42
Views
0
CrossRef citations to date
0
Altmetric
Review

Antifungal resistance: why are we losing this battle?

ORCID Icon & ORCID Icon
Received 19 Dec 2023, Accepted 09 Apr 2024, Published online: 21 Jun 2024

References

  • Gonzalez-Lara MF, Ostrosky-Zeichner L. Invasive Candidiasis. Semin Respir Crit Care Med. 2020;41(1):3–12. doi:10.1055/s-0040-1701215
  • Revie NM, Iyer KR, Robbins N, Cowen LE. Antifungal drug resistance: evolution, mechanisms and impact. Curr Opin Microbiol. 2018;45:70–76. doi:10.1016/j.mib.2018.02.005
  • Cadena J, Thompson GR, Patterson TF. Aspergillosis: epidemiology, diagnosis, and treatment. Infect Dis Clin North Am. 2021;35(2):415–434. doi:10.1016/j.idc.2021.03.008
  • Bartoletti M, Pascale R, Cricca M, et al. Epidemiology of invasive pulmonary aspergillosis among intubated patients with COVID-19: a prospective study. Clin Infect Dis. 2021;73(11):3606–3614. doi:10.1093/cid/ciaa1065
  • Gushiken AC, Saharia KK, Baddley JW. Cryptococcosis. Infect Dis Clin North Am. 2021;35(2):493–514. doi:10.1016/j.idc.2021.03.012
  • Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N. The fungal cell wall: candida, cryptococcus, and aspergillus species. Front Microbiol. 2020;10:2993. doi:10.3389/fmicb.2019.02993
  • Ahmadipour S, Field RA, Miller GJ. Prospects for anti-Candida therapy through targeting the cell wall: a mini-review. Cell Surf. 2021;7:100063. doi:10.1016/j.tcsw.2021.100063
  • Sant DG, Tupe SG, Ramana CV, Deshpande MV. Fungal cell membrane-promising drug target for antifungal therapy. J Appl Microbiol. 2016;121(6):1498–1510. doi:10.1111/jam.13301
  • Campoy S, Adrio JL. Antifungals. Biochem Pharmacol. 2017;133:86–96. doi:10.1016/j.bcp.2016.11.019
  • Nivoix Y, Ledoux MP, Herbrecht R. Antifungal therapy: new and evolving therapies. Semin Respir Crit Care Med. 2021;41(1):158–217. doi:10.1055/s-0039-3400291
  • Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clinical Microbiology Rev. 1999;12(4):501–517. doi:10.1128/CMR.12.4.501
  • Quiles-Melero I, García-Rodríguez J. Systemic antifungal drugs. Rev Iberoam Micol. 2021;38(2):42–46. doi:10.1016/j.riam.2021.04.004
  • Nett JE, Andes DR. Antifungal agents: spectrum of activity, pharmacology, and clinical indications. Infect Dis Clin North Am. 2016;30(1):51–83. doi:10.1016/j.idc.2015.10.012
  • Groover ND. Echinocandin: a ray of hope on antifungal therapy. Indian J Pharmacol. 2010;42(1):9–11. doi:10.4103/0253-7613.62396
  • Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis. 2017;17(12):383–392. doi:10.1016/S1473-3099(17)30316-X
  • Lewis RE. Current concepts in antifungal pharmacology. Mayo Clin Proc. 2011;86(8):805–817. doi:10.4065/mcp.2011.0247
  • Prasad R, Shah AH, Rawal MK. Antifungals: Mechanism of Action and Drug Resistance. Adv Exp Med Biol. 2016;892:327–349. doi:10.1007/978-3-319-25304-6_14
  • Spampinato C, Leonardi D. Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int. 2013;2013:204–237. doi:10.1155/2013/204237
  • Lai CC, Tan CK, Huang YT, Shao PL, Hsueh PR. Current challenges in the management of invasive fungal infections. J Infect Chemother. 2008;14(2):77–85. doi:10.1007/s10156-007-0595-7
  • Lamoth F, Lewis RE, Kontoyiannis DP. Role and interpretation of antifungal susceptibility testing for the management of invasive fungal infections. J Fungi (Basel). 2020;7(1):17. doi:10.3390/jof7010017
  • Castanheira M, Messer SA, Rhomberg PR, Pfaller MA. Antifungal susceptibility patterns of a global collection of fungal isolates: results of the SENTRY Antifungal Surveillance Program (2013). Diagn Microbiol Infect Dis. 2016;85(2):200–204. doi:10.1016/j.diagmicrobio.2016.02.009
  • Woods M, McAlister JA, Geddes-McAlister J. A One Health approach to overcoming fungal disease and antifungal resistance. WIREs Mech Dis. 2023;15(4):e1610. doi:10.1002/wsbm.1610
  • White PL, Price JS, Cordey A, Backx M. Molecular diagnosis of yeast infections. Curr Fungal Infect Rep. 2021;15(3):67–80. doi:10.1007/s12281-021-00421-x
  • Alastruey-Izquierdo A, Melhem MS, Bonfietti LX, Rodriguez-Tudela JL. Susceptibility test for fungi: clinical and laboratorial correlations in medical mycology. Rev Inst Med Trop Sao Paulo. 2015;57(Suppl. 19):57–64. doi:10.1590/S0036-46652015000700011
  • Steinmann J, Hamprecht A, Vehreschild MJ, et al. Emergence of azole-resistant invasive aspergillosis in HSCT recipients in Germany. J Antimicrob Chemother. 2015;70(5):1522–1526. doi:10.1093/jac/dku566
  • von Lilienfeld-Toal M, Wagener J, Einsele H, Cornely OA, Kurzai O. Invasive fungal infection. Dtsch Arztebl Int. 2019;116(16):271–278. doi:10.3238/arztebl.2019.0271
  • Nishimoto AT, Sharma C, Rogers PD. Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans. J Antimicrob Chemother. 2020;75(2):257–270. doi:10.1093/jac/dkz400
  • Wang B, He X, Lu F, et al. Candida isolates from blood and other normally sterile foci from ICU patients: determination of epidemiology, antifungal susceptibility profile and evaluation of associated risk factors. Front Public Health. 2021;9:779590. doi:10.3389/fpubh.2021.779590
  • Pfaller MA, Messer SA, Woosley LN, Jones RN, Castanheira M. Echinocandin and triazole antifungal susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 to 2011: application of new CLSI clinical breakpoints and epidemiological cutoff values for characterization of geographic and temporal trends of antifungal resistance. J Clin Microbiol. 2013;51(8):2571–2581. doi:10.1128/JCM.00308-13
  • Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol. 2012;50(4):1199–1203. doi:10.1128/JCM.06112-11
  • van der Linden JW, Snelders E, Kampinga GA, et al. Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007–2009. Emerg Infect Dis. 2011;17(10):1846–1854. doi:10.3201/eid1710.110226
  • Faria-Ramos I, Farinha S, Neves-Maia J, et al. Development of cross-resistance by Aspergillus fumigatus to clinical azoles following exposure to prochloraz, an agricultural azole. BMC Microbiol. 2014;14:155. doi:10.1186/1471-2180-14-155
  • Branco J, Ola M, Silva RM, et al. Impact of ERG3 mutations and expression of ergosterol genes controlled by UPC2 and NDT80 in Candida parapsilosis azole resistance. Clin Microbiol Infect. 2017;23(8):575.e1–575.e8. doi:10.1016/j.cmi.2017.02.002
  • Fan X, Xiao M, Zhang D, et al. Molecular mechanisms of azole resistance in Candida tropicalis isolates causing invasive candidiasis in China. Clin Microbiol Infect. 2019;25(7):885–891. doi:10.1016/j.cmi.2018.11.007
  • Song N, Zhou X, Li D, Li X, Liu W. A proteomic landscape of Candida albicans in the stepwise evolution to fluconazole resistance. Antimicrob Agents Chemother. 2022;66(4):e0210521. doi:10.1128/aac.02105-21
  • Nabili M, Abdollahi Gohar A, Badali H, Mohammadi R, Moazeni M. Amino acid substitutions in Erg11p of azole-resistant Candida glabrata: possible effective substitutions and homology modelling. J Glob Antimicrob Resist. 2016;5:42–46. doi:10.1016/j.jgar.2016.03.003
  • Ito Y, Takazono T, Koga S, et al. Clinical and experimental phenotype of azole-resistant Aspergillus fumigatus with a HapE splice site mutation: a case report [published correction appears in BMC Infect Dis. 2021 Sep 16;21(1):961]. BMC Infect Dis. 2021;21(1):573. doi:10.1186/s12879-021-06279-1
  • Ballard E, Melchers WJG, Zoll J, Brown AJP, Verweij PE, Warris A. In-host microevolution of Aspergillus fumigatus: a phenotypic and genotypic analysis. Fungal Genetics and Biology. 2018;113:1–13. doi:10.1016/j.fgb.2018.02.003
  • Stone NR, Rhodes J, Fisher MC, et al. Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis. J Clin Invest. 2019;129(3):999–1014. doi:10.1172/JCI124516
  • Vazquez JA, Arganoza MT, Boikov D, Yoon S, Sobel JD, Akins RA. Stable phenotypic resistance of Candida species to amphotericin B conferred by preexposure to subinhibitory levels of azoles. J Clin Microbiol. 1998;36(9):2690–2695. doi:10.1128/JCM.36.9.2690-2695.1998
  • Hull CM, Bader O, Parker JE, et al. Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2. Antimicrob Agents Chemother. 2012;56(12):6417–6421. doi:10.1128/AAC.01145-12
  • Ben-Ami R, Kontoyiannis DP. Resistance to antifungal drugs. Infect Dis Clin North Am. 2021;35(2):279–311. doi:10.1016/j.idc.2021.03.003
  • Fan S, Zhan P, Bing J, et al. A biological and genomic comparison of a drug-resistant and a drug-susceptible strain of Candida auris isolated from Beijing, China. Virulence. 2021;12(1):1388–1399. doi:10.1080/21505594.2021.1928410
  • Carolus H, Pierson S, Muñoz JF, et al. Genome-wide analysis of experimentally evolved Candida auris reveals multiple novel mechanisms of multidrug resistance. mBio. 2021;12(2):03333-20. doi:10.1128/mBio.03333-20
  • Lockhart SR, Etienne KA, Vallabhaneni S, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64(2):134–140. doi:10.1093/cid/ciw691
  • Castanheira M, Deshpande LM, Davis AP, Rhomberg PR, Pfaller MA. Monitoring antifungal resistance in a global collection of invasive yeasts and molds: application of CLSI epidemiological cutoff values and whole-genome sequencing analysis for detection of azole resistance in Candida albicans. Antimicrob Agents Chemother. 2017;61(10):00906–17. doi:10.1128/AAC.00906-17
  • Cavalheiro M, Costa C, Silva-Dias A, et al. A transcriptomics approach to unveiling the mechanisms of in vitro evolution towards fluconazole resistance of a Candida glabrata clinical isolate. Antimicrob Agents Chemother. 2018;63(1):00995–18. doi:10.1128/AAC.00995-18
  • Castanheira M, Deshpande LM, Messer SA, Rhomberg PR, Pfaller MA. Analysis of global antifungal surveillance results reveals predominance of Erg11 Y132F alteration among azole-resistant Candida parapsilosis and Candida tropicalis and country-specific isolate dissemination. Int J Antimicrob Agents. 2020;55(1):105799. doi:10.1016/j.ijantimicag.2019.09.003
  • Handelman M, Osherov N. Experimental and in-host evolution of triazole resistance in human pathogenic fungi. Front Fungal Biol. 2022;3:957577. doi:10.3389/ffunb.2022.957577
  • Fraczek MG, Bromley M, Buied A, et al. The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother. 2013;68(7):1486–1496. doi:10.1093/jac/dkt075
  • Hu X, Yang P, Chai C, et al. Structural and mechanistic insights into fungal β-1,3-glucan synthase FKS1. Nature 2023;616(7955):190–198. doi:10.1038/s41586-023-05856-5
  • Arendrup MC, Perlin DS. Echinocandin resistance: an emerging clinical problem?. Curr Opin Infect Dis. 2014;27(6):484–492. doi:10.1097/QCO.0000000000000111
  • Fraser M, Borman AM, Thorn R, Lawrance LM. Resistance to echinocandin antifungal agents in the United Kingdom in clinical isolates of Candida glabrata: fifteen years of interpretation and assessment. Med Mycol. 2020;58(2):219–226. doi:10.1093/mmy/myz053
  • Alexander BD, Johnson MD, Pfeiffer CD, et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis. 2013;56(12):1724–1732. doi:10.1093/cid/cit136
  • Diekema DJ, Pfaller MA, Shortridge D, Zervos M, Jones RN. Twenty-year trends in antimicrobial susceptibilities among Staphylococcus aureus From the SENTRY Antimicrobial Surveillance Program. Open Forum Infect Dis. 2019;6(Suppl. 1):S47–S53. doi:10.1093/ofid/ofy270
  • Chowdhary A, Prakash A, Sharma C, et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother. 2018;73(4):891–899. doi:10.1093/jac/dkx480
  • Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. Our current understanding of fungal biofilms. Crit Rev Microbiol. 2009;35(4):340–355. doi:10.3109/10408410903241436
  • Wijaya M, Halleyantoro R, Kalumpiu JF. Biofilm: the invisible culprit in catheter-induced candidemia. AIMS Microbiol. 2023;9(3):467–485. doi:10.3934/microbiol.2023025
  • Al-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol. 2006;55(8):999–1008. doi:10.1099/jmm.0.46569-0
  • Al-Fattani MA, Douglas LJ. Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother. 2004;48(9):3291–3297. doi:10.1128/AAC.48.9.3291-3297.2004
  • Mowat E, Lang S, Williams C, McCulloch E, Jones B, Ramage G. Phase-dependent antifungal activity against Aspergillus fumigatus developing multicellular filamentous biofilms. J Antimicrob Chemother. 2008;62(6):1281–1284. doi:10.1093/jac/dkn402
  • Du H, Bing J, Hu T, Ennis CL, Nobile CJ, Huang G. Candida auris: epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 2020;16(10):e1008921. doi:10.1371/journal.ppat.1008921
  • van Duin D, Casadevall A, Nosanchuk JD. Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin. Antimicrob Agents Chemother. 2002;46(11):3394–3400. doi:10.1128/AAC.46.11.3394-3400.2002
  • Mancuso G, Midiri A, Gerace E, Biondo C. Role of the innate immune system in host defence against fungal infections. Eur Rev Med Pharmacol Sci. 2022;26(4):1138–1147. doi:10.26355/eurrev_202202_28105
  • Revie NM, Iyer KR, Robbins N, Cowen LE. Antifungal drug resistance: evolution, mechanisms and impact. Curr Opin Microbiol. 2018;45:70–76. doi:10.1016/j.mib.2018.02.005
  • Singh S, Fatima Z, Hameed S. Predisposing factors endorsing Candida infections. Infez Med. 2015;23(3):211–223.
  • Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat Rev Dis Primers. 2018;4:18026. doi:10.1038/nrdp.2018.26
  • Singh DK, Tóth R, Gácser A. Mechanisms of pathogenic Candida species to evade the host complement attack. Front Cell Infect Microbiol. 2020;10:94. doi:10.3389/fcimb.2020.00094
  • Chaffin WL, López-Ribot JL, Casanova M, Gozalbo D, Martínez JP. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev. 1998;62(1):130–180. doi:10.1128/MMBR.62.1.130-180.1998
  • Sundstrom P. Adhesion in Candida spp. Cell Microbiol. 2020;4(8):461–469. doi:10.1046/j.1462-5822.2002.00206.x
  • de Souza CM, Dos Santos MM, Furlaneto-Maia L, Furlaneto MC. Adhesion and biofilm formation by the opportunistic pathogen Candida tropicalis: what do we know?. Can J Microbiol. 2023;69(6):207–218. doi:10.1139/cjm-2022-0195
  • Liu H. Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol. 2001;4(6):728–735. doi:10.1016/s1369-5274(01)00275-2
  • Hube B, Naglik J. Candida albicans proteinases: resolving the mystery of a gene family. Microbiology (Reading). 2001;147(Pt 8):1997–2005. doi:10.1099/00221287-147-8-1997
  • Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003;67(3):400–428. doi:10.1128/MMBR.67.3.400-428.2003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.