miyoshi H, et al. Cdk2/cdc2 expression in colon carcinogenesis and effects of cdk2/cdc2 inhibitor in colon cancer cells. Int J Oncol. 1998;13(2):233–239. doi: 10.3892/ijo.13.2.233
  • Lashen A, Alqahtani S, Shoqafi A, et al. Clinicopathological significance of cyclin-dependent kinase 2 (CDK2) in ductal carcinoma in situ and early-stage invasive breast cancers. Int J Mol Sci. 2024;25(9):5053. doi: 10.3390/ijms25095053
  • Yap TA, Elhaddad AM, Grisham RN, et al. First-in-human phase 1/2a study of a potent and novel CDK2-selective inhibitor PF-07104091 in patients (pts) with advanced solid tumors, enriched for CDK4/6 inhibitor resistant HR+/HER2- breast cancer. J Clin Oncol. 2023;41(16_suppl):3010. doi: 10.1200/JCO.2023.41.16_suppl.3010
  • Dietrich C, Trub A, Ahn A, et al. INX-315, a selective CDK2 inhibitor, induces cell cycle arrest and senescence in solid tumors. Cancer Discov. 2023;14(3):446–467. doi: 10.1158/2159-8290.CD-23-0954
  • Watts LP, Spencer SL. A highly anticipated selective therapeutic agent against CDK2: INX-315. Cancer Discov. 2024;14(3):386–388. doi: 10.1158/2159-8290.CD-23-1537
  • Wee S, Ye M, Lo Y, et al. Discovery of INCB123667, a potent and selective cyclin-dependent kinase 2 (CDK2) inhibitor for the treatment of cyclin E dysregulated cancers. Eur J Cancer. 2022;174:S79. doi: 10.1016/S0959-8049(22)01010-3
  • Wang Y. Phase 1/2 study of ARTS-021, a potent, oral administrated, selective CDK2 inhibitor, in advanced or metastatic solid tumors. J Clin Oncol. 2023;41(16_suppl):e17546. doi: 10.1200/JCO.2023.41.16_suppl.e17546
  • Brown V, Ramsden P, House N, et al. BLU-222, an investigational, potent, and selective CDK2 inhibitor, demonstrated robust antitumor activity in CCNE1-amplified ovarian cancer models [abstract]. Cancer Res. 2022;82(12_Suppl):Abstract nr 2306. doi: 10.1158/1538-7445.AM2022-2306
  • Patel MR, Juric D, Henick BS, et al. BLU-222, an oral, potent, and selective CDK2 inhibitor, in patients with advanced solid tumors: phase 1 monotherapy dose escalation. J Clin Oncol. 2023;41(16_suppl):3095. doi: 10.1200/JCO.2023.41.16_suppl.3095
  • Freeman-Cook KD, Hoffman RL, Behenna DC, et al. Discovery of PF-06873600, a CDK2/4/6 inhibitor for the treatment of cancer. J Med Chem. 2021;64(13):9056–9077. doi: 10.1021/acs.jmedchem.1c00159
  • Yap TA, Basu C, Goldman JW, et al. A first-in-human phase 1/2a dose escalation/expansion study of the first-in-class CDK2/4/6 inhibitor PF-06873600 alone or with endocrine therapy in patients with breast or ovarian cancer [abstract]. Cancer Res. 2022;82(4 Suppl):Abstract nr P5–16–06. doi: 10.1158/1538-7445.SABCS21-P5-16-06
  • Wen PY, Ahnert JR, Powderly JD, et al. Phase 1/2 dose escalation study of NUV-422, a potent inhibitor of cyclin-dependent kinases 2, 4, and 6, in recurrent or refractory (r/r) high-grade gliomas (HGG) and solid tumors. J Clin Oncol. 2022;40(16_suppl):TPS3173. doi: 10.1200/JCO.2022.40.16_suppl.TPS3173
  • Cicenas J, Simkus J. CDK inhibitors and FDA: approved and orphan. Cancers (Basel). 2024;16(8):1555. doi: 10.3390/cancers16081555
  • Xie Z, Han J, Hu Z, et al. Targeting resistance to current CDK4/6 therapies by RGT-419B, an inhibitor with optimized kinase activity spectrum [abstract]. Cancer Res. 2021;81(4_Suppl):Abstract nr PS16–22. doi: 10.1158/1538-7445.SABCS20-PS16-22
  • Yu Y, Huang J, He H, et al. Accelerated discovery of macrocyclic CDK2 inhibitor QR-6401 by generative models and structure-based drug design. ACS Med Chem Lett. 2023;14(3):297–304. doi: 10.1021/acsmedchemlett.2c00515
  • Niu P, Tao Y, Meng Q, et al. Discovery of novel macrocyclic derivatives as potent and selective cyclin-dependent kinase 2 inhibitors. Bioorg Med Chem. 2024;104:117711. doi: 10.1016/j.bmc.2024.117711
  • Meng F, Liu J, Cao Z, et al. Discovery of macrocyclic CDK2/4/6 inhibitors with improved potency and DMPK properties through a highly efficient macrocyclic drug design platform. Bioorg Chem. 2024;146:107285. doi: 10.1016/j.bioorg.2024.107285
  • Hummel JR, Xiao KJ, Yang JC, et al. Discovery of (4-pyrazolyl)-2-aminopyrimidines as potent and selective inhibitors of cyclin-dependent kinase 2. J Med Chem. 2024;67(4):3112–3126. doi: 10.1021/acs.jmedchem.3c02287
  • Fanta BS, Mekonnen L, Basnet SKC, et al. 2-anilino-4-(1-methyl-1H-pyrazol-4-yl)pyrimidine-derived CDK2 inhibitors as anticancer agents: design, synthesis & evaluation. Bioorg Med Chem. 2023;80:117158. doi: 10.1016/j.bmc.2023.117158
  • Fanta BS, Lenjisa J, Teo T, et al. Discovery of N,4-Di(1H-pyrazol-4-yl)pyrimidin-2-amine-derived CDK2 inhibitors as potential anticancer agents: design, synthesis, and evaluation. Molecules. 2023;28(7):2951. doi: 10.3390/molecules28072951
  • Lin T, Li J, Liu L, et al. Design, synthesis, and biological evaluation of 4-benzoylamino-1H-pyrazole-3-carboxamide derivatives as potent CDK2 inhibitors. Eur J Med Chem. 2021;215:113281. doi: 10.1016/j.ejmech.2021.113281
  • Jorda R, Havlíček L, Šturc A, et al. 3,5,7-Substituted Pyrazolo[4,3- d]pyrimidine inhibitors of cyclin-dependent kinases and their evaluation in lymphoma models. J Med Chem. 2019;62(9):4606–4623. doi: 10.1021/acs.jmedchem.9b00189
  • Jorda R, Havlíček L, Peřina M, et al. 3,5,7-Substituted Pyrazolo[4,3-d]Pyrimidine inhibitors of cyclin-dependent kinases and cyclin K degraders. J Med Chem. 2022;65(13):8881–8896. doi: 10.1021/acs.jmedchem.1c02184
  • Sokolsky A, Winterton S, Kennedy K, et al. Discovery of 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-ones as highly selective CDK2 inhibitors. ACS Med Chem Lett. 2022;13(11):1797–1804. doi: 10.1021/acsmedchemlett.2c00408
  • Lücking U, Jautelat R, Krüger M, et al. The lab oddity prevails: discovery of pan-CDK inhibitor (R)-S-cyclopropyl-S-(4-{[4-{[(1R,2R)-2-hydroxy-1-methylpropyl]oxy}-5-(trifluoromethyl)pyrimidin-2-yl]amino}phenyl)sulfoximide (BAY 1000394) for the treatment of cancer. ChemMedchem. 2013;8(7):1067–1085. doi: 10.1002/cmdc.201300096
  • Stepan AF, Karki K, McDonald WS, et al. Metabolism-directed design of oxetane-containing arylsulfonamide derivatives as γ-secretase inhibitors. J Med Chem. 2011;54(22):7772–7783. doi: 10.1021/jm200893p
  • Wang Y, Zhu J, Liu JJ, et al. Optimization beyond AMG 232: discovery and SAR of sulfonamides on a piperidinone scaffold as potent inhibitors of the MDM2-p53 protein-protein interaction. Bioorg Med Chem Lett. 2014;24(16):3782–3785. doi: 10.1016/j.bmcl.2014.06.073
  • Shao PP, Ye F, Chakravarty PK, et al. Improved Cav2.2 channel inhibitors through a gem-dimethylsulfone bioisostere replacement of a labile sulfonamide. ACS Med Chem Lett. 2013;4(11):1064–1068. doi: 10.1021/ml4002612
  • Yun F, Cheng C, Ullah S, et al. Design, synthesis and biological evaluation of novel histone deacetylase1/2 (HDAC1/2) and cyclin-dependent Kinase2 (CDK2) dual inhibitors against malignant cancer. Eur J Med Chem. 2020;198:112322. doi: 10.1016/j.ejmech.2020.112322
  • Yu Y, Ran D, Jiang J, et al. Discovery of novel 9H-purin derivatives as dual inhibitors of HDAC1 and CDK2. Bioorg Med Chem Lett. 2019;29(16):2136–2140. doi: 10.1016/j.bmcl.2019.06.059
  • Gerometta E, Grondin I, Smadja J, et al. A review of traditional uses, phytochemistry and pharmacology of the genus indigofera. J Ethnopharmacol. 2020;253:112608. doi: 10.1016/j.jep.2020.112608
  • Cao Z, Yang F, Wang J, et al. Indirubin derivatives as dual inhibitors targeting cyclin-dependent kinase and histone deacetylase for treating cancer. J Med Chem. 2021;64(20):15280–15296. doi: 10.1021/acs.jmedchem.1c01311
  • Hassan GS, Georgey HH, Mohammed EZ, et al. Mechanistic selectivity investigation and 2D-QSAR study of some new antiproliferative pyrazoles and pyrazolopyridines as potential CDK2 inhibitors. Eur J Med Chem. 2021;218:113389. doi: 10.1016/j.ejmech.2021.113389
  • Wang X, Ding L, Jiang H, et al. Synthesis and biological evaluation of novel pteridin-7(8H)-one derivatives as potent CDK2 inhibitors. Bioorg Med Chem Lett. 2023;88:129284. doi: 10.1016/j.bmcl.2023.129284
  • Zeng M, Grandner JM, Bryan MC, et al. Discovery of selective tertiary amide inhibitors of cyclin-dependent kinase 2 (CDK2). ACS Med Chem Lett. 2023;14(9):1179–1187. doi: 10.1021/acsmedchemlett.3c00142
  • Dhillon S. Trilaciclib: first approval. Drugs. 2021;81(7):867–874. doi: 10.1007/s40265-021-01508-y
  • Hu X, Zhao H, Wang Y, et al. Synthesis and biological evaluation of novel 5,6-dihydropyrimido[4,5-f]quinazoline derivatives as potent CDK2 inhibitors. Bioorg Med Chem Lett. 2018;28(20):3385–3390. doi: 10.1016/j.bmcl.2018.08.035
  • Dayal N, Řezníčková E, Hernandez DE, et al. 3H-Pyrazolo[4,3-f]quinoline-based kinase inhibitors inhibit the proliferation of acute myeloid leukemia cells in vivo. J Med Chem. 2021;64(15):10981–10996. doi: 10.1021/acs.jmedchem.1c00330
  • Rastelli G, Anighoro A, Chripkova M, et al. Structure-based discovery of the first allosteric inhibitors of cyclin-dependent kinase 2. Cell Cycle. 2014;13(14):2296–2305. doi: 10.4161/cc.29295
  • Pellerano M, Tcherniuk S, Perals C, et al. Targeting conformational activation of CDK2 kinase. Biotechnol J. 2017;12(8):1600531. doi: 10.1002/biot.201600531
  • Carlino L, Christodoulou MS, Restelli V, et al. Structure-activity relationships of hexahydrocyclopenta[c]quinoline derivatives as allosteric inhibitors of CDK2 and EGFR. ChemMedchem. 2018;13(24):2627–2634. doi: 10.1002/cmdc.201800687
  • Craven GB, Affron DP, Allen CE, et al. High-throughput kinetic analysis for target-directed covalent ligand discovery. Angew Chem Int Ed Engl. 2018;57(19):5257–5261. doi: 10.1002/anie.201711825
  • Betzi S, Alam R, Martin M, et al. Discovery of a potential allosteric ligand binding site in CDK2. ACS Chem Biol. 2011;6(5):492–501. doi: 10.1021/cb100410m
  • Faber EB, Tian D, Burban D, et al. Cooperativity between orthosteric inhibitors and allosteric inhibitor 8-anilino-1-naphthalene sulfonic acid (ANS) in cyclin-dependent kinase 2. ACS Chem Biol. 2020;15(7):1759–1764. doi: 10.1021/acschembio.0c00169
  • Martin MP, Alam R, Betzi S, et al. A novel approach to the discovery of small-molecule ligands of CDK2. Chembiochem. 2012;13(14):2128–2136. doi: 10.1002/cbic.201200316
  • Faber EB, Wang N, John K, et al. Screening through lead optimization of high affinity, allosteric cyclin-dependent kinase 2 (CDK2) inhibitors as male contraceptives that reduce sperm counts in mice. J Med Chem. 2023;66(3):1928–1940. doi: 10.1021/acs.jmedchem.2c01731
  • Faber EB, Sun L, Tang J, et al. Development of allosteric and selective CDK2 inhibitors for contraception with negative cooperativity to cyclin binding. Nat Commun. 2023;14(1):3213. doi: 10.1038/s41467-023-38732-x
  • Burslem GM, Crews CM. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell. 2020;181(1):102–114. doi: 10.1016/j.cell.2019.11.031
  • Zeng S, Huang W, Zheng X, et al. Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: recent progress and future challenges. Eur J Med Chem. 2021;210:112981. doi: 10.1016/j.ejmech.2020.112981
  • Olson CM, Jiang B, Erb MA, et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol. 2018;14(2):163–170. doi: 10.1038/nchembio.2538
  • Jiang B, Wang ES, Donovan KA, et al. Development of dual and selective degraders of cyclin-dependent kinases 4 and 6. Angew Chem Int Ed Engl. 2019;58(19):6321–6326. doi: 10.1002/anie.201901336
  • Zhou F, Chen L, Cao C, et al. Development of selective mono or dual PROTAC degrader probe of CDK isoforms. Eur J Med Chem. 2020;187:111952. doi: 10.1016/j.ejmech.2019.111952
  • Seftel MD, Kuruvilla J, Kouroukis T, et al. The CDK inhibitor AT7519M in patients with relapsed or refractory chronic lymphocytic leukemia (CLL) and mantle cell lymphoma. A phase II study of the Canadian cancer trials group. Leuk Lymphoma. 2017;58(6):1358–1365. doi: 10.1080/10428194.2016.1239259
  • Wyatt PG, Woodhead AJ, Berdini V, et al. Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design. J Med Chem. 2008;51(16):4986–4999. doi: 10.1021/jm800382h
  • Wang Y, Zhi Y, Jin Q, et al. Discovery of 4-((7H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)-N-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1H-pyrazole-3-carboxamide (FN-1501), an FLT3- and CDK-Kinase inhibitor with potentially high efficiency against acute myelocytic leukemia. J Med Chem. 2018;61(4):1499–1518. doi: 10.1021/acs.jmedchem.7b01261
  • Teng M, Jiang J, He Z, et al. Development of CDK2 and CDK5 dual degrader TMX-2172. Angew Chem Int Ed Engl. 2020;59(33):13865–13870. doi: 10.1002/anie.202004087
  • Wang L, Shao X, Zhong T, et al. Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy. Nat Chem Biol. 2021;17(5):567–575. doi: 10.1038/s41589-021-00742-5
  • Lin R, Connolly PJ, Huang S, et al. 1-Acyl-1H-[1,2,4]triazole-3,5-diamine analogues as novel and potent anticancer cyclin-dependent kinase inhibitors: synthesis and evaluation of biological activities. J Med Chem. 2005;48(13):4208–4211. doi: 10.1021/jm050267e
  • Wei M, Zhao R, Cao Y, et al. First orally bioavailable prodrug of proteolysis targeting chimera (PROTAC) degrades cyclin-dependent kinases 2/4/6 in vivo. Eur J Med Chem. 2021;209:112903. doi: 10.1016/j.ejmech.2020.112903
  • Hazlitt RA, Teitz T, Bonga JD, et al. Development of second-generation CDK2 inhibitors for the prevention of cisplatin-induced hearing loss. J Med Chem. 2018;61(17):7700–7709. doi: 10.1021/acs.jmedchem.8b00669
  • Boss DS, Schwartz GK, Middleton MR, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of the oral cyclin-dependent kinase inhibitor AZD5438 when administered at intermittent and continuous dosing schedules in patients with advanced solid tumours. Ann Oncol. 2010;21(4):884–894. doi: 10.1093/annonc/mdp377
  • Hati S, Zallocchi M, Hazlitt R, et al. AZD5438-PROTAC: a selective CDK2 degrader that protects against cisplatin- and noise-induced hearing loss. Eur J Med Chem. 2021;226:113849. doi: 10.1016/j.ejmech.2021.113849
  • Mughal MJ, Bhadresha K, Kwok HF. CDK inhibitors from past to present: a new wave of cancer therapy. Semin Cancer Biol. 2023;88:106–122. doi: 10.1016/j.semcancer.2022.12.006
  • Ranjan A, Pang Y, Butler M, et al. Targeting CDK9 for the treatment of glioblastoma. Cancers (Basel). 2021;13(12):3039. doi: 10.3390/cancers13123039
  • Mandal R, Becker S, Strebhardt K. Targeting CDK9 for anti-cancer therapeutics. Cancers (Basel). 2021;13(9):2181. doi: 10.3390/cancers13092181
  • Prevo R, Pirovano G, Puliyadi R, et al. CDK1 inhibition sensitizes normal cells to DNA damage in a cell cycle dependent manner. Cell Cycle. 2018;17(12):1513–1523. doi: 10.1080/15384101.2018.1491236
  • Fornier MN, Rathkopf D, Shah M, et al. Phase I dose-finding study of weekly docetaxel followed by flavopiridol for patients with advanced solid tumors. Clin Cancer Res. 2007;13(19):5841–5846. doi: 10.1158/1078-0432.CCR-07-1218
  • Fabre C, Gobbi M, Ezzili C, et al. Clinical study of the novel cyclin-dependent kinase inhibitor dinaciclib in combination with rituximab in relapsed/refractory chronic lymphocytic leukemia patients. Cancer Chemother Pharmacol. 2014;74(5):1057–1064. doi: 10.1007/s00280-014-2583-9
  • Li Y, Luo X, Guo Q, et al. Discovery of N1-(4-((7-Cyclopentyl-6-(dimethylcarbamoyl)-7 H-pyrrolo[2,3- d]pyrimidin-2-yl)amino)phenyl)- N8-hydroxyoctanediamide as a novel inhibitor targeting cyclin-dependent kinase 4/9 (CDK4/9) and histone deacetlyase1 (HDAC1) against malignant cancer. J Med Chem. 2018;61(7):3166–3192. doi: 10.1021/acs.jmedchem.8b00209
  • Moreno N, Holsten T, Mertins J, et al. Combined BRD4 and CDK9 inhibition as a new therapeutic approach in malignant rhabdoid tumors. Oncotarget. 2017;8(49):84986–84995. doi: 10.18632/oncotarget.18583
  • Konecny GE. Combining PARP and CDK4/6 inhibitors in MYC driven ovarian cancer. EBioMedicine. 2019;43:9–10. doi: 10.1016/j.ebiom.2019.04.009
  • Wu J, Chen Y, Li R, et al. Synergistic anticancer effect by targeting CDK2 and EGFR-ERK signaling. J Cell Biol. 2024;223(1):e202203005. doi: 10.1083/jcb.202203005
  • Al-Wahaibi LH, Mostafa YA, Abdelrahman MH, et al. Synthesis and biological evaluation of indole-2-carboxamides with potent apoptotic antiproliferative activity as EGFR/CDK2 dual inhibitors. Pharmaceuticals. 2022;15(8):1006. doi: 10.3390/ph15081006
  • Soudi A, Bender O, Celik I, et al. Discovery and anticancer screening of novel oxindole-based derivative bearing pyridyl group as potent and selective dual FLT3/CDK2 kinase inhibitor. Pharmaceuticals (Basel). 2024;17(5):659. doi: 10.3390/ph17050659
  • Roskoski R Jr. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharmacol Res. 2019;139:471–488. doi: 10.1016/j.phrs.2018.11.035
  • Arter C, Trask L, Ward S, et al. Structural features of the protein kinase domain and targeted binding by small-molecule inhibitors. J Biol Chem. 2022;298(8):102247. doi: 10.1016/j.jbc.2022.102247
  • Said MA, Abdelrahman MA, Abourehab MAS, et al. A patent review of anticancer CDK2 inhibitors (2017-present). Expert Opin Ther Pat. 2022;32(8):885–898. doi: 10.1080/13543776.2022.2078193
  • Wood DJ, Korolchuk S, Tatum NJ, et al. Differences in the conformational energy landscape of CDK1 and CDK2 suggest a mechanism for achieving selective CDK inhibition. Cell Chem Biol. 2019;26(1):121–130. doi: 10.1016/j.chembiol.2018.10.015
  • Tang W, Lin C, Yu Q, et al. Novel medicinal chemistry strategies targeting CDK5 for drug discovery. J Med Chem. 2023;66(11):7140–7161. doi: 10.1021/acs.jmedchem.3c00566
  • Diab S, Yu M, Wang S. CDK7 inhibitors in cancer therapy: the sweet smell of success? J Med Chem. 2020;63(14):7458–7474. doi: 10.1021/acs.jmedchem.9b01985
  • Zhang Y, Shan L, Tang W, et al. Recent discovery and development of inhibitors that target CDK9 and their therapeutic indications. J Med Chem. 2024;67(7):5185–5215. doi: 10.1021/acs.jmedchem.4c00312
  • Alexander LT, Möbitz H, Drueckes P, et al. Type II inhibitors targeting CDK2. ACS Chem Biol. 2015;10(9):2116–2125. doi: 10.1021/acschembio.5b00398
  • Wells CI, Vasta JD, Corona CR, et al. Quantifying CDK inhibitor selectivity in live cells. Nat Commun. 2020;11(1):2743. doi: 10.1038/s41467-020-16559-0
  • Anscombe E, Meschini E, Mora-Vidal R, et al. Identification and characterization of an irreversible inhibitor of CDK2. Chem Biol. 2015;22(9):1159–1164. doi: 10.1016/j.chembiol.2015.07.018
  • Ludlow RF, Verdonk ML, Saini HK, et al. Detection of secondary binding sites in proteins using fragment screening. Proc Natl Acad Sci USA. 2015;112(52):15910–15915. doi: 10.1073/pnas.1518946112
  • Neklesa TK, Winkler JD, Crews CM. Targeted protein degradation by PROTACs. Pharmacol Ther. 2017;174:138–144. doi: 10.1016/j.pharmthera.2017.02.027
  • Moreau K, Coen M, Zhang AX, et al. Proteolysis-targeting chimeras in drug development: a safety perspective. Br J Pharmacol. 2020;177(8):1709–1718. doi: 10.1111/bph.15014
  • Cieślak M, Słowianek M. Cereblon-recruiting PROTACs: will new drugs have to face old challenges? Pharmaceutics. 2023;15(3):812. doi: 10.3390/pharmaceutics15030812
  • Schuster SR, Kortuem KM, Zhu YX, et al. The clinical significance of cereblon expression in multiple myeloma. Leuk Res. 2014;38(1):23–28. doi: 10.1016/j.leukres.2013.08.015
  • Broyl A, Kuiper R, van Duin M, et al. High cereblon expression is associated with better survival in patients with newly diagnosed multiple myeloma treated with thalidomide maintenance. Blood. 2013;121(4):624–627. doi: 10.1182/blood-2012-06-438101
  • Heintel D, Rocci A, Ludwig H, et al. High expression of cereblon (CRBN) is associated with improved clinical response in patients with multiple myeloma treated with lenalidomide and dexamethasone. Br J Haematol. 2013;161(5):695–700. doi: 10.1111/bjh.12338

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.