0
Views
0
CrossRef citations to date
0
Altmetric
Review

Promising animal models for amyotrophic lateral sclerosis drug discovery: a comprehensive update

&
Received 08 Mar 2024, Accepted 30 Jul 2024, Published online: 08 Aug 2024

References

  • Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001;344:1688–1700. doi: 10.1056/NEJM200105313442207
  • Mejzini R, Flynn LL, Pitout IL, et al. ALS genetics, mechanisms, and therapeutics: where are we Now? Front Neurosci. 2019;13:1310. doi: 10.3389/fnins.2019.01310
  • Boillée S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron. 2006;52(1):39–59. doi: 10.1016/j.neuron.2006.09.018
  • Brown RH, Al-Chalabi A, Longo DL. Amyotrophic lateral sclerosis. Longo DL, editor. N Engl J Med. 2017;377(2):162–172. doi: 10.1056/NEJMra1603471
  • Elamin M, Bede P, Byrne S, et al. Cognitive changes predict functional decline in ALS: a population-based longitudinal study. Neurology. 2013;80(17):1590–1597. doi: 10.1212/WNL.0b013e31828f18ac
  • Abrahams S. Neuropsychological impairment in amyotrophic lateral sclerosis–frontotemporal spectrum disorder. Nat Rev Neurol. 2023;19(11):655–667. doi: 10.1038/s41582-023-00878-z
  • Zou Z-Y, Zhou Z-R, Che C-H, et al. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2017;88(7):540–549. doi: 10.1136/jnnp-2016-315018
  • Wang H, Guan L, Deng M. Recent progress of the genetics of amyotrophic lateral sclerosis and challenges of gene therapy. Front Neurosci. 2023;17:1170996.
  • Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole study group. N Engl J Med. 1994;330(9):585–591. doi: 10.1056/NEJM199403033300901
  • Abe K, Itoyama Y, Sobue G, et al. Confirmatory double-blind, parallel-group, placebo-controlled study of efficacy and safety of edaravone (MCI-186) in amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15(7–8):610–617. doi: 10.3109/21678421.2014.959024
  • Paganoni S, Macklin EA, Hendrix S, et al. Trial of sodium phenylbutyrate–taurursodiol for amyotrophic lateral sclerosis. N Engl J Med. 2020;383(10):919–930. doi: 10.1056/NEJMoa1916945
  • Miller TM, Cudkowicz ME, Genge A, et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med. 2022;387(12):1099–1110. doi: 10.1056/NEJMoa2204705
  • Benatar M, Wuu J, Andersen PM, et al. Design of a randomized, placebo-controlled, phase 3 trial of tofersen initiated in clinically presymptomatic SOD1 variant carriers: the ATLAS study. Neurotherapeutics. 2022;19(4):1248–1258. doi: 10.1007/s13311-022-01237-4
  • Van Daele SH, Masrori P, Van Damme P, et al. The sense of antisense therapies in ALS. Trends Mol Med. 2024;S1471491423002836(3):252–262. doi: 10.1016/j.molmed.2023.12.003
  • Mathis S, Goizet C, Soulages A, et al. Genetics of amyotrophic lateral sclerosis: a review. J Neurol Sci. 2019;399:217–226. doi: 10.1016/j.jns.2019.02.030
  • Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–268. doi: 10.1016/j.neuron.2011.09.010
  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–256. doi: 10.1016/j.neuron.2011.09.011
  • van der Zee J, Gijselinck I, Dillen L, et al. A pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Hum Mutat. 2013;34(2):363–373. doi: 10.1002/humu.22244
  • Gendron TF, Belzil VV, Zhang Y-J, et al. Mechanisms of toxicity in C9FTLD/ALS. Acta Neuropathol. 2014;127:359–376. doi: 10.1007/s00401-013-1237-z
  • Haeusler AR, Donnelly CJ, Periz G, et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature. 2014;507(7491):195–200. doi: 10.1038/nature13124
  • Levine TP, Daniels RD, Gatta AT, et al. The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN rab-GEFs. Bioinformatics. 2013;29(4):499–503. doi: 10.1093/bioinformatics/bts725
  • Zhang D, Iyer LM, He F, et al. Discovery of novel DENN proteins: implications for the evolution of eukaryotic intracellular membrane structures and human disease. Front Genet. 2012;3:283. doi: 10.3389/fgene.2012.00283
  • Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59–62. doi: 10.1038/362059a0
  • Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 1994;264(5166):1772–1775. doi: 10.1126/science.8209258
  • Niwa J, Yamada S, Ishigaki S, et al. Disulfide bond mediates aggregation, toxicity, and ubiquitylation of familial amyotrophic lateral sclerosis-linked mutant SOD1. J Biol Chem. 2007;282(38):28087–28095. doi: 10.1074/jbc.M704465200
  • Crow JP, Ye YZ, Strong M, et al. Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J Neurochem. 1997;69(5):1945–1953. doi: 10.1046/j.1471-4159.1997.69051945.x
  • Higgins CMJ, Jung C, Ding H, et al. Mutant Cu, Zn superoxide dismutase that causes motoneuron degeneration is present in mitochondria in the CNS. J Neurosci. 2002;22(6):RC215–RC215. doi: 10.1523/JNEUROSCI.22-06-j0001.2002
  • Spreux-Varoquaux O, Bensimon G, Lacomblez L, et al. Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci. 2002;193(2):73–78. doi: 10.1016/S0022-510X(01)00661-X
  • Ligon LA, LaMonte BH, Wallace KE, et al. Mutant superoxide dismutase disrupts cytoplasmic dynein in motor neurons. Neuroreport. 2005;16(6):533–536. doi: 10.1097/00001756-200504250-00002
  • Sreedharan J, Blair IP, Tripathi VB, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319(5870):1668–1672. doi: 10.1126/science.1154584
  • Ayala YM, Pantano S, D’Ambrogio A, et al. Human, drosophila, and C.Elegans TDP43: nucleic acid binding properties and splicing regulatory function. J Mol Biol. 2005;348(3):575–588. doi: 10.1016/j.jmb.2005.02.038
  • Lagier-Tourenne C, Polymenidou M, Cleveland DW. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet. 2010;19(R1):R46–R64. doi: 10.1093/hmg/ddq137
  • Arai T, Hasegawa M, Akiyama H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351(3):602–611. doi: 10.1016/j.bbrc.2006.10.093
  • Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130–133. doi: 10.1126/science.1134108
  • Vance C, Rogelj B, Hortobágyi T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323(5918):1208–1211. doi: 10.1126/science.1165942
  • Kwiatkowski TJ, Bosco DA, Leclerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):1205–1208. doi: 10.1126/science.1166066
  • Bosco DA, Lemay N, Ko HK, et al. Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum Mol Genet. 2010;19(21):4160–4175. doi: 10.1093/hmg/ddq335
  • Rademakers R, Stewart H, Dejesus-Hernandez M, et al. Fus gene mutations in familial and sporadic amyotrophic lateral sclerosis. Muscle Nerve. 2010;42(2):170–176. doi: 10.1002/mus.21665
  • Lagier-Tourenne C, Polymenidou M, Hutt KR, et al. Divergent roles of als-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci. 2012;15(11):1488–1497. doi: 10.1038/nn.3230
  • Lattante S, Rouleau GA, Kabashi E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat. 2013;34(6):812–826. doi: 10.1002/humu.22319
  • Qiu H, Lee S, Shang Y, et al. Als-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. J Clin Invest. 2014;124(3):981–999. doi: 10.1172/JCI72723
  • Naumann M, Pal A, Goswami A, et al. Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nat Commun. 2018;9(1):335. doi: 10.1038/s41467-017-02299-1
  • Ward S, Thomson N, White JG, et al. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode caenorhabditis elegans.?2UU. J Comp Neurol. 1975;160(3):313–337. doi: 10.1002/cne.901600305
  • Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977;56(1):110–156. doi: 10.1016/0012-1606(77)90158-0
  • White JG, Southgate E, Thomson JN, et al. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1986;314:1–340.
  • Mulcahy B, Witvliet D, Holmyard D, et al. A pipeline for volume electron microscopy of the Caenorhabditis elegans nervous system. Front Neural Circuits. 2018;12:94. doi: 10.3389/fncir.2018.00094
  • Shaye DD, Greenwald I, Iijima KM. OrthoList: a compendium of C. elegans genes with human orthologs. PLOS ONE. 2011;6(5):e20085. doi: 10.1371/journal.pone.0020085
  • Wu Y, Chen Y, Yu X, et al. Towards understanding neurodegenerative diseases: insights from Caenorhabditis elegans. Int J Mol Sci. 2023;25(1):443. doi: 10.3390/ijms25010443
  • Baskoylu SN, Yersak J, O’Hern P, et al. Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration. PLOS Genet. 2018;14(10):e1007682. doi: 10.1371/journal.pgen.1007682
  • Gidalevitz T, Krupinski T, Garcia S, et al. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. Orr H, editor. PLOS Genet. 2009;5(3):e1000399. doi: 10.1371/journal.pgen.1000399
  • Wang J, Farr GW, Hall DH, et al. An ALS-Linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. Cox GA, editor. PLOS Genet. 2009;5(1):e1000350. doi: 10.1371/journal.pgen.1000350
  • Boccitto M, Lamitina T, Kalb RG, et al. Daf-2 signaling modifies mutant SOD1 toxicity in C. elegans. Blagosklonny MV, editor. PLOS ONE. 2012;7(3):e33494. doi: 10.1371/journal.pone.0033494
  • Li J, Huang K, Le W. Establishing a novel C. elegans model to investigate the role of autophagy in amyotrophic lateral sclerosis. Acta Pharmacol Sin. 2013;34(5):644–650. doi: 10.1038/aps.2012.190
  • Li J, Li T, Zhang X, et al. Human superoxide dismutase 1 overexpression in motor neurons of Caenorhabditis elegans causes axon guidance defect and neurodegeneration. Neurobiol Aging. 2014;35(4):837–846. doi: 10.1016/j.neurobiolaging.2013.09.003
  • Xu H, Jia C, Cheng C, et al. Activation of autophagy attenuates motor deficits and extends lifespan in a C. elegans model of ALS. Free Radic Biol Med. 2022;181:52–61. doi: 10.1016/j.freeradbiomed.2022.01.030
  • Doonan R, McElwee JJ, Matthijssens F, et al. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 2008;22(23):3236–3241. doi: 10.1101/gad.504808
  • Liachko NF, Guthrie CR, Kraemer BC. Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy. J Neurosci. 2010;30(48):16208–16219. doi: 10.1523/JNEUROSCI.2911-10.2010
  • Zhang T, Mullane PC, Periz G, et al. TDP-43 neurotoxicity and protein aggregation modulated by heat shock factor and insulin/IGF-1 signaling. Hum Mol Genet. 2011;20(10):1952–1965. doi: 10.1093/hmg/ddr076
  • Liachko NF, Saxton AD, McMillan PJ, et al. The phosphatase calcineurin regulates pathological TDP-43 phosphorylation. Acta Neuropathol. 2016;132(4):545–561. doi: 10.1007/s00401-016-1600-y
  • Ash PEA, Zhang Y-J, Roberts CM, et al. Neurotoxic effects of TDP-43 overexpression in C. elegans. Hum Mol Genet. 2010;19(16):3206–3218. doi: 10.1093/hmg/ddq230
  • Zhang T, Hwang H-Y, Hao H, et al. Caenorhabditis elegans RNA-processing protein TDP-1 regulates protein homeostasis and life span. J Biol Chem. 2012;287(11):8371–8382. doi: 10.1074/jbc.M111.311977
  • Saldi TK, Ash PE, Wilson G, et al. TDP -1, the C aenorhabditis elegans ortholog of TDP -43, limits the accumulation of double-stranded RNA. Embo J. 2014;33(24):2947–2966. doi: 10.15252/embj.201488740.
  • Saldi TK, Gonzales P, Garrido-Lecca A, et al. The Caenorhabditis elegans ortholog of TDP-43 regulates the chromatin localization of the heterochromatin protein 1 homolog HPL-2. Mol Cell Biol. 2018;38(15):e00668–17. doi: 10.1128/MCB.00668-17
  • Vaccaro A, Patten SA, Ciura S, et al. Methylene blue protects against TDP-43 and FUS neuronal toxicity in C. elegans and D. rerio. Le W, editor. PLOS ONE. 2012;7(7):e42117. doi: 10.1371/journal.pone.0042117
  • Vaccaro A, Tauffenberger A, Aggad D, et al. Mutant TDP-43 and FUS cause age-dependent paralysis and neurodegeneration in C. elegans. Petrucelli L, editor. PLOS ONE. 2012;7(2):e31321. doi: 10.1371/journal.pone.0031321
  • Vaccaro A, Patten SA, Aggad D, et al. Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo. Neurobiol Dis. 2013;55:64–75. doi: 10.1016/j.nbd.2013.03.015
  • Murakami T, Yang S-P, Xie L, et al. ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism. Hum Mol Genet. 2012;21(1):1–9. doi: 10.1093/hmg/ddr417
  • Markert SM, Skoruppa M, Yu B, et al. Overexpression of an als-associated FUS mutation in C. elegans disrupts NMJ morphology and leads to defective neuromuscular transmission. Biol Open. 2020:bio.055129. doi: 10.1242/bio.055129
  • Labarre A, Tossing G, Maios C, et al. A single copy transgenic mutant FUS strain reproduces age-dependent ALS phenotypes in C. elegans. MicroPubl Biol. 2021;2021. doi: 10.17912/micropub.biology.000473
  • Baskoylu SN, Chapkis N, Unsal B, et al. Disrupted autophagy and neuronal dysfunction in C. elegans knockin models of FUS amyotrophic lateral sclerosis. Cell Rep. 2022;38(4):110195. doi: 10.1016/j.celrep.2021.110195
  • Therrien M, Rouleau GA, Dion PA, et al. FET proteins regulate lifespan and neuronal integrity. Sci Rep. 2016;6(1):25159. doi: 10.1038/srep25159
  • Therrien M, Rouleau GA, Dion PA, et al. Deletion of C9ORF72 results in motor neuron degeneration and stress sensitivity in C. elegans. PLOS ONE. 2013;8(12):e83450. doi: 10.1371/journal.pone.0083450
  • Corrionero A, Horvitz HR. A C9orf72 ALS/FTD ortholog acts in endolysosomal degradation and lysosomal homeostasis. Curr Biol. 2018;28(10):1522–1535.e5. doi: 10.1016/j.cub.2018.03.063
  • Amick J, Roczniak-Ferguson A, Ferguson SM, et al. C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling. Mol Biol Cell. 2016;27(20):3040–3051. doi: 10.1091/mbc.e16-01-0003
  • Sonobe Y, Aburas J, Krishnan G, et al. A C. elegans model of C9orf72-associated ALS/FTD uncovers a conserved role for eIF2D in RAN translation. Nat Commun. 2021;12(1):6025. doi: 10.1038/s41467-021-26303-x
  • Lamitina T. Length-dependent RNA foci formation and repeat associated non-aug dependent translation in a C. elegans G 4 C 2 model. Micro Publ Biol. 2022;2022. doi: 10.17912/micropub.biology.000600
  • Rudich P, Snoznik C, Watkins SC, et al. Nuclear localized C9orf72-associated arginine-containing dipeptides exhibit age-dependent toxicity in C. elegans. Hum Mol Genet. 2017;26(24):4916–4928. doi: 10.1093/hmg/ddx372
  • Ashburner M, Bergman CM. Drosophila melanogaster: a case study of a model genomic sequence and its consequences: fi gu re 1. Genome Res. 2005;15(12):1661–1667. doi: 10.1101/gr.3726705
  • Hales KG, Korey CA, Larracuente AM, et al. Genetics on the fly: a primer on the Drosophila model system. Genetics. 2015;201(3):815–842. doi: 10.1534/genetics.115.183392
  • Adams MD, Celniker SE, Holt RA, et al. The genome sequence of drosophila melanogaster. Science. 2000;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185
  • Myers EW, Sutton GG, Delcher AL, et al. A whole-genome assembly of drosophila. Science. 2000;287(5461):2196–2204. doi: 10.1126/science.287.5461.2196
  • Reiter LT, Potocki L, Chien S, et al. A systematic analysis of human disease-associated gene sequences in drosophila melanogaster. Genome Res. 2001;11(6):1114–1125. doi: 10.1101/gr.169101
  • Pandey UB, Nichols CD, Barker EL. Human disease models in drosophila melanogaster and the role of the fly in therapeutic drug discovery. Barker EL, editor. Pharmacol Rev. 2011;63(2):411–436. doi: 10.1124/pr.110.003293
  • Lloyd TE, Verstreken P, Ostrin EJ, et al. A genome-wide search for synaptic vesicle cycle proteins in drosophila. Neuron. 2000;26(1):45–50. doi: 10.1016/S0896-6273(00)81136-8
  • Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993;118(2):401–415. doi: 10.1242/dev.118.2.401
  • McGuire SE, Mao Z, Davis RL. Spatiotemporal gene expression targeting with the TARGET and Gene-switch systems in drosophila. Sci STKE [Internet]. 2004 [cited 2024 Feb 5]. Available from: https://www.science.org/doi/10.1126/stke.2202004pl6
  • Dietzl G, Chen D, Schnorrer F, et al. A genome-wide transgenic RNAi library for conditional gene inactivation in drosophila. Nature. 2007;448(7150):151–156. doi: 10.1038/nature05954
  • Casci I, Pandey UB. A fruitful endeavor: modeling ALS in the fruit fly. Brain Res. 2015;1607:47–74. doi: 10.1016/j.brainres.2014.09.064
  • Layalle S, They L, Ourghani S, et al. Amyotrophic lateral sclerosis genes in drosophila melanogaster. IJMS. 2021;22(2):904. doi: 10.3390/ijms22020904
  • Phillips JP, Campbell SD, Michaud D, et al. Null mutation of copper/zinc superoxide dismutase in drosophila confers hypersensitivity to paraquat and reduced longevity. Proc Natl Acad Sci USA. 1989;86(8):2761–2765. doi: 10.1073/pnas.86.8.2761
  • Parkes TL, Elia AJ, Dickinson D, et al. Extension of drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet. 1998;19(2):171–174. doi: 10.1038/534
  • Watson MR, Lagow RD, Xu K, et al. A drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1. J Biol Chem. 2008;283(36):24972–24981. doi: 10.1074/jbc.M804817200
  • Islam R, Kumimoto EL, Bao H, et al. Als-linked SOD1 in glial cells enhances ß-N-Methylamino L-Alanine (bmaa)-induced toxicity in drosophila. F1000Res. 2012;1:47. doi: 10.12688/f1000research.1-47.v1
  • Kumimoto EL, Fore TR, Zhang B. Transcriptome profiling following neuronal and glial expression of ALS-Linked SOD1 in drosophila. G3 (Bethesda). 2013;3(4):695–708. doi: 10.1534/g3.113.005850
  • Gallart-Palau X, Ng C-H, Ribera J, et al. Drosophila expressing human SOD1 successfully recapitulates mitochondrial phenotypic features of familial amyotrophic lateral sclerosis. Neurosci Lett. 2016;624:47–52. doi: 10.1016/j.neulet.2016.05.006
  • Şahin A, Held A, Bredvik K, et al. Human SOD1 ALS mutations in a drosophila knock-in model cause severe phenotypes and reveal dosage-sensitive gain- and loss-of-function components. Genetics. 2017;205(2):707–723. doi: 10.1534/genetics.116.190850
  • Held A, Major P, Sahin A, et al. Circuit dysfunction in SOD1-ALS model first detected in sensory feedback prior to motor neuron degeneration is alleviated by BMP signaling. J Neurosci. 2019;39(12):2347–2364. doi: 10.1523/JNEUROSCI.1771-18.2019
  • Feiguin F, Godena VK, Romano G, et al. Depletion of TDP‐43 affects drosophila motoneurons terminal synapsis and locomotive behavior. FEBS Lett. 2009;583(10):1586–1592. doi: 10.1016/j.febslet.2009.04.019
  • Lu Y, Ferris J, Gao F-B. Frontotemporal dementia and amyotrophic lateral sclerosis-associated disease protein TDP-43 promotes dendritic branching. Mol Brain. 2009;2(1):30. doi: 10.1186/1756-6606-2-30
  • Lin M-J, Cheng C-W, Shen C-K, et al. Neuronal function and dysfunction of drosophila dTDP. Marion-poll F, editor. PLOS ONE. 2011;6(6):e20371. doi: 10.1371/journal.pone.0020371
  • Diaper DC, Adachi Y, Sutcliffe B, et al. Loss and gain of drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes. Hum Mol Genet. 2013;22(8):1539–1557. doi: 10.1093/hmg/ddt005
  • Chang J-C, Hazelett DJ, Stewart JA, et al. Motor neuron expression of the voltage-gated calcium channel cacophony restores locomotion defects in a drosophila, TDP-43 loss of function model of ALS. Brain Res. 2014;1584:39–51. doi: 10.1016/j.brainres.2013.11.019
  • Donde A, Sun M, Ling JP, et al. Splicing repression is a major function of TDP-43 in motor neurons. Acta Neuropathol. 2019;138(5):813–826. doi: 10.1007/s00401-019-02042-8
  • Voigt A, Herholz D, Fiesel FC, et al. TDP-43-Mediated neuron loss in vivo requires RNA-Binding activity. Feany MB, editor. PLOS ONE. 2010;5(8):e12247. doi: 10.1371/journal.pone.0012247
  • Ritson GP, Custer SK, Freibaum BD, et al. TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J Neurosci. 2010;30(22):7729–7739. doi: 10.1523/JNEUROSCI.5894-09.2010
  • Li Y, Ray P, Rao EJ, et al. A drosophila model for TDP-43 proteinopathy. Proc Natl Acad Sci USA. 2010;107(7):3169–3174. doi: 10.1073/pnas.0913602107
  • Ihara R, Matsukawa K, Nagata Y, et al. RNA binding mediates neurotoxicity in the transgenic drosophila model of TDP-43 proteinopathy. Hum Mol Genet. 2013;22(22):4474–4484. doi: 10.1093/hmg/ddt296
  • Estes PS, Daniel SG, Mccallum AP, et al. Motor neurons and glia exhibit specific individualized responses to TDP-43 expression in a drosophila model of amyotrophic lateral sclerosis. Disease Model Mechanisms. 2013:dmm.010710. doi: 10.1242/dmm.010710
  • Romano G, Klima R, Buratti E, et al. Chronological requirements of TDP-43 function in synaptic organization and locomotive control. Neurobiol Dis. 2014;71:95–109. doi: 10.1016/j.nbd.2014.07.007
  • Sreedharan J, Neukomm LJ, Brown RH, et al. Age-dependent TDP-43-Mediated motor neuron degeneration requires GSK3, hat-trick, and xmas-2. Curr Biol. 2015;25(16):2130–2136. doi: 10.1016/j.cub.2015.06.045
  • Chen Y, Yang M, Deng J, et al. Expression of human FUS protein in drosophila leads to progressive neurodegeneration. Protein Cell. 2011;2(6):477–486. doi: 10.1007/s13238-011-1065-7
  • Lanson NA, Maltare A, King H, et al. A drosophila model of fus-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Hum Mol Genet. 2011;20(13):2510–2523. doi: 10.1093/hmg/ddr150
  • Wang J-W, Brent JR, Tomlinson A, et al. The als-associated proteins FUS and TDP-43 function together to affect drosophila locomotion and life span. J Clin Invest. 2011;121(10):4118–4126. doi: 10.1172/JCI57883
  • Xia R, Liu Y, Yang L, et al. Motor neuron apoptosis and neuromuscular junction perturbation are prominent features in a Drosophila model of Fus-mediated ALS. Mol Neurodegener. 2012;7(1):10. doi: 10.1186/1750-1326-7-10
  • Bogaert E, Boeynaems S, Kato M, et al. Molecular dissection of FUS points at synergistic effect of low-complexity domains in toxicity. Cell Rep. 2018;24(3):529–537.e4. doi: 10.1016/j.celrep.2018.06.070
  • Machamer JB, Collins SE, Lloyd TE. The ALS gene FUS regulates synaptic transmission at the drosophila neuromuscular junction. Hum Mol Genet. 2014;23(14):3810–3822. doi: 10.1093/hmg/ddu094
  • Shahidullah M, Le Marchand SJ, Fei H, et al. Defects in synapse structure and function precede motor neuron degeneration in drosophila models of FUS-Related ALS. J Neurosci. 2013;33(50):19590–19598. doi: 10.1523/JNEUROSCI.3396-13.2013
  • Deng J, Yang M, Chen Y, et al. FUS interacts with HSP60 to promote mitochondrial damage. Lu B,editor. PLOS Genet. 2015;11(9):e1005357. doi: 10.1371/journal.pgen.1005357
  • Altanbyek V, Cha S-J, Kang G-U, et al. Imbalance of mitochondrial dynamics in drosophila models of amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2016;481(3–4):259–264. doi: 10.1016/j.bbrc.2016.10.134
  • Sasayama H, Shimamura M, Tokuda T, et al. Knockdown of the drosophila fused in sarcoma (FUS) homologue causes deficient locomotive behavior and shortening of motoneuron terminal branches. PLOS ONE. 2012;7(6):e39483. doi: 10.1371/journal.pone.0039483
  • Shimamura M, Kyotani A, Azuma Y, et al. Genetic link between cabeza, a Drosophila homologue of fused in sarcoma (FUS), and the EGFR signaling pathway. Exp Cell Res. 2014;326(1):36–45. doi: 10.1016/j.yexcr.2014.06.004
  • Frickenhaus M, Wagner M, Mallik M, et al. Highly efficient cell-type-specific gene inactivation reveals a key function for the drosophila FUS homolog cabeza in neurons. Sci Rep. 2015;5(1):9107. doi: 10.1038/srep09107
  • Xu Z, Poidevin M, Li X, et al. Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc Natl Acad Sci USA. 2013;110(19):7778–7783. doi: 10.1073/pnas.1219643110
  • Burguete AS, Almeida S, Gao F-B, et al. GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function. Elife. 2015;4:e08881. doi: 10.7554/eLife.08881
  • Tran H, Almeida S, Moore J, et al. Differential toxicity of nuclear RNA foci versus dipeptide repeat proteins in a Drosophila model of C9ORF72 FTD/ALS. Neuron. 2015;87(6):1207–1214. doi: 10.1016/j.neuron.2015.09.015
  • Sharpe JL, Harper NS, Garner DR, et al. Modeling C9orf72-related frontotemporal dementia and amyotrophic lateral sclerosis in drosophila. Front Cell Neurosci. 2021;15:770937. doi: 10.3389/fncel.2021.770937
  • Mizielinska S, Grönke S, Niccoli T, et al. C9orf72 repeat expansions cause neurodegeneration in drosophila through arginine-rich proteins. Science. 2014;345(6201):1192–1194. doi: 10.1126/science.1256800
  • Wen X, Tan W, Westergard T, et al. Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron. 2014;84(6):1213–1225. doi: 10.1016/j.neuron.2014.12.010
  • Yang D, Abdallah A, Li Z, et al. Ftd/als-associated poly(gr) protein impairs the notch pathway and is recruited by poly(ga) into cytoplasmic inclusions. Acta Neuropathol. 2015;130(4):525–535. doi: 10.1007/s00401-015-1448-6
  • Lee K-H, Zhang P, Kim HJ, et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell. 2016;167(3):774–788.e17. doi: 10.1016/j.cell.2016.10.002
  • Morón-Oset J, Supèr T, Esser J, et al. Glycine-alanine dipeptide repeats spread rapidly in a repeat length- and age-dependent manner in the fly brain. Acta Neuropathol Commun. 2019;7(1):209. doi: 10.1186/s40478-019-0860-x
  • Goodman LD, Prudencio M, Kramer NJ, et al. Toxic expanded GGGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD. Nat Neurosci. 2019;22(6):863–874. doi: 10.1038/s41593-019-0396-1
  • Moens TG, Niccoli T, Wilson KM, et al. C9orf72 arginine-rich dipeptide proteins interact with ribosomal proteins in vivo to induce a toxic translational arrest that is rescued by eIF1A. Acta Neuropathol. 2019;137(3):487–500. doi: 10.1007/s00401-018-1946-4
  • Atilano ML, Grönke S, Niccoli T, et al. Enhanced insulin signalling ameliorates C9orf72 hexanucleotide repeat expansion toxicity in drosophila. Elife. 2021;10:e58565. doi: 10.7554/eLife.58565
  • West RJH, Sharpe JL, Voelzmann A, et al. Co-expression of C9orf72 related dipeptide-repeats over 1000 repeat units reveals age- and combination-specific phenotypic profiles in drosophila. Acta Neuropathol Commun. 2020;8(1):158. doi: 10.1186/s40478-020-01028-y
  • Freibaum BD, Lu Y, Lopez-Gonzalez R, et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature. 2015;525(7567):129–133. doi: 10.1038/nature14974
  • Perry S, Han Y, Das A, et al. Homeostatic plasticity can be induced and expressed to restore synaptic strength at neuromuscular junctions undergoing als-related degeneration. Hum Mol Genet. 2017;26(21):4153–4167. doi: 10.1093/hmg/ddx304
  • Li S, Wu Z, Li Y, et al. Altered MICOS morphology and mitochondrial ion homeostasis contribute to Poly(GR) toxicity associated with C9-ALS/FTD. Cell Rep. 2020;32(5):107989. doi: 10.1016/j.celrep.2020.107989
  • Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov. 2005;4(1):35–44. doi: 10.1038/nrd1606
  • Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov. 2021;20(8):611–628. doi: 10.1038/s41573-021-00210-8
  • Singh J, Patten SA. Modeling neuromuscular diseases in zebrafish. Front Mol Neurosci. 2022;15:1054573. doi: 10.3389/fnmol.2022.1054573
  • Lescouzères L, Hassen-Khodja C, Baudot A, et al. A multilevel screening pipeline in zebrafish identifies therapeutic drugs for GAN. EMBO Mol Med. 2023;15(7):e16267. doi: 10.15252/emmm.202216267
  • Barbazuk WB, Korf I, Kadavi C. The syntenic relationship of the zebrafish and human genomes. Genome Res. 2000;10(9):1351–1358. doi: 10.1101/gr.144700
  • Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498–503. doi: 10.1038/nature12111
  • Lescouzères L, Bordignon B, Bomont P. Development of a high-throughput tailored imaging method in zebrafish to understand and treat neuromuscular diseases. Front Mol Neurosci. 2022;15:956582. doi: 10.3389/fnmol.2022.956582
  • Singh J, Pan YE, Patten SA, et al. NMJ analyser: a novel method to quantify neuromuscular junction morphology in zebrafish. Martelli PL, editor. Bioinformatics. 2023;39(12):btad720. doi: 10.1093/bioinformatics/btad720
  • Eisen JS, Smith JC. Controlling morpholino experiments: don’t stop making antisense. Development. 2008;135(10):1735–1743. doi: 10.1242/dev.001115
  • Schmid B, Haass C. Genomic editing opens new avenues for zebrafish as a model for neurodegeneration. J Neurochem. 2013;127(4):461–470. doi: 10.1111/jnc.12460
  • Kawakami K, Asakawa K, Hibi M, et al. Gal4 driver transgenic zebrafish. Advances in genetics [Internet]. Elsevier; 2016 [cited 2024 Feb 26]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0065266016300207
  • Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31(3):227–229. doi: 10.1038/nbt.2501
  • Armstrong GAB, Liao M, You Z, et al. Homology directed knockin of point mutations in the zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system. PLOS ONE. 2016;11(3):e0150188. doi: 10.1371/journal.pone.0150188
  • Albadri S, Del Bene F, Revenu C. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Methods. 2017;121–122:77–85. doi: 10.1016/j.ymeth.2017.03.005
  • Rosello M, Serafini M, Concordet J-P, et al. Precise mutagenesis in zebrafish using cytosine base editors. Nat Protoc. 2023;18(9):2794–2813. doi: 10.1038/s41596-023-00854-3
  • Ramesh T, Lyon AN, Pineda RH, et al. A genetic model of amyotrophic lateral sclerosis in zebrafish displays phenotypic hallmarks of motoneuron disease. Dis Model Mech. 2010;3(9–10):652–662. doi: 10.1242/dmm.005538
  • Sakowski SA, Lunn JS, Busta AS, et al. Neuromuscular effects of G93A-SOD1 expression in zebrafish. Mol Neurodegener. 2012;7(1):44. doi: 10.1186/1750-1326-7-44
  • Lemmens R, Van Hoecke A, Hersmus N, et al. Overexpression of mutant superoxide dismutase 1 causes a motor axonopathy in the zebrafish. Hum Mol Genet. 2007;16(19):2359–2365. doi: 10.1093/hmg/ddm193
  • Da Costa MMJ, Allen CE, Higginbottom A, et al. A new zebrafish model produced by TILLING of SOD1-related amyotrophic lateral sclerosis replicates key features of the disease and represents a tool for in vivo therapeutic screening. Dis Model Mech. 2014;7:73–81. doi: 10.1242/dmm.012013
  • McGown A, McDearmid JR, Panagiotaki N, et al. Early interneuron dysfunction in ALS: insights from a mutant sod1 zebrafish model. Ann Neurol. 2013;73(2):246–258. doi: 10.1002/ana.23780
  • Laird AS, Van Hoecke A, De Muynck L, et al. Progranulin is neurotrophic in vivo and protects against a mutant TDP-43 induced axonopathy. PLOS ONE. 2010;5(10):e13368. doi: 10.1371/journal.pone.0013368
  • Kabashi E, Lin L, Tradewell ML, et al. Gain and loss of function of als-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet. 2010;19(4):671–683. doi: 10.1093/hmg/ddp534
  • Schmid B, Hruscha A, Hogl S, et al. Loss of als-associated TDP-43 in zebrafish causes muscle degeneration, vascular dysfunction, and reduced motor neuron axon outgrowth. Proc Natl Acad Sci USA. 2013;110(13):4986–4991. doi: 10.1073/pnas.1218311110
  • Hewamadduma CAA, Grierson AJ, Ma TP, et al. Tardbpl splicing rescues motor neuron and axonal development in a mutant tardbp zebrafish. Hum Mol Genet. 2013;22(12):2376–2386. doi: 10.1093/hmg/ddt082
  • Dormann D, Rodde R, Edbauer D, et al. Als-associated fused in sarcoma (FUS) mutations disrupt transportin-mediated nuclear import. Embo J. 2010;29(16):2841–2857. doi: 10.1038/emboj.2010.143
  • Acosta JR, Goldsbury C, Winnick C, et al. Mutant human FUS is ubiquitously mislocalized and generates persistent stress granules in primary cultured transgenic zebrafish cells. Coulson EJ, editor. PLOS ONE. 2014;9(6):e90572. doi: 10.1371/journal.pone.0090572
  • Kabashi E, Bercier V, Lissouba A, et al. FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis. PLOS Genet. 2011;7(8):e1002214. doi: 10.1371/journal.pgen.1002214
  • Armstrong GAB, Drapeau P. Loss and gain of FUS function impair neuromuscular synaptic transmission in a genetic model of ALS. Hum Mol Genet. 2013;22(21):4282–4292. doi: 10.1093/hmg/ddt278
  • Lebedeva S, de Jesus Domingues AM, Butter F, et al. Characterization of genetic loss-of-function of fus in zebrafish. RNA Biol. 2017;14(1):29–35. doi: 10.1080/15476286.2016.1256532
  • Bourefis A-R, Campanari M-L, Buee-Scherrer V, et al. Functional characterization of a FUS mutant zebrafish line as a novel genetic model for ALS. Neurobiol Dis. 2020;142:104935. doi: 10.1016/j.nbd.2020.104935
  • Fortier G, Butti Z, Patten SA. Modelling C9orf72-related amyotrophic lateral sclerosis in zebrafish. Biomedicines. 2020;8(10):440. doi: 10.3390/biomedicines8100440
  • Lee Y-B, Chen H-J, Peres JN, et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 2013;5(5):1178–1186. doi: 10.1016/j.celrep.2013.10.049
  • Swinnen B, Bento-Abreu A, Gendron TF, et al. A zebrafish model for C9orf72 ALS reveals RNA toxicity as a pathogenic mechanism. Acta Neuropathol. 2018;135(3):427–443. doi: 10.1007/s00401-017-1796-5
  • Ohki Y, Wenninger-Weinzierl A, Hruscha A, et al. Glycine-alanine dipeptide repeat protein contributes to toxicity in a zebrafish model of C9orf72 associated neurodegeneration. Mol Neurodegener. 2017;12(1):6. doi: 10.1186/s13024-016-0146-8
  • Swaminathan A, Bouffard M, Liao M, et al. Expression of C9orf72-related dipeptides impairs motor function in a vertebrate model. Hum Mol Genet. 2018;27(10):1754–1762. doi: 10.1093/hmg/ddy083
  • Shaw MP, Higginbottom A, McGown A, et al. Stable transgenic C9orf72 zebrafish model key aspects of the ALS/FTD phenotype and reveal novel pathological features. Acta Neuropathol Commun. 2018;6(1):125. doi: 10.1186/s40478-018-0629-7
  • Ciura S, Lattante S, Le Ber I, et al. Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann Neurol. 2013;74(2):180–187. doi: 10.1002/ana.23946
  • Yeh T-H, Liu H-F, Li Y-W, et al. C9orf72 is essential for neurodevelopment and motility mediated by Cyclin G1. Exp Neurol. 2018;304:114–124. doi: 10.1016/j.expneurol.2018.03.002
  • Butti Z, Pan YE, Giacomotto J, et al. Reduced C9orf72 function leads to defective synaptic vesicle release and neuromuscular dysfunction in zebrafish. Commun Biol. 2021;4(1):792. doi: 10.1038/s42003-021-02302-y
  • Jaroszynska N, Salzinger A, Tsarouchas TM, et al. C9ORF72 deficiency results in degeneration of the zebrafish retina in vivo [Internet]. Neuroscience. 2023 [cited 2024 Feb 8]. Available from: http://biorxiv.org/lookup/doi/10.1101/2023.10.19.563041
  • Picher-Martel V, Valdmanis PN, Gould PV, et al. From animal models to human disease: a genetic approach for personalized medicine in ALS. acta neuropathol commun. Acta Neuropathol Commun. 2016;4(1):70. doi: 10.1186/s40478-016-0340-5
  • Kang SH, Li Y, Fukaya M, et al. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci. 2013;16(5):571–579. doi: 10.1038/nn.3357
  • Miller SJ, Zhang P, Glatzer J, et al. Astroglial transcriptome dysregulation in early disease of an ALS mutant SOD1 mouse model. J Neurogenet. 2017;31(1–2):37–48. doi: 10.1080/01677063.2016.1260128
  • Maniatis S, Äijö T, Vickovic S, et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science. 2019;364(6435):89–93. doi: 10.1126/science.aav9776
  • MacLean M, López-Díez R, Vasquez C, et al. Neuronal–glial communication perturbations in murine SOD1G93A spinal cord. Commun Biol. 2022;5(1):177. doi: 10.1038/s42003-022-03128-y
  • Filipi T, Matusova Z, Abaffy P, et al. Cortical glia in SOD1(G93A) mice are subtly affected by als-like pathology. Sci Rep. 2023;13(1):6538. doi: 10.1038/s41598-023-33608-y
  • Canto MCD, Gurney ME. A low expressor line of transgenic mice carrying a mutant human Cu,Zn superoxide dismutase (SOD1) gene develops pathological changes that most closely resemble those in human amyotrophic lateral sclerosis. Acta Neuropathol. 1997;93(6):537–550. doi: 10.1007/s004010050650
  • Alexander GM, Erwin KL, Byers N, et al. Effect of transgene copy number on survival in the G93A SOD1 transgenic mouse model of ALS. Brain Res Mol Brain Res. 2004;130(1–2):7–15. doi: 10.1016/j.molbrainres.2004.07.002
  • Deitch JS, Alexander GM, Bensinger A, et al. Phenotype of transgenic mice carrying a very low copy number of the mutant human G93A superoxide dismutase-1 gene associated with amyotrophic lateral sclerosis. PLOS ONE. 2014;9(6):e99879. doi: 10.1371/journal.pone.0099879
  • Bruijn LI, Becher MW, Lee MK, et al. ALS-Linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron. 1997;18(2):327–338. doi: 10.1016/S0896-6273(00)80272-X
  • Wong PC, Pardo CA, Borchelt DR, et al. An adverse property of a familial als-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron. 1995;14(6):1105–1116. doi: 10.1016/0896-6273(95)90259-7
  • Ripps ME, Huntley GW, Hof PR, et al. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA. 1995;92(3):689–693. doi: 10.1073/pnas.92.3.689
  • Jonsson PA, Graffmo KS, Brännström T, et al. Motor neuron disease in mice expressing the wild type-like D90A mutant superoxide dismutase-1. J Neuropathol Exp Neurol. 2006;65(12):1126–1136. doi: 10.1097/01.jnen.0000248545.36046.3c
  • Chang-Hong R, Wada M, Koyama S, et al. Neuroprotective effect of oxidized galectin-1 in a transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol. 2005;194(1):203–211. doi: 10.1016/j.expneurol.2005.02.011
  • Joyce PI, Mcgoldrick P, Saccon RA, et al. A novel SOD1-ALS mutation separates central and peripheral effects of mutant SOD1 toxicity. Hum Mol Genet. 2015;24(7):1883–1897. doi: 10.1093/hmg/ddu605
  • AndrewG R, Elliott JL, Hoffman EK, et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet. 1996;13(1):43–47. doi: 10.1038/ng0596-43
  • Fischer LR, Li Y, Asress SA, et al. Absence of SOD1 leads to oxidative stress in peripheral nerve and causes a progressive distal motor axonopathy. Exp Neurol. 2012;233(1):163–171. doi: 10.1016/j.expneurol.2011.09.020
  • Muller FL, Song W, Liu Y, et al. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radical Biol Med. 2006;40(11):1993–2004. doi: 10.1016/j.freeradbiomed.2006.01.036
  • Nagai M, Aoki M, Miyoshi I, et al. Rats expressing human cytosolic copper–zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: associated mutations develop motor neuron disease. J Neurosci. 2001;21(23):9246–9254. doi: 10.1523/JNEUROSCI.21-23-09246.2001
  • Howland DS, Liu J, She Y, et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci USA. 2002;99(3):1604–1609. doi: 10.1073/pnas.032539299
  • Wegorzewska I, Bell S, Cairns NJ, et al. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA. 2009;106(44):18809–18814. doi: 10.1073/pnas.0908767106
  • Stallings NR, Puttaparthi K, Luther CM, et al. Progressive motor weakness in transgenic mice expressing human TDP-43. Neurobiol Dis. 2010;40(2):404–414. doi: 10.1016/j.nbd.2010.06.017
  • Xu Y-F, Gendron TF, Zhang Y-J, et al. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci. 2010;30(32):10851–10859. doi: 10.1523/JNEUROSCI.1630-10.2010
  • Arnold ES, Ling S-C, Huelga SC, et al. Als-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci USA. 2013;110(8):E736–745. doi: 10.1073/pnas.1222809110
  • Swarup V, Phaneuf D, Bareil C, et al. Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain. 2011;134(9):2610–2626. doi: 10.1093/brain/awr159
  • Zhou H, Huang C, Chen H, et al. Transgenic rat model of neurodegeneration caused by mutation in the TDP gene. Cox GA, editor. PLOS Genet. 2010;6(3):e1000887. doi: 10.1371/journal.pgen.1000887
  • Wils H, Kleinberger G, Janssens J, et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA. 2010;107(8):3858–3863. doi: 10.1073/pnas.0912417107
  • Shan X, Chiang P-M, Price DL, et al. Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci USA. 2010;107(37):16325–16330. doi: 10.1073/pnas.1003459107
  • Janssens J, Wils H, Kleinberger G, et al. Overexpression of ALS-Associated p.M337V human TDP-43 in mice worsens disease features compared to wild-type human TDP-43 mice. Mol Neurobiol. 2013;48(1):22–35. doi: 10.1007/s12035-013-8427-5
  • Tsai K-J, Yang C-H, Fang Y-H, et al. Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med. 2010;207(8):1661–1673. doi: 10.1084/jem.20092164
  • Cannon A, Yang B, Knight J, et al. Neuronal sensitivity to TDP-43 overexpression is dependent on timing of induction. Acta Neuropathol. 2012;123(6):807–823. doi: 10.1007/s00401-012-0979-3
  • Igaz LM, Kwong LK, Lee EB, et al. Dysregulation of the als-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest. 2011;121(2):726–738. doi: 10.1172/JCI44867
  • Walker AK, Spiller KJ, Ge G, et al. Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43. Acta Neuropathol. 2015;130(5):643–660. doi: 10.1007/s00401-015-1460-x
  • Huang C, Tong J, Bi F, et al. Mutant TDP-43 in motor neurons promotes the onset and progression of ALS in rats. J Clin Invest. 2012;122(1):107–118. doi: 10.1172/JCI59130
  • Wu L-S, Cheng W-C, Shen C-K. Targeted depletion of TDP-43 expression in the spinal cord motor neurons leads to the development of amyotrophic lateral sclerosis-like phenotypes in mice. J Biol Chem. 2012;287(33):27335–27344. doi: 10.1074/jbc.M112.359000
  • Iguchi Y, Katsuno M, Niwa J, et al. Loss of TDP-43 causes age-dependent progressive motor neuron degeneration. Brain. 2013;136(5):1371–1382. doi: 10.1093/brain/awt029
  • Fratta P, Sivakumar P, Humphrey J, et al. Mice with endogenous TDP ‐43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis. Embo J. 2018;37(11):e98684. doi: 10.15252/embj.201798684
  • White MA, Kim E, Duffy A, et al. TDP-43 gains function due to perturbed autoregulation in a tardbp knock-in mouse model of ALS-FTD. Nat Neurosci. 2018;21(4):552–563. doi: 10.1038/s41593-018-0113-5
  • Ebstein SY, Yagudayeva I, Shneider NA. Mutant TDP-43 causes early-stage dose-dependent motor neuron degeneration in a TARDBP knockin mouse model of ALS. Cell Rep. 2019;26(2):364–373.e4. doi: 10.1016/j.celrep.2018.12.045
  • Huang S-L, Wu L-S, Lee M, et al. A robust TDP-43 knock-in mouse model of ALS. Acta Neuropathol Commun. 2020;8(1):3. doi: 10.1186/s40478-020-0881-5
  • Krus KL, Strickland A, Yamada Y, et al. Loss of stathmin-2, a hallmark of TDP-43-associated ALS, causes motor neuropathy. Cell Rep. 2022;39(13):111001. doi: 10.1016/j.celrep.2022.111001
  • Baughn MW, Melamed Z, López-Erauskin J, et al. Mechanism of STMN2 cryptic splice-polyadenylation and its correction for TDP-43 proteinopathies. Science. 2023;379(6637):1140–1149. doi: 10.1126/science.abq5622
  • Nolan M, Talbot K, Ansorge O. Pathogenesis of fus-associated ALS and FTD: insights from rodent models. acta neuropathol commun. Acta Neuropathol Commun. 2016;4(1):99. doi: 10.1186/s40478-016-0358-8
  • Sharma A, Lyashchenko AK, Lu L, et al. Als-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun. 2016;7(1):10465. doi: 10.1038/ncomms10465
  • Scekic‐Zahirovic J, Sendscheid O, El Oussini H, et al. Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss. Embo J. 2016;35(10):1077–1097. doi: 10.15252/embj.201592559
  • Scekic-Zahirovic J, Oussini HE, Mersmann S, et al. Motor neuron intrinsic and extrinsic mechanisms contribute to the pathogenesis of fus-associated amyotrophic lateral sclerosis. Acta Neuropathol. 2017;133(6):887–906. doi: 10.1007/s00401-017-1687-9
  • Devoy A, Kalmar B, Stewart M, et al. Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in ‘FUSDelta14’ knockin mice. Brain. 2017;140(11):2797–2805. doi: 10.1093/brain/awx248
  • Mitchell JC, McGoldrick P, Vance C, et al. Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol. 2013;125(2):273–288. doi: 10.1007/s00401-012-1043-z
  • Shelkovnikova TA, Peters OM, Deykin AV, et al. Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice. J Biol Chem. 2013;288(35):25266–25274. doi: 10.1074/jbc.M113.492017
  • Huang C, Zhou H, Tong J, et al. FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Cox GA, editor. PLOS Genet. 2011;7(3):e1002011. doi: 10.1371/journal.pgen.1002011
  • Kino Y, Washizu C, Kurosawa M, et al. FUS/TLS deficiency causes behavioral and pathological abnormalities distinct from amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2015;3(1):24. doi: 10.1186/s40478-015-0202-6
  • Lagier-Tourenne C, Baughn M, Rigo F, et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci USA [Internet]. 2013 [cited 2024 Feb 19]. Available from: https://pnas.org/doi/full/10.1073/pnas.1318835110
  • O’Rourke JG, Bogdanik L, Muhammad AKMG, et al. C9orf72 BAC transgenic mice display typical pathologic features of ALS/FTD. Neuron. 2015;88(5):892–901. doi: 10.1016/j.neuron.2015.10.027
  • Koppers M, Blokhuis AM, Westeneng H, et al. C 9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Ann Neurol. 2015;78(3):426–438. doi: 10.1002/ana.24453
  • O’Rourke JG, Bogdanik L, Yáñez A, et al. C9orf72 is required for proper macrophage and microglial function in mice. Science. 2016;351(6279):1324–1329. doi: 10.1126/science.aaf1064
  • Atanasio A, Decman V, White D, et al. C9orf72 ablation causes immune dysregulation characterized by leukocyte expansion, autoantibody production and glomerulonephropathy in mice. Sci Rep. 2016;6(1):23204. doi: 10.1038/srep23204
  • Burberry A, Suzuki N, Wang J-Y, et al. Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease. Sci Transl Med [Internet]. 2016 [cited 2024 Feb 19]. Available from: https://www.science.org/doi/10.1126/scitranslmed.aaf6038
  • Jiang J, Zhu Q, Gendron TF, et al. Gain of toxicity from ALS/FTD-Linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-Containing RNAs. Neuron. 2016;90(3):535–550. doi: 10.1016/j.neuron.2016.04.006
  • Ugolino J, Ji YJ, Conchina K, et al. Loss of C9orf72 enhances Autophagic activity via deregulated mTOR and TFEB signaling. Cox GA, editor. PLOS Genet. 2016;12(11):e1006443. doi: 10.1371/journal.pgen.1006443
  • Lopez-Herdoiza M-B, Bauché S, Wilmet B, et al. C9ORF72 knockdown triggers ftd-like symptoms and cell pathology in mice. Front Cell Neurosci. 2023;17:1155929. doi: 10.3389/fncel.2023.1155929
  • Shao Q, Liang C, Chang Q, et al. C9orf72 deficiency promotes motor deficits of a C9ALS/FTD mouse model in a dose-dependent manner. acta neuropathol commun. Acta Neuropathol Commun. 2019;7(1):32. doi: 10.1186/s40478-019-0685-7
  • Zhu Q, Jiang J, Gendron TF, et al. Reduced C9ORF72 function exacerbates gain of toxicity from als/ftd-causing repeat expansion in C9orf72. Nat Neurosci. 2020;23(5):615–624. doi: 10.1038/s41593-020-0619-5
  • Dong W, Ma Y, Guan F, et al. Ablation of C9orf72 together with excitotoxicity induces ALS in rats. FEBS J. 2021;288(5):1712–1723. doi: 10.1111/febs.15501
  • Chew J, Gendron TF, Prudencio M, et al. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science. 2015;348(6239):1151–1154. doi: 10.1126/science.aaa9344
  • Chew J, Cook C, Gendron TF, et al. Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Mol Neurodegener. 2019;14(1):9. doi: 10.1186/s13024-019-0310-z
  • Herranz-Martin S, Chandran J, Lewis K, et al. Viral delivery of C9ORF72 hexanucleotide repeat expansions in mice lead to repeat length dependent neuropathology and behavioral deficits. Disease Model Mechanisms. 2017:dmm.029892. doi: 10.1242/dmm.029892
  • Riemslagh FW, Van Der Toorn EC, Verhagen RFM, et al. Inducible expression of human C9ORF72 36× G4C2 hexanucleotide repeats is sufficient to cause RAN translation and rapid muscular atrophy in mice. Disease Model Mechanisms. 2021;14(2):dmm044842. doi: 10.1242/dmm.044842
  • O’Reilly LP, Luke CJ, Perlmutter DH, et al. C. elegans in high-throughput drug discovery. Adv Drug Deliv Rev. 2014;69–70:247–253. doi: 10.1016/j.addr.2013.12.001
  • Dibaj P, Zschüntzsch J, Steffens H, et al. Influence of methylene blue on microglia-induced inflammation and motor neuron degeneration in the SOD1G93A model for ALS. Block ML, editor. PLOS ONE. 2012;7(8):e43963. doi: 10.1371/journal.pone.0043963
  • Patten SA, Aggad D, Martinez J, et al. Neuroleptics as therapeutic compounds stabilizing neuromuscular transmission in amyotrophic lateral sclerosis. JCI Insight. 2017;2(22). doi: 10.1172/jci.insight.97152
  • Bose P, Tremblay E, Maios C, et al. The novel small molecule TRVA242 stabilizes neuromuscular junction defects in multiple animal models of amyotrophic lateral sclerosis. Neurotherapeutics. 2019;16(4):1149–1166. doi: 10.1007/s13311-019-00765-w
  • Wong SQ, Pontifex MG, Phelan MM, et al. α-methyl-α-phenylsuccinimide ameliorates neurodegeneration in a C. elegans model of TDP-43 proteinopathy. Neurobiol Dis. 2018;118:40–54. doi: 10.1016/j.nbd.2018.06.013
  • Labarre A, Guitard E, Tossing G, et al. Fatty acids derived from the probiotic Lacticaseibacillus rhamnosus HA-114 suppress age-dependent neurodegeneration. Commun Biol. 2022;5(1):1340. doi: 10.1038/s42003-022-04295-8
  • Tossing G, Livernoche R, Maios C, et al. Genetic and pharmacological PARP inhibition reduces axonal degeneration in C. elegans models of ALS. Hum Mol Genet. 2022;31(19):3313–3324. doi: 10.1093/hmg/ddac116
  • Silva MC, Fox S, Beam M, et al. A genetic screening strategy identifies novel regulators of the proteostasis network. Serio TR, editor. PLOS Genet. 2011;7(12):e1002438. doi: 10.1371/journal.pgen.1002438
  • Boyd JD, Lee-Armandt JP, Feiler MS, et al. A high-content screen identifies novel compounds that inhibit stress-induced TDP-43 cellular aggregation and associated cytotoxicity. SLAS Discov. 2014;19(1):44–56. doi: 10.1177/1087057113501553
  • Tseng Y-L, Lu P-C, Lee C-C, et al. Degradation of neurodegenerative disease-associated TDP-43 aggregates and oligomers via a proteolysis-targeting chimera. J Biomed Sci. 2023;30(1):27. doi: 10.1186/s12929-023-00921-7
  • Ikenaka K, Kawai K, Katsuno M, et al. Dnc-1/dynactin 1 knockdown disrupts transport of autophagosomes and induces motor neuron degeneration. Pandey U, editor. PLOS ONE. 2013;8(2):e54511. doi: 10.1371/journal.pone.0054511
  • Ikenaka K, Tsukada Y, Giles AC, et al. A behavior-based drug screening system using a Caenorhabditis elegans model of motor neuron disease. Sci Rep. 2019;9(1):10104. doi: 10.1038/s41598-019-46642-6
  • McGown A, Shaw DPJ, Ramesh T. Znstress: a high-throughput drug screening protocol for identification of compounds modulating neuronal stress in the transgenic mutant sod1G93R zebrafish model of amyotrophic lateral sclerosis. Mol Neurodegener. 2016;11(1):56. doi: 10.1186/s13024-016-0122-3
  • Joardar A, Menzl J, Podolsky TC, et al. PPAR gamma activation is neuroprotective in a drosophila model of ALS based on TDP-43. Hum Mol Genet. 2015;24(6):1741–1754. doi: 10.1093/hmg/ddu587
  • Dupuis L, Dengler R, Heneka MT, et al. A randomized, Double Blind, placebo-controlled trial of Pioglitazone in combination with riluzole in amyotrophic lateral sclerosis. Sensi SL, editor. PLOS ONE. 2012;7(6):e37885. doi: 10.1371/journal.pone.0037885
  • Wang T, Cheng J, Wang S, et al. α-Lipoic acid attenuates oxidative stress and neurotoxicity via the ERK/Akt-dependent pathway in the mutant hSOD1 related drosophila model and the NSC34 cell line of amyotrophic lateral sclerosis. Brain Res Bull. 2018;140:299–310. doi: 10.1016/j.brainresbull.2018.05.019
  • Lee D, Jeong HC, Kim SY, et al. A comparison study of pathological features and drug efficacy between drosophila models of C9orf72 ALS/FTD. Mol Cells. 2024;47(1):100005. doi: 10.1016/j.mocell.2023.12.003
  • Zhang K, Donnelly CJ, Haeusler AR, et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature. 2015;525(7567):56–61. doi: 10.1038/nature14973
  • Maragakis NJ, de Carvalho M, Weiss MD. Therapeutic targeting of ALS pathways: refocusing an incomplete picture. Ann Clin Transl Neurol. 2023;10(11):1948–1971. doi: 10.1002/acn3.51887
  • Gurney ME, Cutting FB, Zhai P, et al. Benefit of vitamin E, riluzole, and gababapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol. 1996;39(2):147–157. doi: 10.1002/ana.410390203
  • Desnuelle C, Dib M, Garrel C, et al. A double-blind, placebo-controlled randomized clinical trial of α-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Mot Neuron Disord. 2001;2(1):9–18. doi: 10.1080/146608201300079364
  • Klivenyi P, Ferrante RJ, Matthews RT, et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med. 1999;5(3):347–350. doi: 10.1038/6568
  • Shefner JM, Cudkowicz ME, Schoenfeld D, et al. A clinical trial of creatine in ALS. Neurology. 2004;63(9):1656–1661. doi: 10.1212/01.WNL.0000142992.81995.F0
  • Ikeda K, Iwasaki Y, Kaji R. Neuroprotective effect of ultra-high dose methylcobalamin in wobbler mouse model of amyotrophic lateral sclerosis. J Neurol Sci. 2015;354(1–2):70–74. doi: 10.1016/j.jns.2015.04.052
  • Oki R, Izumi Y, Fujita K, et al. Efficacy and safety of ultrahigh-dose methylcobalamin in early-stage amyotrophic lateral sclerosis: a randomized clinical trial. JAMA Neurol. 2022;79(6):575. doi: 10.1001/jamaneurol.2022.0901
  • Gurney ME, Fleck TJ, Himes CS, et al. Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis. Neurology. 1998;50(1):62–66. doi: 10.1212/WNL.50.1.62
  • Ito H, Wate R, Zhang J, et al. Treatment with edaravone, initiated at symptom onset, slows motor decline and decreases SOD1 deposition in ALS mice. Exp Neurol. 2008;213(2):448–455. doi: 10.1016/j.expneurol.2008.07.017
  • Aoki M, Warita H, Mizuno H, et al. Feasibility study for functional test battery of SOD transgenic rat (H46R) and evaluation of edaravone, a free radical scavenger. Brain Res. 2011;1382:321–325. doi: 10.1016/j.brainres.2011.01.058
  • Yan J, Wang YM, Hellwig A, et al. TwinF interface inhibitor FP802 stops loss of motor neurons and mitigates disease progression in a mouse model of ALS. Cell Rep Med. 2024;5(2):101413. doi: 10.1016/j.xcrm.2024.101413
  • Wang I-F, Guo B-S, Liu Y-C, et al. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci USA. 2012;109(37):15024–15029. doi: 10.1073/pnas.1206362109
  • Crisafulli SG, Brajkovic S, Cipolat Mis MS, et al. Therapeutic strategies under development targeting inflammatory mechanisms in amyotrophic lateral sclerosis. Mol Neurobiol. 2018;55(4):2789–2813. doi: 10.1007/s12035-017-0532-4
  • Schütz B, Reimann J, Dumitrescu-Ozimek L, et al. The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. J Neurosci. 2005;25(34):7805–7812. doi: 10.1523/JNEUROSCI.2038-05.2005
  • Kiaei M, Kipiani K, Chen J, et al. Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol. 2005;191(2):331–336. doi: 10.1016/j.expneurol.2004.10.007
  • Shibata N, Kawaguchi‐Niida M, Yamamoto T, et al. Effects of the PPARγ activator pioglitazone on p38 MAP kinase and IκBα in the spinal cord of a transgenic mouse model of amyotrophic lateral sclerosis. Neuropathology. 2008;28(4):387–398. doi: 10.1111/j.1440-1789.2008.00890.x
  • Pelaez MC, Desmeules A, Gelon PA, et al. Neuronal dysfunction caused by FUSR521G promotes als-associated phenotypes that are attenuated by nf-κB inhibition. Acta Neuropathol Commun. 2023;11(1):182. doi: 10.1186/s40478-023-01671-1
  • Chen Y, Wang H, Ying Z, et al. Ibudilast enhances the clearance of SOD1 and TDP-43 aggregates through tfeb-mediated autophagy and lysosomal biogenesis: the new molecular mechanism of ibudilast and its implication for neuroprotective therapy. Biochem Biophys Res Commun. 2020;526(1):231–238. doi: 10.1016/j.bbrc.2020.03.051
  • López-Blanch R, Salvador-Palmer R, Oriol-Caballo M, et al. Nicotinamide riboside, pterostilbene and ibudilast protect motor neurons and extend survival in ALS mice. Neurotherapeutics. 2024;21(1):e00301. doi: 10.1016/j.neurot.2023.10.011
  • Wu C, Watts ME, Rubin LL. MAP4K4 activation mediates motor neuron degeneration in amyotrophic lateral sclerosis. Cell Rep. 2019;26(5):1143–1156.e5. doi: 10.1016/j.celrep.2019.01.019
  • Liu M-L, Ma S, Tai W, et al. Screens in aging-relevant human als-motor neurons identify MAP4Ks as therapeutic targets for the disease. Cell Death Dis. 2024;15(1):4. doi: 10.1038/s41419-023-06395-7
  • Trias E, Ibarburu S, Barreto-Núñez R, et al. Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis. J Neuroinflammation. 2016;13(1):177. doi: 10.1186/s12974-016-0620-9
  • Yuan J, Amin P, Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci. 2019;20(1):19–33. doi: 10.1038/s41583-018-0093-1
  • Ito Y, Ofengeim D, Najafov A, et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science. 2016;353(6299):603–608. doi: 10.1126/science.aaf6803
  • Wang S-M, Wu H-E, Yasui Y, et al. Nucleoporin POM121 signals tfeb-mediated autophagy via activation of SIGMAR1/sigma-1 receptor chaperone by pridopidine. Autophagy. 2023;19(1):126–151. doi: 10.1080/15548627.2022.2063003
  • Ionescu A, Gradus T, Altman T, et al. Targeting the sigma-1 receptor via pridopidine ameliorates central features of ALS pathology in a SOD1G93A Model. Cell Death Dis. 2019;10(3):210. doi: 10.1038/s41419-019-1451-2
  • Smith RA. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Investigation. 2006;116(8):2290–2296. doi: 10.1172/JCI25424
  • McCampbell A, Cole T, Wegener AJ, et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J Clin Investigation. 2018;128(8):3558–3567. doi: 10.1172/JCI99081
  • Liu Y, Dodart J-C, Tran H, et al. Variant-selective stereopure oligonucleotides protect against pathologies associated with C9orf72-repeat expansion in preclinical models. Nat Commun. 2021;12(1):847. doi: 10.1038/s41467-021-21112-8
  • Tran H, Moazami MP, Yang H, et al. Suppression of mutant C9orf72 expression by a potent mixed backbone antisense oligonucleotide. Nat Med. 2022;28(1):117–124. doi: 10.1038/s41591-021-01557-6
  • Korobeynikov VA, Lyashchenko AK, Blanco-Redondo B, et al. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis. Nat Med. 2022;28(1):104–116. doi: 10.1038/s41591-021-01615-z
  • Droppelmann CA, Campos-Melo D, Noches V, et al. Mitigation of TDP-43 toxic phenotype by an RGNEF fragment in amyotrophic lateral sclerosis models. Brain. 2024;147(6):2053–2068. doi: 10.1093/brain/awae078
  • Becker LA, Huang B, Bieri G, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544(7650):367–371. doi: 10.1038/nature22038
  • Ma ZC, Moore HJ, Smith TJ, et al. Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins. Nat Commun. 2023;14(1):6492. doi: 10.1038/s41467-023-42147-z
  • Ediriweera GR, Chen L, Yerbury JJ, et al. Non-viral vector-mediated gene therapy for ALS: challenges and future perspectives. Mol Pharm. 2021;18(6):2142–2160. doi: 10.1021/acs.molpharmaceut.1c00297
  • Chen L, Watson C, Morsch M, et al. Improving the delivery of SOD1 antisense oligonucleotides to motor neurons using calcium phosphate-lipid nanoparticles. Front Neurosci. 2017;11:476. doi: 10.3389/fnins.2017.00476
  • Poulin-Brière A, Rezaei E, Pozzi S. Antibody-based therapeutic interventions for amyotrophic lateral sclerosis: a systematic literature review. Front Neurosci. 2021;15:790114. doi: 10.3389/fnins.2021.790114
  • Minamiyama S, Sakai M, Yamaguchi Y, et al. Efficacy of oligodendrocyte precursor cells as delivery vehicles for single-chain variable fragment to misfolded SOD1 in ALS rat model. Mol Ther - Methods Clin Devel. 2023;28:312–329. doi: 10.1016/j.omtm.2023.01.008
  • Lincecum JM, Vieira FG, Wang MZ, et al. From transcriptome analysis to therapeutic anti-CD40L treatment in the SOD1 model of amyotrophic lateral sclerosis. Nat Genet. 2010;42(5):392–399. doi: 10.1038/ng.557
  • Andrews-Zwilling Y, Mathur V, Kuhn L, et al. Inhibiting C1q improves compound muscle action potential and reduces neuronal damage in the SOD1G93A mouse Model (P1-13.004). Neurology. 2022;98(18_supplement). doi: 10.1212/WNL.98.18_supplement.3302
  • Fisher EMC, Greensmith L, Malaspina A, et al. Opinion: more mouse models and more translation needed for ALS. Mol Neurodegener. 2023;18(1):30. doi: 10.1186/s13024-023-00619-2
  • Wong C, Stavrou M, Elliott E, et al. Clinical trials in amyotrophic lateral sclerosis: a systematic review and perspective. Brain Commun. 2021;3(4):fcab242. doi: 10.1093/braincomms/fcab242
  • Díaz-García D, Ferrer-Donato Á, Méndez-Arriaga JM, et al. Design of mesoporous silica nanoparticles for the treatment of amyotrophic lateral sclerosis (ALS) with a therapeutic cocktail based on leptin and pioglitazone. ACS Biomater Sci Eng. 2022;8(11):4838–4849. doi: 10.1021/acsbiomaterials.2c00865
  • Lu Y, Wang J-W, Li N, et al. Intranasal administration of edaravone nanoparticles improves its stability and brain bioavailability. J Control Release. 2023;359:257–267. doi: 10.1016/j.jconrel.2023.06.001
  • Medina DX, Chung EP, Teague CD, et al. Intravenously administered, retinoid activating nanoparticles increase lifespan and reduce neurodegeneration in the SOD1G93A mouse model of ALS. Front Bioeng Biotechnol. 2020;8:224. doi: 10.3389/fbioe.2020.00224
  • Evans MC, Gaillard PJ, De Boer M, et al. Cns-targeted glucocorticoid reduces pathology in mouse model of amyotrophic lateral sclerosis. acta neuropathol commun. Acta Neuropathol Commun. 2014;2(1):66. doi: 10.1186/2051-5960-2-66
  • Wiley NJ, Madhankumar AB, Mitchell RM, et al. Lipopolysaccharide modified liposomes for amyotropic lateral sclerosis therapy: efficacy in SOD1 mouse model. ANP. 2012;1(3):44–53. doi: 10.4236/anp.2012.13007
  • Vasta R, Chia R, Traynor BJ, et al. Unraveling the complex interplay between genes, environment, and climate in ALS. EBioMedicine. 2022;75:103795. doi: 10.1016/j.ebiom.2021.103795
  • Hawrot J, Imhof S, Wainger BJ. Modeling cell-autonomous motor neuron phenotypes in ALS using iPSCs. Neurobiol Dis. 2020;134:104680. doi: 10.1016/j.nbd.2019.104680
  • Fujimori K, Ishikawa M, Otomo A, et al. Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent. Nat Med. 2018;24(10):1579–1589. doi: 10.1038/s41591-018-0140-5