0
Views
0
CrossRef citations to date
0
Altmetric
Review

New horizons for obsessive-compulsive disorder drug discovery: is targeting glutamate receptors the answer?

, &
Received 06 Apr 2024, Accepted 29 Jul 2024, Published online: 06 Aug 2024

References

  • van Roessel PJ, Grassi G, Aboujaoude EN, et al. Treatment-resistant OCD: pharmacotherapies in adults. Compr Psychiatry. 2023;120:152352. doi: 10.1016/j.comppsych.2022.152352
  • Perani D, Garibotto V, Gorini A, et al. In vivo PET study of 5HT(2A) serotonin and D(2) dopamine dysfunction in drug-naive obsessive-compulsive disorder. Neuroimage. 2008;42(1):306–314. doi: 10.1016/j.neuroimage.2008.04.233
  • de Salles Andrade JB, Ferreira FM, Suo C, et al. An MRI study of the metabolic and structural abnormalities in obsessive-compulsive disorder. Front Hum Neurosci. 2019;13. doi: 10.3389/fnhum.2019.00186
  • Karthik S, Sharma LP, Narayanaswamy JC, et al. Investigating the role of glutamate in obsessive-compulsive disorder: current perspectives. In: Neuropsychiatric disease and treatment. Vol. 16. Dove Medical Press Ltd; 2020. p. 1003–1013. doi: 10.2147/NDT.S211703
  • Biria M, Banca P, Healy MP, et al. Cortical glutamate and GABA are related to compulsive behaviour in individuals with obsessive compulsive disorder and healthy controls. Nat Commun. 2023;14(1). doi: 10.1038/s41467-023-38695-z
  • O’Neill J, Lai TM, Sheen C, et al. Cingulate and thalamic metabolites in obsessive-compulsive disorder. Psychiatry Res - Neuroimaging. 2016;254:34–40. doi: 10.1016/j.pscychresns.2016.05.005
  • Parmar A, Sharan P, Khandelwal SK, et al. Brain neurochemistry in unmedicated obsessive–compulsive disorder patients and effects of 12-week escitalopram treatment: 1H-magnetic resonance spectroscopy study. Psychiatry Clin Neurosci. 2019;73(7):386–393. doi: 10.1111/pcn.12850
  • Whiteside SP, Port JD, Deacon BJ, et al. A magnetic resonance spectroscopy investigation of obsessive–compulsive disorder and anxiety. Psychiatry Res: Neuroimaging. 2006;146(2):137–147. doi: 10.1016/j.pscychresns.2005.12.006
  • Rosenberg DR, Macmaster FP, Keshavan MS, et al. Decrease in caudate glutamatergic concentrations in pediatric obsessive-compulsive disorder patients taking paroxetine. J Am Acad Child Adolesc Psychiatry. 2000;39(9):1096–1103. doi: 10.1097/00004583-200009000-00008
  • Biria M, Banca P, Keser E, et al. Excessive checking in obsessive-compulsive disorder: neurochemical correlates revealed by 7T magnetic resonance spectroscopy. Biol Psychiatry Global Open Sci. 1722;4(1):363–373. doi: 10.1016/j.bpsgos.2023.08.009
  • Yücel M, Wood SJ, Wellard RM, et al. Anterior cingulate glutamate–glutamine levels predict symptom severity in women with obsessive–compulsive disorder. Aust N Z J Psychiatry. 2008;42(6):467–477. doi: 10.1080/00048670802050546
  • Akkus F, Terbeck S, Ametamey SM, et al. Metabotropic glutamate receptor 5 binding in patients with obsessive-compulsive disorder. Int J Neuropsychopharmacol. 2014;17(12):1915–1922. doi: 10.1017/S1461145714000716
  • Zhu Y, Fan Q, Han X, et al. Decreased thalamic glutamate level in unmedicated adult obsessive-compulsive disorder patients detected by proton magnetic resonance spectroscopy. J Affect Disord. 2015;178:193–200. doi: 10.1016/j.jad.2015.03.008
  • Starck G, Ljungberg M, Nilsson M, et al. A 1H magnetic resonance spectroscopy study in adults with obsessive compulsive disorder: relationship between metabolite concentrations and symptom severity. J Neural Transm. 2008;115(7):1051–1062. doi: 10.1007/s00702-008-0045-4
  • Fan S, Cath DC, van den Heuvel OA, et al. Abnormalities in metabolite concentrations in tourette’s disorder and obsessive-compulsive disorder—A proton magnetic resonance spectroscopy study. Psychoneuroendocrinology. 2017;77:211–217. doi: 10.1016/j.psyneuen.2016.12.007
  • Bédard MJ, Chantal S. Brain magnetic resonance spectroscopy in obsessive–compulsive disorder: the importance of considering subclinical symptoms of anxiety and depression. Psychiatry Res: Neuroimaging. 2011;192(1):45–54. doi: 10.1016/j.pscychresns.2010.10.008
  • Brennan BP, Tkachenko O, Schwab ZJ, et al. An examination of rostral anterior cingulate cortex function and neurochemistry in obsessive-compulsive disorder. Neuropsychopharmacology. 2015;40(8):1866–1876. doi: 10.1038/npp.2015.36
  • Li Y, Zhang CC, Weidacker K, et al. Investigation of anterior cingulate cortex gamma-aminobutyric acid and glutamate-glutamine levels in obsessive-compulsive disorder using magnetic resonance spectroscopy. BMC Psychiatry. 2019;19(1). doi: 10.1186/s12888-019-2160-1
  • Zheng H, Yang W, Zhang B, et al. Reduced anterior cingulate glutamate of comorbid skin-picking disorder in adults with obsessive-compulsive disorder. J Affect Disord. 2020;265:193–199. doi: 10.1016/j.jad.2020.01.059
  • Simpson HB, Kegeles LS, Hunter L, et al. Assessment of glutamate in striatal subregions in obsessive-compulsive disorder with proton magnetic resonance spectroscopy. Psychiatry Res - Neuroimaging. 2015;232(1):65–70. doi: 10.1016/j.pscychresns.2015.01.009
  • Weber AM, Soreni N, Stanley JA, et al. Proton magnetic resonance spectroscopy of prefrontal white matter in psychotropic naïve children and adolescents with obsessive–compulsive disorder. Psychiatry Res: Neuroimaging. 2014;222(1–2):67–74. doi: 10.1016/j.pscychresns.2014.02.004
  • Simpson HB, Shungu DC, Bender J, et al. Investigation of cortical glutamate-glutamine and γ-aminobutyric acid in obsessive-compulsive disorder by proton magnetic resonance spectroscopy. Neuropsychopharmacology. 2012;37(12):2684–2692. doi: 10.1038/npp.2012.132
  • Batistuzzo MC, Sottili BA, Shavitt RG, et al. Lower ventromedial prefrontal cortex glutamate levels in patients with obsessive–compulsive disorder. Front Psychiatry. 2021;12. doi: 10.3389/fpsyt.2021.668304
  • Naaijen J, Zwiers MP, Amiri H, et al. Fronto-striatal glutamate in autism spectrum disorder and obsessive compulsive disorder. Neuropsychopharmacology. 2017;42(12):2456–2465. doi: 10.1038/npp.2016.260
  • Ortiz AE, Ortiz AG, Falcon C, et al. 1H-MRS of the anterior cingulate cortex in childhood and adolescent obsessive-compulsive disorder: a case-control study. Eur Neuropsychopharmacol. 2015;25(1):60–68. doi: 10.1016/j.euroneuro.2014.11.007
  • Rosenberg DR, Mirza Y, Russell A, et al. Reduced anterior cingulate glutamatergic concentrations in childhood OCD and major depression versus healthy controls. J Am Acad Child Adolesc Psychiatry. 2004;43(9):1146–1153. doi: 10.1097/01.chi.0000132812.44664.2d
  • Giménez M, Cano M, Martínez-Zalacaín I, et al. Is glutamate associated with fear extinction and cognitive behavior therapy outcome in OCD? A pilot study. Eur Arch Psychiatry Clin Neurosci. 2020;270(8):1003–1014. doi: 10.1007/s00406-019-01056-3
  • O’Neill J, Piacentini J, Chang S, et al. Glutamate in pediatric obsessive-compulsive disorder and response to cognitive-behavioral therapy: randomized clinical trial. Neuropsychopharmacology. 2017;42(12):2414–2422. doi: 10.1038/npp.2017.77
  • O’Neill J, Piacentini JC, Chang S, et al. MRSI correlates of cognitive-behavioral therapy in pediatric obsessive-compulsive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;36(1):161–168. doi: 10.1016/j.pnpbp.2011.09.007
  • Bhattacharyya S, Khanna S, Chakrabarty K, et al. Anti-brain autoantibodies and altered excitatory neurotransmitters in obsessive-compulsive disorder. Neuropsychopharmacology. 2009;34(12):2489–2496. doi: 10.1038/npp.2009.77
  • Chakrabarty K, Bhattacharyya S, Christopher R, et al. Glutamatergic dysfunction in OCD. Neuropsychopharmacology. 2005;30(9):1735–1740. doi: 10.1038/sj.npp.1300733
  • Hanna GL, Veenstra-VanderWeele J, Cox NJ, et al. Genome-wide linkage analysis of families with obsessive-compulsive disorder ascertained through pediatric probands. Am J Med Genet - Neuropsychiatr Genet. 2002;114(5):541–552. doi: 10.1002/ajmg.10519
  • Rajendram R, Kronenberg S, Burton CL, et al. Glutamate genetics in obsessive-compulsive disorder: a review. J Can Acad Child Adolesc Psychiatry. 2017;26(3):205–213. doi: 10.1038/npp.2015.26
  • Veenstra-Vanderweele J, Kim SJ, Gonen D, et al. Genomic organization of the SLC1A1/EAAC1 gene and mutation screening in early-onset obsessive-compulsive disorder. Mol Psychiatry. 2001;6(2):160–167. doi: 10.1038/sj.mp.4000806
  • Arnold PD, Sicard T, Burroughs E, et al. Glutamate transporter gene SLC1A1 associated with obsessive-compulsive disorder. Arch Gen Psychiatry. 2006;63(7):769. doi: 10.1001/archpsyc.63.7.769
  • Dickel DE, Veenstra-VanderWeele J, Cox NJ, et al. Association testing of the positional and functional Candidate gene SLC1A1/EAAC1 in early-onset obsessive-compulsive disorder. Arch Gen Psychiatry. 2006;63(7):778. doi: 10.1001/archpsyc.63.7.778
  • Samuels J, Wang Y, Riddle MA, et al. Comprehensive family-based association study of the glutamate transporter gene SLC1A1 in obsessive-compulsive disorder. Am J Med Genet Pt B. 2011;156(4):472–477. doi: 10.1002/ajmg.b.31184
  • Shugart YY, Wang Y, Samuels JF, et al. A family-based association study of the glutamate transporter gene SLC1A1 in obsessive–compulsive disorder in 378 families. Am J Med Genet Pt B. 2009;150(6):886–892. doi: 10.1002/ajmg.b.30914
  • Stewart SE, Fagerness JA, Platko J, et al. Association of the SLC1A1 glutamate transporter gene and obsessive-compulsive disorder. Am J Med Genet Pt B. 2007;144B(8):1027–1033. doi: 10.1002/ajmg.b.30533
  • Wendland JR, Moya PR, Timpano KR, et al. A haplotype containing quantitative trait loci for SLC1A1 gene expression and its association with obsessive-compulsive disorder. Arch Gen Psychiatry. 2009;66(4):408. doi: 10.1001/archgenpsychiatry.2009.6
  • Wu H, Wang X, Xiao Z, et al. Association between SLC1A1 gene and early-onset OCD in the han Chinese population: a case–control study. J Mol Neurosci. 2013;50(2):353–359. doi: 10.1007/s12031-013-9995-6
  • Kwon JS, Joo YH, Nam HJ, et al. Association of the glutamate transporter gene SLC1A1 with atypical antipsychotics–induced obsessive-compulsive symptoms. Arch Gen Psychiatry. 2009;66(11):1233. doi: 10.1001/archgenpsychiatry.2009.155
  • Wang Y, Adamczyk A, Shugart YY, et al. A screen of SLC1A1 for ocd-related alleles. Am J Med Genet Pt B. 2010;153(2):675–679. doi: 10.1002/ajmg.b.31001
  • Mattheisen M, Samuels JF, Wang Y, et al. Genome-wide association study in obsessive-compulsive disorder: results from the OCGAS. Mol Psychiatry. 2015;20(3):337–344. doi: 10.1038/mp.2014.43
  • Burton CL, Lemire M, Xiao B, et al. Genome-wide association study of pediatric obsessive-compulsive traits: shared genetic risk between traits and disorder. Transl Psychiatry. 2021;11(1). doi: 10.1038/s41398-020-01121-9
  • Alonso P, Gratacós M, Segalàs C, et al. Association between the NMDA glutamate receptor GRIN2B gene and obsessive-compulsive disorder. J Psychiatry Neurosci. 2012;37(4):273–281. doi: 10.1503/jpn.110109
  • Arnold PD, Rosenberg DR, Mundo E, et al. Association of a glutamate (NMDA) subunit receptor gene (GRIN2B) with obsessive-compulsive disorder: a preliminary study. Psychopharmacology (Berl). 2004;174(4):530–538. doi: 10.1007/s00213-004-1847-1
  • Kohlrausch FB, Giori IG, Melo-Felippe FB, et al. Association of GRIN2B gene polymorphism and obsessive compulsive disorder and symptom dimensions: a pilot study. Psychiatry Res. 2016;243:152–155. doi: 10.1016/j.psychres.2016.06.027
  • Delorme R, Krebs M-O, Chabane N, et al. Frequency and transmission of glutamate receptors GRIK2 and GRIK3 polymorphisms in patients with obsessive compulsive disorder. Neuroreport. 2004;15(4):699–702. doi: 10.1097/00001756-200403220-00025
  • Sampaio AS, Fagerness J, Crane J, et al. Association between polymorphisms in GRIK2 gene and obsessive-compulsive disorder: a family-based study. CNS Neurosci Ther. 2011;17(3):141–147. doi: 10.1111/j.1755-5949.2009.00130.x
  • Boardman L, van der Merwe L, Lochner C, et al. Investigating SAPAP3 variants in the etiology of obsessive-compulsive disorder and trichotillomania in the South African white population. Compr Psychiatry. 2011;52(2):181–187. doi: 10.1016/j.comppsych.2010.05.007
  • Stewart SE, Yu D, Scharf JM, et al. Genome-wide association study of obsessive-compulsive disorder. Mol Psychiatry. 2013;18(7):788–798. doi: 10.1038/mp.2012.85
  • Züchner S, Wendland JR, Ashley-Koch AE, et al. Multiple rare SAPAP3 missense variants in trichotillomania and OCD. Mol Psychiatry. 2009;14(1):6–9. doi: 10.1038/mp.2008.83
  • Gazzellone MJ, Zarrei M, Burton CL, et al. Uncovering obsessive-compulsive disorder risk genes in a pediatric cohort by high-resolution analysis of copy number variation. J Neurodev Disord. 2016;8(1). doi: 10.1186/s11689-016-9170-9
  • Wilson C, Gattuso JJ, Hannan AJ, et al. Mechanisms of pathogenesis and environmental moderators in preclinical models of compulsive-like behaviours. Neurobiol Dis. 2023;185:106223. doi: 10.1016/j.nbd.2023.106223
  • Welch JM, Wang D, Feng G. Differential mRNA expression and protein localization of the SAP90/PSD-95-Associated proteins (SAPAPs) in the nervous system of the mouse. J Comp Neurol. 2004;472(1):24–39. doi: 10.1002/cne.20060
  • Hadjas LC, Schartner MM, Cand J, et al. Projection-specific deficits in synaptic transmission in adult Sapap3-knockout mice. Neuropsychopharmacology. 2020;45(12):2020–2029. doi: 10.1038/s41386-020-0747-3
  • Xu P, Grueter BA, Britt JK, et al. Double deletion of melanocortin 4 receptors and SAPAP3 corrects compulsive behavior and obesity in mice. Proc Natl Acad Sci U S A. 2013;110(26):10759–10764. doi: 10.1073/pnas.1308195110
  • Lamothe H, Schreiweis C, Mondragón-González LS, et al. The Sapap3−/− mouse reconsidered as a comorbid model expressing a spectrum of pathological repetitive behaviours. Transl Psychiatry. 2023;13(1). doi: 10.1038/s41398-023-02323-7
  • Welch JM, Lu J, Rodriguiz RM, et al. Cortico-striatal synaptic defects and ocd-like behaviours in Sapap3-mutant mice. Nature. 2007;448(7156):894–900. doi: 10.1038/nature06104
  • Manning EE, Wang AY, Saikali LM, et al. Disruption of prepulse inhibition is associated with compulsive behavior severity and nucleus accumbens dopamine receptor changes in Sapap3 knockout mice. Sci Rep. 2021;11(1). doi: 10.1038/s41598-021-88769-5
  • Manning EE, Dombrovski AY, Torregrossa MM, et al. Impaired instrumental reversal learning is associated with increased medial prefrontal cortex activity in Sapap3 knockout mouse model of compulsive behavior. Neuropsychopharmacology. 2019;44(8):1494–1504. doi: 10.1038/s41386-018-0307-2
  • Ehmer I, Feenstra M, Willuhn I, et al. Instrumental learning in a mouse model for obsessive-compulsive disorder: impaired habit formation in Sapap3 mutants. Neurobiol Learn Mem. 2020;168:168. doi: 10.1016/j.nlm.2020.107162
  • Burguière E, Monteiro P, Feng G, et al. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science. 2013;340(6137):1243–1246. doi: 10.1126/science.1232380
  • Davis GL, Minerva AR, Lario A, et al. Ketamine increases activity of a fronto-striatal projection that regulates compulsive behavior in SAPAP3 knockout mice. Nat Commun. 2021;12(1):6040. doi: 10.1038/s41467-021-26247-2
  • Ho EV, Welch A, Thompson SL, et al. Mice lacking Ptprd exhibit deficits in goal-directed behavior and female-specific impairments in sensorimotor gating. PLoS One. 2023;18(5):e0277446. doi: 10.1371/journal.pone.0277446
  • Shmelkov SV, Hormigo A, Jing D, et al. Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive–like behaviors in mice. Nat Med. 2010;16(5):598–602. doi: 10.1038/nm.2125
  • Campbell KM, de Lecea L, Severynse DM, et al. OCD-Like behaviors caused by a neuropotentiating transgene targeted to cortical and limbic D1 neurons. J Neurosci. 1999;19(12):5044–5053. doi: 10.1523/JNEUROSCI.19-12-05044.1999
  • Zike ID, Chohan MO, Kopelman JM, et al. OCD candidate gene SLC1A1/EAAT3 impacts basal ganglia-mediated activity and stereotypic behavior. Proc Natl Acad Sci U S A. 2017;114(22):5719–5724. doi: 10.1073/pnas.1701736114
  • González LF, Henríquez-Belmar F, Delgado-Acevedo C, et al. Neurochemical and behavioral characterization of neuronal glutamate transporter EAAT3 heterozygous mice. Biol Res. 2017;50(1). doi: 10.1186/s40659-017-0138-3
  • Grados M, Prazak M, Saif A, et al. A review of animal models of obsessive-compulsive disorder: a focus on developmental, immune, endocrine and behavioral models. Expert Opin Drug Discov. 2016;11(1):27–43). Taylor and Francis Ltd. 10.1517/17460441.2016.1103225
  • Ryan TJ, Kopanitsa MV, Indersmitten T, et al. Evolution of GluN2A/B cytoplasmic domains diversified vertebrate synaptic plasticity and behavior. Nat Neurosci. 2013;16(1):25–32. doi: 10.1038/nn.3277
  • Brigman JL, Wright T, Talani G, et al. Loss of GluN2B-Containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J Neurosci. 2010;30(13):4590–4600. doi: 10.1523/JNEUROSCI.0640-10.2010
  • Wang C-C, Held RG, Chang S-C, et al. A critical role for GluN2B-Containing NMDA receptors in cortical development and function. Neuron. 2011;72(5):789–805. doi: 10.1016/j.neuron.2011.09.023
  • von Engelhardt J, Doganci B, Jensen V, et al. Contribution of hippocampal and extra-hippocampal NR2B-Containing NMDA receptors to performance on spatial learning tasks. Neuron. 2008;60(5):846–860. doi: 10.1016/j.neuron.2008.09.039
  • Pauls DL, Abramovitch A, Rauch SL, et al. Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective. Nat Rev Neurosci. 2014;15(6):410–424. doi: 10.1038/nrn3746.
  • Vlček P, Polák J, Brunovský M, et al. Role of glutamatergic system in obsessive-compulsive disorder with possible therapeutic implications [published correction appears in pharmacopsychiatry. 2018 Nov;51(6): e3. doi: 10.1055/s-0043-121511]. Pharmacopsychiatry. 2018;51(6):229–242. doi: 10.1055/s-0043-121511
  • Aboujaoude E, Barry JJ, Gamel N. Memantine augmentation in treatment-resistant obsessive-compulsive disorder: an open-label trial. J Clin Psychopharmacol. 2009;29(1):51–55. doi: 10.1097/JCP.0b013e318192e9a4
  • Bakhla AK, Verma V, Soren S, et al. An open-label trial of memantine in treatment-resistant obsessive-compulsive disorder. Ind Psychiatry J. 2013;22(2):149–152. doi: 10.4103/0972-6748.132930
  • Feusner JD, Kerwin L, Saxena S, et al. Differential efficacy of memantine for obsessive-compulsive disorder vs. generalized anxiety disorder: an open-label trial. Psychopharmacol Bull. 2009;42(1):81–93.
  • Pasquini M, Biondi M. Memantine augmentation for refractory obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(6):1173–1175. doi: 10.1016/j.pnpbp.2006.04.013
  • Poyurovsky M, Weizman R, Weizman A, et al. Memantine for treatment-resistant OCD. Am J Psychiatry. 2005;162(11):2191–2192. doi: 10.1176/appi.ajp.162.11.2191-a
  • Stewart SE, Jenike EA, Hezel DM, et al. A single-blinded case-control study of memantine in severe obsessive-compulsive disorder. J Clin Psychopharmacol. 2010;30(1):34–39. doi: 10.1097/JCP.0b013e3181c856de
  • Farnia V, Gharehbaghi H, Alikhani M, et al. Efficacy and tolerability of adjunctive gabapentin and memantine in obsessive compulsive disorder: double-blind, randomized, placebo-controlled trial. J Psychiatr Res. 2018;104:137–143. doi: 10.1016/j.jpsychires.2018.07.008
  • Haghighi M, Jahangard L, Mohammad-Beigi H, et al. In a double-blind, randomized and placebo-controlled trial, adjuvant memantine improved symptoms in inpatients suffering from refractory obsessive-compulsive disorders (OCD). Psychopharmacology (Berl). 2013;228(4):633–640. doi: 10.1007/s00213-013-3067-z
  • Ghaleiha A, Entezari N, Modabbernia A, et al. Memantine add-on in moderate to severe obsessive-compulsive disorder: randomized double-blind placebo-controlled study. J Psychiatr Res. 2013;47(2):175–180. doi: 10.1016/j.jpsychires.2012.09.015
  • Askari S, Mokhtari S, Shariat SV, et al. Memantine augmentation of sertraline in the treatment of symptoms and executive function among patients with obsessive-compulsive disorder: a double-blind placebo-controlled, randomized clinical trial. BMC Psychiatry. 2022 Jan 12;22(1):34. Published 2022. doi: 10.1186/s12888-021-03642-z
  • Modarresi A, Sayyah M, Razooghi S, et al. Memantine augmentation improves symptoms in serotonin reuptake inhibitor-refractory obsessive-compulsive disorder: a randomized controlled trial. Pharmacopsychiatry. 2018;51(6):263–269. doi: 10.1055/s-0043-120268
  • Modarresi A, Chaibakhsh S, Koulaeinejad N, et al. A systematic review and meta-analysis: memantine augmentation in moderate to severe obsessive-compulsive disorder. Psychiatry Res. 2019;282:112602. doi: 10.1016/j.psychres.2019.112602
  • Grant JE, Chesivoir E, Valle S, et al. Double-blind placebo-controlled study of memantine in trichotillomania and skin-picking disorder. Am J Psychiatry. 2023;180(5):348–356. doi: 10.1176/appi.ajp.20220737
  • Anand A, Mathew SJ, Sanacora G, et al. Ketamine versus ECT for nonpsychotic treatment-resistant major depression. N Engl J Med. 2023;388(25):2315–2325. doi: 10.1056/NEJMoa2302399
  • Rodriguez CI, Kegeles LS, Flood P, et al. Rapid resolution of obsessions after an infusion of intravenous ketamine in a patient with treatment-resistant obsessive-compulsive disorder. J Clin Psychiatry. 2011;72(4):567–569. doi: 10.4088/JCP.10l06653
  • Rodriguez CI, Kegeles LS, Levinson A, et al. Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept. Neuropsychopharmacology. 2013;38(12):2475–2483. doi: 10.1038/npp.2013.150
  • Rodriguez CI, Kegeles LS, Levinson A, et al. In vivo effects of ketamine on glutamate-glutamine and gamma-aminobutyric acid in obsessive-compulsive disorder: proof of concept. Psychiatry Res. 2015;233(2):141–147. doi: 10.1016/j.pscychresns.2015.06.001
  • Sharma LP, Thamby A, Balachander S, et al. Clinical utility of repeated intravenous ketamine treatment for resistant obsessive-compulsive disorder. Asian J Psychiatr. 2020;52:102183. doi: 10.1016/j.ajp.2020.102183
  • Bloch MH, Wasylink S, Landeros-Weisenberger A, et al. Effects of ketamine in treatment-refractory obsessive-compulsive disorder. Biol Psychiatry. 2012;72(11):964–970. doi: 10.1016/j.biopsych.2012.05.028
  • Niciu MJ, Grunschel BD, Corlett PR, et al. Two cases of delayed-onset suicidal ideation, dysphoria and anxiety after ketamine infusion in patients with obsessive-compulsive disorder and a history of major depressive disorder. J Psychopharmacol. 2013;27(7):651–654. doi: 10.1177/0269881113486718
  • Adams TG, Bloch MH, Pittenger C. Intranasal ketamine and cognitive-behavioral therapy for treatment-refractory obsessive-compulsive disorder. J Clin Psychopharmacol. 2017;37(2):269–271. doi: 10.1097/JCP.0000000000000659
  • Rodriguez CI, Lapidus KAB, Zwerling J, et al. Challenges in testing intranasal ketamine in obsessive-compulsive disorder. J Clin Psychiatry. 2017;78(4):466–467. doi: 10.4088/JCP.16cr11234
  • Rodriguez CI, Wheaton M, Zwerling J, et al. Can exposure-based CBT extend the effects of intravenous ketamine in obsessive-compulsive disorder? an open-label trial. J Clin Psychiatry. 2016;77(3):408–409. doi: 10.4088/JCP.15l10138
  • Rodriguez CI, Levinson A, Zwerling J, et al. Open-label trial on the effects of memantine in adults with obsessive-compulsive disorder after a single ketamine infusion. J Clin Psychiatry. 2016;77(5):688–689. doi: 10.4088/JCP.15l10318
  • Alves-Pereira R, Fontes M, Cordeiro V, et al. Esketamine augmentation in treatment-resistant obsessive-compulsive disorder: a retrospective chart review. Clin Neuropharmacol. 2024;47(1):17–21. doi: 10.1097/WNF.0000000000000578
  • Matteo M, Cristian P, Laura M, et al. The use of esketamine in comorbid treatment resistant depression and obsessive compulsive disorder following extensive pharmacogenomic testing: a case report. Ann Gen Psychiatry. 2021;20(1):43. doi: 10.1186/s12991-021-00365-z
  • Kaltenboeck A, Foerster E, Strafner S, et al. Clinical case report: considerable improvement of severe and difficult-to-treat obsessive-compulsive disorder with comorbid depression under treatment with esketamine and concomitant psychotherapy. Front Psychiatry. 2023 [cited 2023 Nov 28];14:1291077. doi: 10.3389/fpsyt.2023.1291077
  • Stryjer R, Budnik D, Ebert T, et al. Amantadine augmentation therapy for obsessive compulsive patients resistant to SSRIs-an open-label study. Clin Neuropharmacol. 2014;37(3):79–81. doi: 10.1097/WNF.0000000000000029
  • Naderi S, Faghih H, Aqamolaei A, et al. Amantadine as adjuvant therapy in the treatment of moderate to severe obsessive-compulsive disorder: a double-blind randomized trial with placebo control. Psychiatry Clin Neurosci. 2019;73(4):169–174. doi: 10.1111/pcn.12803
  • Miranda AS, Miranda AS, Teixeira AL. Lamotrigine as a mood stabilizer: insights from the pre-clinical evidence. Expert Opin Drug Discov. 2019;14(2):179–190. doi: 10.1080/17460441.2019.1553951
  • Bruno A, Micò U, Pandolfo G, et al. Lamotrigine augmentation of serotonin reuptake inhibitors in treatment-resistant obsessive-compulsive disorder: a double-blind, placebo-controlled study. J Psychopharmacol. 2012;26(11):1456–1462. doi: 10.1177/0269881111431751
  • Khalkhali M, Aram S, Zarrabi H, et al. Lamotrigine augmentation versus placebo in serotonin reuptake inhibitors-resistant obsessive-compulsive disorder: a randomized controlled trial. Iran J Psychiatry. 2016;11(2):104–114.
  • Suhas S, Malo PK, Kumar V, et al. Treatment strategies for serotonin reuptake inhibitor-resistant obsessive-compulsive disorder: a network meta-analysis of randomised controlled trials. World J Biol Psychiatry. 2023;24(2):162–177. doi: 10.1080/15622975.2022.2082525
  • Mowla A, Khajeian AM, Sahraian A, et al. Topiramate augmentation in resistant OCD: a double-blind placebo-controlled clinical trial. CNS Spectr. 2010;15(11):613–617. doi: 10.1017/S1092852912000065
  • Berlin HA, Koran LM, Jenike MA, et al. Double-blind, placebo-controlled trial of topiramate augmentation in treatment-resistant obsessive-compulsive disorder. J Clin Psychiatry. 2011;72(5):716–721. doi: 10.4088/JCP.09m05266gre
  • Afshar H, Akuchekian S, Mahaky B, et al. Topiramate augmentation in refractory obsessive-compulsive disorder: a randomized, double-blind, placebo-controlled trial. J Res Med Sci. 2014;19(10):976–981.
  • Coric V, Taskiran S, Pittenger C, et al. Riluzole augmentation in treatment-resistant obsessive–compulsive disorder: an open-label trial. Biol Psychiatry. 2005;58(5):424–428. doi: 10.1016/j.biopsych.2005.04.043
  • Coric V, Milanovic S, Wasylink S, et al. Beneficial effects of the antiglutamatergic agent riluzole in a patient diagnosed with obsessive-compulsive disorder and major depressive disorder. Psychopharmacology (Berl). 2003;167(2):219–220. doi: 10.1007/s00213-003-1396-z
  • Pittenger C, Kelmendi B, Wasylink S, et al. Riluzole augmentation in treatment-refractory obsessive-compulsive disorder: a series of 13 cases, with long-term follow-up. J Clin Psychopharmacol. 2008;28(3):363–367. doi: 10.1097/JCP.0b013e3181727548
  • Pittenger C, Bloch MH, Wasylink S, et al. Riluzole augmentation in treatment-refractory obsessive-compulsive disorder: a pilot randomized placebo-controlled trial. J Clin Psychiatry. 2015;76(8):1075–1084. doi: 10.4088/JCP.14m09123
  • Emamzadehfard S, Kamaloo A, Paydary K, et al. Riluzole in augmentation of fluvoxamine for moderate to severe obsessive-compulsive disorder: randomized, double-blind, placebo-controlled study. Psychiatry Clin Neurosci. 2016;70(8):332–341. doi: 10.1111/pcn.12394
  • Grant P, Lougee L, Hirschtritt M, et al. An open-label trial of riluzole, a glutamate antagonist, in children with treatment-resistant obsessive-compulsive disorder. J Child Adolesc Psychopharmacol. 2007;17(6):761–767. doi: 10.1089/cap.2007.0021
  • Grant PJ, Joseph LA, Farmer CA, et al. 12-week, placebo-controlled trial of add-on riluzole in the treatment of childhood-onset obsessive–compulsive disorder. Neuropsychopharmacology. 2014;39(6):1453–1459. doi: 10.1038/npp.2013.343
  • Aguiar L. Adjunctive troriluzole, a novel glutamate modulator, in patients with obsessive-compulsive disorder: impact of baseline disease severity on treatment outcomes. CNS summit 2021: abstracts of poster presentations. (2021). Innov Clin Neurosci. 2021;18(10–12 Suppl 1):S5–S16.
  • Oulis P, Mourikis I, Konstantakopoulos G. Pregabalin augmentation in treatment-resistant obsessive–compulsive disorder. Int Clin Psychopharmacol. 2011;26(4):221–224. doi: 10.1097/YIC.0b013e3283466657
  • Mowla A, Ghaedsharaf M. Pregabalin augmentation for resistant obsessive-compulsive disorder: a double-blind placebo-controlled clinical trial. CNS Spectr. 2020;25(4):552–556. doi: 10.1017/S1092852919001500
  • Rodriguez CI, Bender JJ, Marcus SM, et al. Minocycline augmentation of pharmacotherapy in obsessive-compulsive disorder: an open-label trial. J Clin Psychiatry. 2010;71(9):1247–1249. doi: 10.4088/JCP.09l05805blu
  • Esalatmanesh S, Abrishami Z, Zeinoddini A, et al. Minocycline combination therapy with fluvoxamine in moderate-to-severe obsessive-compulsive disorder: a placebo-controlled, double-blind, randomized trial. Psychiatry Clin Neurosci. 2016;70(11):517–526. doi: 10.1111/pcn.12430
  • Sarris J, Byrne G, Castle D, et al. N-acetyl cysteine (NAC) augmentation in the treatment of obsessive-compulsive disorder: a phase III, 20-week, double-blind, randomized, placebo-controlled trial. Prog Neuropsychopharmacol Biol Psychiatry. 2022;117:110550. doi: 10.1016/j.pnpbp.2022.110550
  • Costa DLC, Diniz JB, Requena G, et al. Randomized, double-blind, placebo-controlled trial of N-Acetylcysteine augmentation for treatment-resistant obsessive-compulsive disorder. J Clin Psychiatry. 2017;78(7):e766–e773. doi: 10.4088/JCP.16m11101
  • Paydary K, Akamaloo A, Ahmadipour A, et al. N-acetylcysteine augmentation therapy for moderate-to-severe obsessive-compulsive disorder: randomized, double-blind, placebo-controlled trial. J Clin Pharm Ther. 2016;41(2):214–219. doi: 10.1111/jcpt.12370
  • Afshar H, Roohafza H, Mohammad-Beigi H, et al. N-acetylcysteine add-on treatment in refractory obsessive-compulsive disorder: a randomized, double-blind, placebo-controlled trial. J Clin Psychopharmacol. 2012;32(6):797–803. doi: 10.1097/JCP.0b013e318272677d
  • Greenberg WM, Benedict MM, Doerfer J, et al. Adjunctive glycine in the treatment of obsessive-compulsive disorder in adults. J Psychiatr Res. 2009;43(6):664–670. doi: 10.1016/j.jpsychires.2008.10.007
  • Wu PL, Tang HS, Lane HY, et al. Sarcosine therapy for obsessive compulsive disorder: a prospective, open-label study. J Clin Psychopharmacol. 2011;31(3):369–374. doi: 10.1097/JCP.0b013e3182189878
  • Rodriguez CI, Zwerling J, Kalanthroff E, et al. Effect of a novel NMDA receptor modulator, Rapastinel (formerly GLYX-13), in OCD: proof of concept. Am J Psychiatry. 2016;173(12):1239–1241. doi: 10.1176/appi.ajp.2016.16080868
  • Tabuteau H, Jones A, Anderson A, et al. Effect of AXS-05 (dextromethorphan-bupropion) in Major depressive disorder: a randomized double-blind controlled trial. Am J Psychiatry. 2022;179(7):490–499. doi: 10.1176/appi.ajp.21080800
  • Iosifescu DV, Jones A, O’Gorman C, et al. Efficacy and safety of AXS-05 (dextromethorphan-bupropion) in patients with major depressive disorder: a phase 3 randomized clinical trial (GEMINI). J Clin Psychiatry. 2022 [cited 2022 May 30];83(4):21m14345. doi: 10.4088/JCP.21m14345
  • Rech P, Custodio RM, Rodrigues Uggioni ML, et al. Use of nitrous oxide in the treatment of major depressive disorder and treatment-resistant major depressive disorder: a systematic review and meta-analysis nitrous oxide in depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2024;129:110869. doi: 10.1016/j.pnpbp.2023.110869
  • Grassi G, Cecchelli C, Vignozzi L, et al. Investigational and experimental drugs to treat obsessive-compulsive disorder. J Exp Pharmacol. 2021 [cited 2021 Jan 5];12:695–706. doi: 10.2147/JEP.S255375
  • Grassi G, Pallanti S. Current and up-and-coming pharmacotherapy for obsessive-compulsive disorder in adults. Expert Opin Pharmacother. 2018;19(14):1541–1550. doi: 10.1080/14656566.2018.1528230

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.