0
Views
0
CrossRef citations to date
0
Altmetric
Review

Innovative drug discovery strategies in epilepsy: integrating next-generation syndrome-specific mouse models to address pharmacoresistance and epileptogenesis

ORCID Icon & ORCID Icon
Received 30 May 2024, Accepted 22 Jul 2024, Published online: 29 Jul 2024

References

  • Falco-Walter JJ, Scheffer IE, Fisher RS. The new definition and classification of seizures and epilepsy. Epilepsy Res. 2017 Nov 28;139:73–79. doi: 10.1016/j.eplepsyres.2017.11.015
  • Loscher W, Klitgaard H, Twyman RE, et al. New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov. 2013 Oct;12(10):757–776. doi: 10.1038/nrd4126
  • Chen Z, Brodie MJ, Liew D, et al. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol. 2018 Mar 1;75(3):279–286. doi: 10.1001/jamaneurol.2017.3949
  • Temkin NR. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia. 2001 Apr;42(4):515–524. doi: 10.1046/j.1528-1157.2001.28900.x
  • Temkin NR, Jarell AD, Anderson GD. Antiepileptogenic agents: how close are we? Drugs. 2001;61(8):1045–1055. doi: 10.2165/00003495-200161080-00002
  • Barker-Haliski ML, Friedman D, French JA, et al. Disease modification in epilepsy: from animal models to clinical applications. Drugs. 2015 May;75(7):749–767. doi: 10.1007/s40265-015-0395-9
  • Trinka E, Brigo F. Antiepileptogenesis in humans: disappointing clinical evidence and ways to move forward. Curr Opin Neurol. 2014 Apr;27(2):227–235. doi: 10.1097/WCO.0000000000000067
  • Sills GJ, Rogawski MA. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology. 2020 May 15;168:107966. doi: 10.1016/j.neuropharm.2020.107966
  • Barker-Haliski M, Sills GJ, White HS. What are the arguments for and against rational therapy for epilepsy? Advances in experimental medicine and biology. Adv Exp Med Biol. 2014;813:295–308. PMID 25012386.
  • Bialer M, Johannessen SI, Koepp MJ, et al. Progress report on new antiepileptic drugs: a summary of the fifteenth eilat conference on new antiepileptic drugs and devices (EILAT XV). I. Drugs in preclinical and early clinical development. Epilepsia. 2020 Nov;61(11):2340–2364. doi: 10.1111/epi.16725
  • Bialer M, Johannessen SI, Koepp MJ, et al. Progress report on new antiepileptic drugs: a summary of the fifteenth eilat conference on new antiepileptic drugs and devices (EILAT XV). II. Drugs in more advanced clinical development eilat conference on new antiepileptic drugs and devices (EILAT XV). II. Drugs in more advanced clinical development. Epilepsia. 2020 Nov;61(11):2365–2385. doi: 10.1111/epi.16726
  • Pauletti A, Terrone G, Shekh-Ahmad T, et al. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain. 2017 May 30;140(7):1885–1899. doi: 10.1093/brain/awx117
  • Iori V, Iyer AM, Ravizza T, et al. Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiol Dis. 2017 Mar;99:12–23. doi: 10.1016/j.nbd.2016.12.007
  • Eddy CM, Rickards HE, Cavanna AE. The cognitive impact of antiepileptic drugs. Ther Adv Neurol Disord. 2011 Nov;4(6):385–407. doi: 10.1177/1756285611417920
  • Loscher W. Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Res. 2016 Oct;126:157–184. doi: 10.1016/j.eplepsyres.2016.05.016
  • White HS, Smith-Yockman M, Srivastava A, et al. Therapeutic assays for the identification and characterization of antiepileptic and antiepileptogenic drugs. In: Pitkanen A, Schwartzkroin P Moshe S, editors. Models of Seizure and Epilepsy. 1 ed. Burlington (MA): Elsevier Academic Press; 2006. p. 539–549.
  • Jones A, Barker-Haliski M, Ilie AS, et al. A multiorganism pipeline for antiseizure drug discovery: identification of chlorothymol as a novel γ-aminobutyric acidergic anticonvulsant. Epilepsia. 2020 Aug 14;61(10):2106–2118. doi: 10.1111/epi.16644
  • Barker-Haliski M, White HS. Validated animal models for antiseizure drug (ASD) discovery: advantages and potential pitfalls in ASD screening. Neuropharmacology. 2019 Aug 27;167:107750. doi: 10.1016/j.neuropharm.2019.107750
  • Temkin NR. Preventing and treating posttraumatic seizures: the human experience. Epilepsia. 2009 Feb;50 Suppl 2(s2):10–13. doi: 10.1111/j.1528-1167.2008.02005.x
  • Dikmen SS, Temkin NR, Miller B, et al. Neurobehavioral effects of phenytoin prophylaxis of posttraumatic seizures. JAMA. 1991 Mar 13;265(10):1271–1277. doi: 10.1001/jama.1991.03460100073027
  • Council N. A report of the NINDS epilepsy therapy screening program working group, of the national advisory neurological disorders and stroke (NANDS) council. 2020.
  • Galanopoulou AS, Wong M, Binder D, et al. 2014 epilepsy benchmarks area II: prevent epilepsy and its progression. Epilepsy Curr/Am Epilepsy Soc. 2016 May;16(3):187–191. doi: 10.5698/1535-7511-16.3.187
  • Vasquez A, Buraniqi E, Wirrell EC. New and emerging pharmacologic treatments for developmental and epileptic encephalopathies. Curr Opin Neurol. 2022 Apr 1;35(2):145–154. doi: 10.1097/WCO.0000000000001029
  • Del Pozo A, Lehmann L, Knox KM, et al. Can old animals reveal new targets? The aging and degenerating brain as a new precision medicine opportunity for epilepsy. Front Neurol. 2022;13:833624. doi: 10.3389/fneur.2022.833624
  • Barker-Haliski M, Knox K, Zierath DK, et al. Development of an antiepileptogenesis drug screening platform: effects of everolimus and phenobarbital. Epilepsia. 2021;62(7):1677–1688. PMID: 34080183.
  • Loscher W. Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochem Res. 2017 Jul;42(7):1873–1888. doi: 10.1007/s11064-017-2222-z
  • Vande Vyver M, Barker-Haliski M, Aourz N, et al. Higher susceptibility to 6 hz corneal kindling and lower responsiveness to antiseizure drugs in mouse models of Alzheimer’s disease. Epilepsia. 2022 Jun 30;63(10):2703–2715. doi: 10.1111/epi.17355
  • Bartolini E. Inherited Developmental and Epileptic Encephalopathies. Neurol Int. 2021;13(4):555–568. doi: 10.3390/neurolint13040055
  • Begley CE, Durgin TL. The direct cost of epilepsy in the United States: a systematic review of estimates. Epilepsia. 2015 Sep;56(9):1376–1387. doi: 10.1111/epi.13084
  • Drugs CP-O. US code of federal regulations part 316 - orphan drugs. 1992 Dec 29.
  • Klitgaard H, Matagne A, Gobert J, et al. Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. Eur J Pharmacol. 1998 Jul 24;353(2–3):191–206. doi: 10.1016/S0014-2999(98)00410-5
  • Patra PH, Barker-Haliski M, White HS, et al. Cannabidiol reduces seizures and associated behavioral comorbidities in a range of animal seizure and epilepsy models. Epilepsia. 2019 Feb;60(2):303–314. doi: 10.1111/epi.14629
  • Nishi T, Metcalf CS, Fujimoto S, et al. Anticonvulsive properties of soticlestat, a novel cholesterol 24-hydroxylase inhibitor. Epilepsia. 2022 Jun;63(6):1580–1590. doi: 10.1111/epi.17232
  • Barton ME, Klein BD, Wolf HH, et al. Pharmacological characterization of the 6 hz psychomotor seizure model of partial epilepsy. Epilepsy Res. 2001;47(3):217–227. doi: 10.1016/S0920-1211(01)00302-3
  • Koneval Z, Knox K, Memon A, et al. Antiseizure drug efficacy and tolerability in established and novel drug discovery seizure models in outbred versus inbred mice. Epilepsia. 2020;(9):2022–2034. doi: 10.1111/epi.16624
  • Gower AJ, Noyer M, Verloes R, et al. ucb L059, a novel anti-convulsant drug: pharmacological profile in animals. Eur J Pharmacol. 1992 Nov 10;222(2–3):193–203. doi: 10.1016/0014-2999(92)90855-X
  • Del Pozo A, Barker-Haliski M. Cannabidiol reveals a disruptive strategy for 21st century epilepsy drug discovery. Exp Neurol. 2022 Nov 26;360:114288. doi: 10.1016/j.expneurol.2022.114288
  • Barker-Haliski ML, Loscher W, White HS, et al. Neuroinflammation in epileptogenesis: insights and translational perspectives from new models of epilepsy. Epilepsia. 2017 Jul;58 Suppl 3(S3):39–47. doi: 10.1111/epi.13785
  • Metcalf CS, Vanegas F, Underwood T, et al. Screening of prototype antiseizure and anti-inflammatory compounds in the Theiler’s murine encephalomyelitis virus model of epilepsy. Epilepsia Open. 2022 Mar;7(1):46–58. doi: 10.1002/epi4.12550
  • Patel DC, Wallis G, Fujinami RS, et al. Cannabidiol reduces seizures following CNS infection with Theiler’s murine encephalomyelitis virus. Epilepsia Open. 2019 Sep;4(3):431–442. doi: 10.1002/epi4.12351
  • Barker-Haliski M, Nishi T, White HS. Soticlestat, a novel cholesterol 24-hydroxylase inhibitor, modifies acute seizure burden and chronic epilepsy-related behavioral deficits following Theiler’s virus infection in mice. Neuropharmacology. 2023 Jan 1;222:109310. doi: 10.1016/j.neuropharm.2022.109310
  • Hawkins NA, Anderson LL, Gertler TS, et al. Screening of conventional anticonvulsants in a genetic mouse model of epilepsy. Ann Clin Transl Neurol. 2017 May;4(5):326–339. doi: 10.1002/acn3.413
  • Patra PH, Serafeimidou-Pouliou E, Bazelot M, et al. Cannabidiol improves survival and behavioural co-morbidities of dravet syndrome in mice. Br J Pharmacol. 2020 Jun;177(12):2779–2792. doi: 10.1111/bph.15003
  • Hawkins NA, Jurado M, Thaxton TT, et al. Soticlestat, a novel cholesterol 24-hydroxylase inhibitor, reduces seizures and premature death in dravet syndrome mice. Epilepsia. 2021 Nov;62(11):2845–2857. doi: 10.1111/epi.17062
  • Nishi T, Kondo S, Miyamoto M, et al. Soticlestat, a novel cholesterol 24-hydroxylase inhibitor shows a therapeutic potential for neural hyperexcitation in mice. Sci Rep. 2020 Oct 13;10(1):17081. doi: 10.1038/s41598-020-74036-6
  • Wu YW, Sullivan J, McDaniel SS, et al. Incidence of dravet syndrome in a US population. Pediatrics. 2015 Nov;136(5):e1310–5. doi: 10.1542/peds.2015-1807
  • Wirrell EC, Hood V, Knupp KG, et al. International consensus on diagnosis and management of dravet syndrome. Epilepsia. 2022 Jul;63(7):1761–1777. doi: 10.1111/epi.17274
  • Ricobaraza A, Mora-Jimenez L, Puerta E, et al. Epilepsy and neuropsychiatric comorbidities in mice carrying a recurrent dravet syndrome SCN1A missense mutation. Sci Rep. 2019 Oct 2;9(1):14172. doi: 10.1038/s41598-019-50627-w
  • Yu FH, Mantegazza M, Westenbroek RE, et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci. 2006 Sep;9(9):1142–1149. doi: 10.1038/nn1754
  • Miller AR, Hawkins NA, McCollom CE, et al. Mapping genetic modifiers of survival in a mouse model of dravet syndrome. Genes Brain Behav. 2014 Feb;13(2):163–172. doi: 10.1111/gbb.12099
  • Ogiwara I, Miyamoto H, Morita N, et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci. 2007 May 30;27(22):5903–5914. doi: 10.1523/JNEUROSCI.5270-06.2007
  • Pernici CD, Mensah JA, Dahle EJ, et al. Development of an antiseizure drug screening platform for dravet syndrome at the NINDS contract site for the epilepsy therapy screening program. Epilepsia. 2021 Jul;62(7):1665–1676. doi: 10.1111/epi.16925
  • Quinn S, Brusel M, Ovadia M, et al. Acute effect of antiseizure drugs on background oscillations in Scn1a (A1783V) dravet syndrome mouse model. Front Pharmacol. 2023;14:1118216. doi: 10.3389/fphar.2023.1118216
  • Oakley JC, Cho AR, Cheah CS, et al. Synergistic GABA-enhancing therapy against seizures in a mouse model of dravet syndrome. J Pharmacol Exp Ther. 2013 May;345(2):215–224. doi: 10.1124/jpet.113.203331
  • Wong JC, Dutton SB, Collins SD, et al. Huperzine a provides robust and sustained protection against induced seizures in Scn1a mutant mice. Front Pharmacol. 2016;7:357. doi: 10.3389/fphar.2016.00357
  • Han Z, Chen C, Christiansen A, et al. Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of dravet syndrome. Sci Transl Med. 2020 Aug 26;12(558). doi: 10.1126/scitranslmed.aaz6100
  • Tanenhaus A, Stowe T, Young A, et al. Cell-selective adeno-associated virus-mediated SCN1A gene regulation therapy rescues mortality and seizure phenotypes in a dravet syndrome mouse model and is well tolerated in nonhuman primates. Hum Gene Ther. 2022 Jun;33(11–12):579–597. doi: 10.1089/hum.2022.037
  • Cao D, Ohtani H, Ogiwara I, et al. Efficacy of stiripentol in hyperthermia-induced seizures in a mouse model of dravet syndrome. Epilepsia. 2012 Jul;53(7):1140–1145. doi: 10.1111/j.1528-1167.2012.03497.x
  • Hawkins NA, Zachwieja NJ, Miller AR, et al. Fine mapping of a dravet syndrome modifier locus on mouse chromosome 5 and candidate gene analysis by RNA-Seq. PLOS Genet. 2016 Oct;12(10):e1006398. doi: 10.1371/journal.pgen.1006398
  • Anderson LL, Ametovski A, Lin Luo J, et al. Cannabichromene, related phytocannabinoids, and 5-fluoro-cannabichromene have anticonvulsant properties in a mouse model of dravet syndrome. ACS Chem Neurosci. 2021 Jan 20;12(2):330–339. doi: 10.1021/acschemneuro.0c00677
  • Anderson LL, Absalom NL, Abelev SV, et al. Coadministered cannabidiol and clobazam: preclinical evidence for both pharmacodynamic and pharmacokinetic interactions. Epilepsia. 2019 Nov;60(11):2224–2234. doi: 10.1111/epi.16355
  • Anderson LL, Everett-Morgan D, Petkova SP, et al. Ictal vocalizations in the Scn1a(±) mouse model of dravet syndrome. Epilepsia Open. 2023 Sep;8(3):776–784. doi: 10.1002/epi4.12715
  • Kaplan JS, Stella N, Catterall WA, et al. Cannabidiol attenuates seizures and social deficits in a mouse model of dravet syndrome. Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11229–11234. doi: 10.1073/pnas.1711351114
  • Cha J, Filatov G, Smith SJ, et al. Fenfluramine increases survival and reduces markers of neurodegeneration in a mouse model of dravet syndrome. Epilepsia Open. 2024 Feb;9(1):300–313. doi: 10.1002/epi4.12873
  • Klein BD, Jacobson CA, Metcalf CS, et al. Evaluation of cannabidiol in animal seizure models by the epilepsy therapy screening program (ETSP). Neurochem Res. 2017 Jul;42(7):1939–1948. doi: 10.1007/s11064-017-2287-8
  • Karler R, Turkanis SA. The cannabinoids as potential antiepileptics. J Clin Pharmacol. 1981 Aug;21(S1):437S–448S. doi: 10.1002/j.1552-4604.1981.tb02624.x
  • Loscher W, Honack D. Profile of ucb L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. Eur J Pharmacol. 1993 Mar 2;232(2–3):147–158. doi: 10.1016/0014-2999(93)90768-D
  • Gower AJ, Hirsch E, Boehrer A, et al. Effects of levetiracetam, a novel antiepileptic drug, on convulsant activity in two genetic rat models of epilepsy. Epilepsy Res. 1995 Nov;22(3):207–213. doi: 10.1016/0920-1211(95)00077-1
  • Wilcox KS, West PJ, Metcalf CS. The current approach of the epilepsy therapy screening program contract site for identifying improved therapies for the treatment of pharmacoresistant seizures in epilepsy. Neuropharmacology. 2020 Apr;166:107811. doi: 10.1016/j.neuropharm.2019.107811
  • Kehne JH, Klein BD, Raeissi S, et al. The national institute of neurological disorders and stroke (NINDS) epilepsy therapy screening program (ETSP). Neurochem Res. 2017 May 2;42(7):1894–1903. doi: 10.1007/s11064-017-2275-z
  • Barker-Haliski ML, Johnson K, Billingsley P, et al. Validation of a preclinical drug screening platform for pharmacoresistant epilepsy. Neurochem Res. 2017 Jul;42(7):1904–1918. doi: 10.1007/s11064-017-2227-7
  • Rogawski MA. KCNQ2/KCNQ3 K+ channels and the molecular pathogenesis of epilepsy: implications for therapy. Trends Neurosci. 2000;23(9):393–398. doi: 10.1016/S0166-2236(00)01629-5
  • Biervert C, Steinlein OK. Structural and mutational analysis of KCNQ2, the major gene locus for benign familial neonatal convulsions. Hum Genet. 1999 Mar;104(3):234–240. doi: 10.1007/PL00008713
  • Pisano T, Numis AL, Heavin SB, et al. Early and effective treatment of KCNQ2 encephalopathy. Epilepsia. 2015 May;56(5):685–691. doi: 10.1111/epi.12984
  • Numis AL, Angriman M, Sullivan JE, et al. KCNQ2 encephalopathy: delineation of the electroclinical phenotype and treatment response. Neurology. 2014 Jan 28;82(4):368–370. doi: 10.1212/WNL.0000000000000060
  • Sands TT, Balestri M, Bellini G, et al. Rapid and safe response to low-dose carbamazepine in neonatal epilepsy. Epilepsia. 2016 Dec;57(12):2019–2030. doi: 10.1111/epi.13596
  • Knight D, Mahida S, Kelly M, et al. Ezogabine impacts seizures and development in patients with KCNQ2 developmental and epileptic encephalopathy. Epilepsia. 2023 Jul;64(7):e143–e147. doi: 10.1111/epi.17627
  • Watanabe H, Nagata E, Kosakai A, et al. Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability. J Neurochem. 2000 Jul;75(1):28–33. doi: 10.1046/j.1471-4159.2000.0750028.x
  • Otto JF, Yang Y, Frankel WN, et al. Mice carrying the szt1 mutation exhibit increased seizure susceptibility and altered sensitivity to compounds acting at the m-channel [research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. Epilepsia. 2004 Sep;45(9):1009–1016. doi: 10.1111/j.0013-9580.2004.65703.x
  • Bast T, Ramantani G, Seitz A, et al. Focal cortical dysplasia: prevalence, clinical presentation and epilepsy in children and adults. Acta Neurol Scand. 2006 Feb;113(2):72–81. doi: 10.1111/j.1600-0404.2005.00555.x
  • Blumcke I, Thom M, Aronica E, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia. 2011 Jan;52(1):158–174. doi: 10.1111/j.1528-1167.2010.02777.x
  • Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med. 2015 Jun;5(6):a022426–a022426. doi: 10.1101/cshperspect.a022426
  • Kim JK, Lee JH. Mechanistic target of rapamycin pathway in epileptic disorders. J Korean Neurosurg Soc. 2019 May;62(3):272–287. doi: 10.3340/jkns.2019.0027
  • Rademacher S, Eickholt BJ. PTEN in autism and neurodevelopmental disorders. Cold Spring Harb Perspect Med. 2019 Nov 1;9(11):a036780. doi: 10.1101/cshperspect.a036780
  • Lee WS, Baldassari S, Chipaux M, et al. Gradient of brain mosaic RHEB variants causes a continuum of cortical dysplasia. Ann Clin Transl Neurol. 2021 Feb;8(2):485–490. doi: 10.1002/acn3.51286
  • Crino PB. The mTOR signalling cascade: paving new roads to cure neurological disease. Nat Rev Neurol. 2016 Jul;12(7):379–392. doi: 10.1038/nrneurol.2016.81
  • Carter AN, Born HA, Levine AT, et al. Wortmannin attenuates seizure-induced hyperactive PI3K/Akt/mTOR signaling, impaired memory, and spine dysmorphology in rats. eNeuro. 2017 May;4(3):ENEURO.0354–16.2017. doi: 10.1523/ENEURO.0354-16.2017
  • Nguyen LH, Mahadeo T, Bordey A. mTOR hyperactivity levels influence the severity of epilepsy and associated neuropathology in an experimental Model of tuberous sclerosis complex and focal cortical dysplasia. J Neurosci. 2019 Apr 3;39(14):2762–2773. doi: 10.1523/JNEUROSCI.2260-18.2019
  • Yang MT, Lin YC, Ho WH, et al. Everolimus is better than rapamycin in attenuating neuroinflammation in kainic acid-induced seizures. J Neuroinflammation. 2017 Jan 21;14(1):15. doi: 10.1186/s12974-017-0797-6
  • Wong M. Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: from tuberous sclerosis to common acquired epilepsies. Epilepsia. 2010 Jan;51(1):27–36. doi: 10.1111/j.1528-1167.2009.02341.x
  • Roy A, Skibo J, Kalume F, et al. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. Elife. 2015 Dec 3;4. doi: 10.7554/eLife.12703
  • Roy A, Han VZ, Bard AM, et al. Non-synaptic cell-autonomous mechanisms underlie neuronal hyperactivity in a genetic model of PIK3CA-Driven intractable epilepsy. Front Mol Neurosci. 2021;14:772847. doi: 10.3389/fnmol.2021.772847
  • Hirsch E, French J, Scheffer IE, et al. ILAE definition of the idiopathic generalized epilepsy syndromes: position statement by the ILAE task force on nosology and definitions. Epilepsia. 2022 Jun;63(6):1475–1499. doi: 10.1111/epi.17236
  • Grosso S, Galimberti D, Vezzosi P, et al. Childhood absence epilepsy: evolution and prognostic factors. Epilepsia. 2005 Nov;46(11):1796–1801. doi: 10.1111/j.1528-1167.2005.00277.x
  • Zhao X, He Z, Li Y, et al. Atypical absence seizures and gene variants: a gene-based review of etiology, electro-clinical features, and associated epilepsy syndrome. Epilepsy & Behav. 2024 Feb;151:109636. doi: 10.1016/j.yebeh.2024.109636
  • Noebels JL, Sidman RL. Inherited epilepsy: spike-wave and focal motor seizures in the mutant mouse tottering. Science. 1979 Jun 22;204(4399):1334–1336. doi: 10.1126/science.572084
  • Fletcher CF, Lutz CM, O’Sullivan TN, et al. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell. 1996 Nov 15;87(4):607–617. doi: 10.1016/S0092-8674(00)81381-1
  • Chen W, Cai ZL, Chao ES, et al. Stxbp1/Munc18-1 haploinsufficiency impairs inhibition and mediates key neurological features of STXBP1 encephalopathy. Elife. 2020 Feb 19;9. doi: 10.7554/eLife.48705
  • Bortolami A, Yu W, Forzisi E, et al. Integrin-KCNB1 potassium channel complexes regulate neocortical neuronal development and are implicated in epilepsy. Cell Death Differ. 2023 Mar;30(3):687–701. doi: 10.1038/s41418-022-01072-2
  • Speca DJ, Ogata G, Mandikian D, et al. Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability. Genes Brain Behav. 2014 Apr;13(4):394–408. doi: 10.1111/gbb.12120
  • Hawkins NA, Misra SN, Jurado M, et al. Epilepsy and neurobehavioral abnormalities in mice with a dominant-negative KCNB1 pathogenic variant. Neurobiol Dis. 2021 Jan;147:105141. doi: 10.1016/j.nbd.2020.105141
  • Collaborators GBDE, Giussani G, Nichols E. Global, regional, and national burden of epilepsy, 1990–2016: a systematic analysis for the global burden of disease study 2016. The Lancet Neurol. 2019 Apr;18(4):357–375. doi: 10.1016/S1474-4422(18)30454-X
  • Lehmann L, Lo A, Knox KM, et al. Alzheimer’s disease and Epilepsy: a perspective on the opportunities for overlapping therapeutic innovation. Neurochem Res. 2021 Apr 30;46(8):1895–1912. doi: 10.1007/s11064-021-03332-y
  • Vossel KA, Beagle AJ, Rabinovici GD, et al. Seizures and epileptiform activity in the early stages of alzheimer disease. JAMA Neurol. 2013 Sep 1;70(9):1158–1166. doi: 10.1001/jamaneurol.2013.136
  • Zarea A, Charbonnier C, Rovelet-Lecrux A, et al. Seizures in dominantly inherited alzheimer disease. Neurology. 2016 Aug 30;87(9):912–919. doi: 10.1212/WNL.0000000000003048
  • Palop JJ, Chin J, Roberson ED, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron. 2007 Sep 6;55(5):697–711. doi: 10.1016/j.neuron.2007.07.025
  • Beckman M, Knox K, Koneval Z, et al. Loss of presenilin 2 age-dependently alters susceptibility to acute seizures and kindling acquisition. Neurobiol Dis. 2020 Mar;136:104719. doi: 10.1016/j.nbd.2019.104719
  • Vande Vyver M, Barker-Haliski M, Aourz N, et al. Higher susceptibility to 6 hz corneal kindling and lower responsiveness to antiseizure drugs in mouse models of Alzheimer’s disease. Epilepsia. 2022 Oct;63(10):2703–2715. doi: 10.1111/epi.17355
  • Sanchez PE, Zhu L, Verret L, et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci USA. 2012;109(42):E2895–903. doi: 10.1073/pnas.1121081109
  • Del Pozo A, Knox KM, Lehmann LM, et al. Chronic evoked seizures in young pre-symptomatic APP/PS1 mice induce serotonin changes and accelerate onset of Alzheimer’s disease-related neuropathology. Prog Neurobiol. 2024 Mar 13;235:102591. doi: 10.1016/j.pneurobio.2024.102591
  • Ziyatdinova S, Ronnback A, Gurevicius K, et al. Increased epileptiform EEG activity and decreased seizure threshold in arctic APP transgenic mouse model of Alzheimer’s disease. Curr Alzheimer Res. 2016;13(7):817–830. doi: 10.2174/1567205013666160129095508
  • Ziyatdinova S, Viswanathan J, Hiltunen M, et al. Reduction of epileptiform activity by valproic acid in a mouse model of Alzheimer’s disease is not long-lasting after treatment discontinuation. Epilepsy Res. 2015 May;112:43–55. doi: 10.1016/j.eplepsyres.2015.02.005
  • Ziyatdinova S, Gurevicius K, Kutchiashvili N, et al. Spontaneous epileptiform discharges in a mouse model of Alzheimer’s disease are suppressed by antiepileptic drugs that block sodium channels. Epilepsy Res. 2011 Mar;94(1–2):75–85. doi: 10.1016/j.eplepsyres.2011.01.003
  • Johnson EL, Krauss GL, Lee AK, et al. Association Between Midlife Risk Factors and Late-Onset Epilepsy: Results From the Atherosclerosis Risk in Communities Study. JAMA Neurol. 2018;75(11):1375–1382. doi: 10.1001/jamaneurol.2018.1935
  • Kelly KM. Aging models of acute seizures and epilepsy. Epilepsy Curr/Am Epilepsy Soc. 2010 Jan;10(1):15–20. doi: 10.1111/j.1535-7511.2009.01341.x
  • Yang H, Rajah G, Guo A, et al. Pathogenesis of epileptic seizures and epilepsy after stroke. Neurol Res. 2018 Jun;40(6):426–432. doi: 10.1080/01616412.2018.1455014
  • Wang J, Wu C, Peng J, et al. Early-onset convulsive seizures induced by brain hypoxia-ischemia in aging mice: effects of anticonvulsive treatments. PLOS ONE. 2015;10(12):e0144113. doi: 10.1371/journal.pone.0144113
  • Klein P, Dingledine R, Aronica E, et al. Commonalities in epileptogenic processes from different acute brain insults: do they translate? Epilepsia. 2018 Jan;59(1):37–66. doi: 10.1111/epi.13965
  • Fordington S, Manford M. A review of seizures and epilepsy following traumatic brain injury. J Neurol. 2020 Oct;267(10):3105–3111. doi: 10.1007/s00415-020-09926-w
  • Yeh CC, Chen TL, Hu CJ, et al. Risk of epilepsy after traumatic brain injury: a retrospective population-based cohort study. J Neurol Neurosurg Psychiatry. 2013 Apr;84(4):441–445. doi: 10.1136/jnnp-2012-302547
  • D’Ambrosio R, Eastman CL, Darvas F, et al. Mild passive focal cooling prevents epileptic seizures after head injury in rats. Ann Neurol. 2013 Feb;73(2):199–209. doi: 10.1002/ana.23764
  • Santhakumar V, Voipio J, Kaila K, et al. Post-traumatic hyperexcitability is not caused by impaired buffering of extracellular potassium. J Neurosci. 2003 Jul 2;23(13):5865–5876. doi: 10.1523/JNEUROSCI.23-13-05865.2003
  • Di Sapia R, Moro F, Montanarella M, et al. In-depth characterization of a mouse model of post-traumatic epilepsy for biomarker and drug discovery. Acta Neuropathol Commun. 2021 Apr 26;9(1):76. doi: 10.1186/s40478-021-01165-y
  • Singh G, Prabhakar S. The association between central nervous system (CNS) infections and epilepsy: epidemiological approaches and microbiological and epileptological perspectives. Epilepsia. 2008 Aug;49 Suppl 6(s6):2–7. doi: 10.1111/j.1528-1167.2008.01749.x
  • Khetsuriani N, Holman RC, Anderson LJ. Burden of encephalitis-associated hospitalizations in the United States, 1988-1997. Clin Infect Dis. 2002 Jul 15;35(2):175–182. doi: 10.1086/341301
  • Carpio A, and Hauser W. Epilepsy in the developing world. Curr Neurol Neurosci Rep. 2009;9(1):319–326. doi: 10.1007/s11910-009-0048-z#citeas
  • Annegers JF, Hauser WA, Lee JR, et al. Incidence of acute symptomatic seizures in Rochester, Minnesota, 1935-1984. Epilepsia. 1995 Apr;36(4):327–333. doi: 10.1111/j.1528-1157.1995.tb01005.x
  • Antony AR, Haneef Z. Systematic review of EEG findings in 617 patients diagnosed with COVID-19. Seizure. 2020 Dec;83:234–241. doi: 10.1016/j.seizure.2020.10.014
  • Khedr EM, Shoyb A, Mohammaden M, et al. Acute symptomatic seizures and COVID-19: hospital-based study. Epilepsy Res. 2021 Aug;174:106650. doi: 10.1016/j.eplepsyres.2021.106650
  • Misra UK, Tan CT, Kalita J. Viral encephalitis and epilepsy. Epilepsia. 2008 Aug;49 Suppl 6(s6):13–18. doi: 10.1111/j.1528-1167.2008.01751.x
  • Zierath DK, Davidson S, Manoukian J, et al. Diet composition and sterilization modifies intestinal microbiome diversity and burden of Theiler’s virus infection–induced acute seizures. Epilepsia. 2024;65(6):1777–1790. doi: 10.1111/epi.17946
  • Olson CA, Vuong HE, Yano JM, et al. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell. 2018 Jul 12;174(2):497. doi: 10.1016/j.cell.2018.06.051
  • Libbey JE, Doty DJ, Sim JT, et al. The effects of diet on the severity of central nervous system disease: One part of lab-to-lab variability. Nutrition. 2016;32(7–8):877–883. doi: 10.1016/j.nut.2016.01.009
  • Rho JM. How does the ketogenic diet induce anti-seizure effects? Neurosci Lett. 2017 Jan 10;637:4–10. doi: 10.1016/j.neulet.2015.07.034
  • Hampton T. Gut microbes may account for the anti-seizure effects of the ketogenic diet. JAMA. 2018 Oct 2;320(13):1307. doi: 10.1001/jama.2017.12865
  • Olson CA, Vuong HE, Yano JM, et al. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell. 2018 Jun 14;173(7):1728–1741 e13. doi: 10.1016/j.cell.2018.04.027
  • Leclercq K, Matagne A, Kaminski RM. Low potency and limited efficacy of antiepileptic drugs in the mouse 6 hz corneal kindling model. Epilepsy Res. 2014 May;108(4):675–683. doi: 10.1016/j.eplepsyres.2014.02.013
  • Rowley NM, White HS. Comparative anticonvulsant efficacy in the corneal kindled mouse model of partial epilepsy: correlation with other seizure and epilepsy models. Epilepsy Res. 2010 Dec;92(2–3):163–169. doi: 10.1016/j.eplepsyres.2010.09.002
  • Barker-Haliski ML, Vanegas F, Mau MJ, et al. Acute cognitive impact of antiseizure drugs in naive rodents and corneal-kindled mice. Epilepsia. 2016 Sep;57(9):1386–1397. doi: 10.1111/epi.13476
  • Remigio GJ, Loewen JL, Heuston S, et al. Corneal kindled C57BL/6 mice exhibit saturated dentate gyrus long-term potentiation and associated memory deficits in the absence of overt neuron loss. Neurobiol Dis. 2017 Jun 15;105:221–234. doi: 10.1016/j.nbd.2017.06.006
  • Loewen JL, Barker-Haliski ML, Dahle EJ, et al. Neuronal injury, Gliosis, and glial proliferation in two models of temporal lobe epilepsy. J Neuropathol Exp Neurol. 2016 Apr;75(4):366–378. doi: 10.1093/jnen/nlw008
  • Koneval Z, Knox KM, White HS, et al. Lamotrigine-resistant corneal-kindled mice: a model of pharmacoresistant partial epilepsy for moderate-throughput drug discovery. Epilepsia. 2018 Jun;59(6):1245–1256. doi: 10.1111/epi.14190
  • Srivastava AK, White HS. Carbamazepine, but not valproate, displays pharmacoresistance in lamotrigine-resistant amygdala kindled rats. Epilepsy Res. 2013 Mar;104(1–2):26–34. doi: 10.1016/j.eplepsyres.2012.10.003
  • Zierath D, Mizuno S, Barker-Haliski M. Frontline Sodium Channel-Blocking Antiseizure Medicine Use Promotes Future Onset of Drug-Resistant Chronic Seizures. Int J Mol Sci. 2023;24(5):4848. doi: 10.3390/ijms24054848
  • Franco V, Bialer M, Perucca E. Cannabidiol in the treatment of epilepsy: Current evidence and perspectives for further research. Neuropharmacology. 2021 Mar 1;185:108442. doi: 10.1016/j.neuropharm.2020.108442
  • Devinsky O, Patel AD, Thiele EA, et al. Randomized, dose-ranging safety trial of cannabidiol in dravet syndrome. Neurology. 2018 Apr 3;90(14):e1204–e1211. doi: 10.1212/WNL.0000000000005254
  • Devinsky O, Cross JH, Laux L, et al. Trial of cannabidiol for drug-resistant seizures in the dravet syndrome. N Engl J Med. 2017 May 25;376(21):2011–2020. doi: 10.1056/NEJMoa1611618
  • Miller I, Scheffer IE, Gunning B, et al. Dose-ranging effect of adjunctive oral cannabidiol vs placebo on convulsive seizure frequency in dravet syndrome: a randomized clinical trial. JAMA Neurol. 2020 May 1;77(5):613–621. doi: 10.1001/jamaneurol.2020.0073
  • Madan Cohen J, Checketts D, Dunayevich E, et al. Time to onset of cannabidiol treatment effects in dravet syndrome: analysis from two randomized controlled trials. Epilepsia. 2021 Sep;62(9):2218–2227. doi: 10.1111/epi.16974
  • Piredda SG, Woodhead JH, Swinyard EA. Effect of stimulus intensity on the profile of anticonvulsant activity of phenytoin, ethosuximide and valproate. J Pharmacol Exp Ther. 1985;232(3):741–745.
  • Leppert MF, Singh N. Susceptibility genes in human epilepsy. Semin Neurol. 1999;19(4):397–405. doi: 10.1055/s-2008-1040854
  • Baraban SC, Dinday MT, Hortopan GA. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential dravet syndrome treatment. Nat Commun. 2013 Sep 3;4(1):2410. doi: 10.1038/ncomms3410
  • Griffin A, Hamling KR, Knupp K, et al. Clemizole and modulators of serotonin signalling suppress seizures in dravet syndrome. Brain. 2017 Mar 1;140(3):669–683. doi: 10.1093/brain/aww342
  • Moog M, Baraban SC. Clemizole and trazodone are effective antiseizure treatments in a zebrafish model of STXBP1 disorder. Epilepsia Open. 2022 Sep;7(3):504–511. doi: 10.1002/epi4.12604
  • Hahn CD, Jiang Y, Villanueva V, et al. A phase 2, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of soticlestat as adjunctive therapy in pediatric patients with dravet syndrome or lennox–gastaut syndrome (ELEKTRA). Epilepsia. 2022 Jul 16;63(10):2671–2683. doi: 10.1111/epi.17367
  • Salamone A, Terrone G, Di Sapia R, et al. Cholesterol 24-hydroxylase is a novel pharmacological target for anti-ictogenic and disease modification effects in epilepsy. Neurobiol Dis. 2022 Oct 15;173:105835. doi: 10.1016/j.nbd.2022.105835
  • Koike T, Yoshikawa M, Ando HK, et al. Discovery of Soticlestat, a potent and selective inhibitor for cholesterol 24-hydroxylase (CH24H). J Med Chem. 2021 Aug 26;64(16):12228–12244. doi: 10.1021/acs.jmedchem.1c00864
  • Paul SM, Doherty JJ, Robichaud AJ, et al. The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J Neurosci. 2013 Oct 30;33(44):17290–17300. doi: 10.1523/JNEUROSCI.2619-13.2013
  • Alexandrov P, Cui JG, Zhao Y, et al. 24S-hydroxycholesterol induces inflammatory gene expression in primary human neural cells. Neuroreport. 2005 Jun 21;16(9):909–913. doi: 10.1097/00001756-200506210-00007
  • Richards RK, Everett GM. Tridione: a new anticonvulsant drug. J Lab Clin Med. 1946 Dec;31(12):1330–1336.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.