19
Views
0
CrossRef citations to date
0
Altmetric
Review

Real-time biofilm detection techniques: advances and applications

ORCID Icon & ORCID Icon
Received 13 Dec 2023, Accepted 29 Apr 2024, Published online: 21 Jun 2024

References

  • Goel N, Fatima SW, Kumar S, et al. Antimicrobial resistance in biofilms: exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors. Biotechnol Reports. 2021;30:e00613. doi:10.1016/j.btre.2021.e00613
  • Kulshrestha A, Gupta P. Polymicrobial interaction in biofilm: mechanistic insights. Pathog Dis. 2022;80:ftac010. doi:10.1093/femspd/ftac010
  • Hughes G, Webber MA, Flemming HC, et al. Understanding biofilm resistance to antibacterial agents. Nat Rev Microbiol. 2017;2:563–575. doi:10.1038/nrmicro.2016.94
  • Uruén C, Chopo-Escuin G, Tommassen J, et al. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics. 2021;10:1–36.
  • Shineh G, Mobaraki M, Perves Bappy MJ, et al. Biofilm formation, and related impacts on healthcare, food processing and packaging, industrial manufacturing, marine industries, and sanitation-a review. Appl Microbiol. 2023;3:629–665. doi:10.3390/applmicrobiol3030044
  • Cámara M, Green W, MacPhee CE, et al. Economic significance of biofilms: a multidisciplinary and cross-sectoral challenge. NPJ Biofilm Microbiomes. 2022;8:42. doi:10.1038/s41522-022-00306-y
  • Karygianni L, Ren Z, Koo H, et al. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol. 2020;28(8):668–681. doi:10.1016/j.tim.2020.03.016
  • Lasserre JF, Brecx MC, Toma S. Oral microbes, biofilms and their role in periodontal and peri-implant diseases. Materials. 2018;11(10):1802. doi:10.3390/ma11101802
  • Holá V, Opazo-Capurro A, Scavone P. Editorial: The Biofilm Lifestyle of Uropathogens. Front Cell Infect Microbiol. 2021;11:763415. doi:10.3389/fcimb.2021.763415
  • Kovach K, Davis-Fields M, Irie Y, et al. Evolutionary adaptations of biofilms infecting cystic fibrosis lungs promote mechanical toughness by adjusting polysaccharide production. NPJ Biofilm Microbio. 2017;3:1. doi:10.1038/s41522-016-0007-9
  • Uppuluri P, Lopez Ribot JL. Candida albicans biofilms. Candida Albicans Cell Mol Biol. 2017;18:63–75. doi:10.1007/978-3-319-50409-4_5
  • Maurice NM, Bedi B, Sadikot RT. Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections. Am J Respir Cell Mol Biol. 2018;58:428–439. doi:10.1165/rcmb.2017-0321TR
  • Park O-J, Kwon Y, Park C, et al. Streptococcus gordonii: pathogenesis and host response to its cell wall components. Microorganisms. 2020;8(12):1852. doi:10.3390/microorganisms8121852
  • Zayed SM, Aboulwafa MM, Hashem AM, et al. Biofilm formation by Streptococcus mutans and its inhibition by green tea extracts. AMB Express. 2021;11:73. doi:10.1186/s13568-021-01232-6
  • Idrees M, Sawant S, Karodia N, et al. Staphylococcus aureus biofilm: morphology, genetics, pathogenesis and treatment strategies. Int J Environ Res Public Health. 2021;18(14):7602. doi:10.3390/ijerph18147602
  • Peters BM, Jabra-Rizk MA, O'May GA, et al. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev. 2012;25:193–213. doi:10.1128/CMR.00013-11
  • Fabrice J-P, Arsh V, Hampton HT, et al. One versus many: polymicrobial communities and the cystic fibrosis airway. mBio. 2021;12:e00006–00021. doi:10.1128/mBio.00006-21
  • Malinowski B, Węsierska A, Zalewska K, et al. The role of Tannerella forsythia and Porphyromonas gingivalis in pathogenesis of esophageal cancer. Infect Agent Cancer. 2019;14:3. doi:10.1186/s13027-019-0220-2
  • Esin L, Antonelli PJ, Ojano-Dirain C. Effect of haemophilus influenzae exposure on Staphylococcus aureus tympanostomy tube attachment and biofilm formation. JAMA Otolaryngology-Head & Neck Surgery. 2015;141:148–153. doi:10.1001/jamaoto.2014.3208
  • Tanzer JM, Thompson A, Sharma K, et al. Streptococcus mutans out-competes Streptococcus gordonii in vivo. J Dent Res. 2012;91:513–519. doi:10.1177/0022034512442894
  • Wang H, Huang Y, Wu S, et al. Extracellular DNA inhibits Salmonellaenterica Serovar Typhimurium and S. enterica Serovar typhi biofilm development on abiotic surfaces. Curr Microbiol. 2014;68:262–268. doi:10.1007/s00284-013-0468-5
  • Carolus H, van Dyck K, van Dijck P. Candida albicans and Staphylococcus species: a threatening twosome. Front Microbiol. 2019;10:2162. doi:10.3389/fmicb.2019.02162
  • Reece E, Segurado R, Jackson A, et al. Co-colonisation with Aspergillus fumigatus and Pseudomonas aeruginosa is associated with poorer health in cystic fibrosis patients: an Irish registry analysis. BMC Pulm Med. 2017;17:70. doi:10.1186/s12890-017-0416-4
  • Armbruster CR, Parsek MR. New insight into the early stages of biofilm formation. Proc Natl Acad Sci USA. 2018;115:4317–4319. doi:10.1073/pnas.1804084115
  • Flemming HC, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14:563–575. doi:10.1038/nrmicro.2016.94
  • Tanaka K, Yokoe S, Igarashi K, et al. Extracellular electron transfer via outer membrane cytochromes in a methanotrophic bacterium Methylococcus capsulatus (Bath). Front Microbiol. 2018;9:2905. doi:10.3389/fmicb.2018.02905
  • Dinesh G, Sutherland MC, Karthikeyan R, et al. Photoferrotrophs produce a PioAB electron conduit for extracellular electron uptake. mBio. 2019;10:e02668–19. doi:10.1128/mBio.02668-19
  • Bai Y, Mellage A, Cirpka OA, et al. AQDS and redox-active NOM enables microbial Fe(III)-mineral reduction at cm-scales. Environ Sci Technol. 2020;54:4131–4139. doi:10.1021/acs.est.9b07134
  • El-Naggar MY, Wanger G, Leung KM, et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci USA. 2010;107:18127–18131. doi:10.1073/pnas.1004880107
  • Lin T, Ding W, Sun L, et al. Engineered Shewanella oneidensis-reduced graphene oxide biohybrid with enhanced biosynthesis and transport of flavins enabled a highest bioelectricity output in microbial fuel cells. Nano Energy. 2018;50:639–648. doi:10.1016/j.nanoen.2018.05.072
  • Vieira MJ, Pinho IA, Gião S, et al. The use of cyclic voltammetry to detect biofilms formed by Pseudomonas fluorescens on platinum electrodes. Biofouling. 2003;19:215–222. doi:10.1080/08927010310000100800
  • Kang J, Kim T, Tak Y, et al. Cyclic voltammetry for monitoring bacterial attachment and biofilm formation. J Ind Eng Chem. 2012;18:800–807. doi:10.1016/j.jiec.2011.10.002
  • Gião MS, Montenegro MI, Vieira MJ. Monitoring biofilm formation by using cyclic voltammetry – Effect of the experimental conditions on biofilm removal and activity. Water Sci Technol. 2003;47:51–56. doi:10.2166/wst.2003.0278
  • Sachsenheimer K, Pires L, Adamek M, et al. Monitoring biofilm growth using a scalable multichannel impedimetric biosensor. 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2011. MicroTAS. 2011;3:1968–1970.
  • Dheilly A, Linossier I, Darchen A, et al. Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry. Appl Microbiol Biotechnol. 2008;79:157–164. doi:10.1007/s00253-008-1404-7
  • Philips J, Verbeeck K, Rabaey K, et al. Electron Transfer Mechanisms in Biofilms. Microbial Electrochemical and Fuel Cells: Fundamentals and Applications. Sawston, Cambridge: Elsevier Ltd.; 2016. doi:10.1016/B978-1-78242-375-1.00003-4
  • Kurissery SR, Kanavillil N, Leung KT, et al. Electrochemical and microbiological characterization of paper mill biofilms. Biofouling. 2010;26:799–808. doi:10.1080/08927014.2010.519025
  • Becerro S, Paredes J, Mujika M, et al. Electrochemical real-time analysis of bacterial biofilm adhesion and development by means of thin-film biosensors. IEEE Sens J. 2016;16:1856–1864. doi:10.1109/JSEN.2015.2504495
  • Fande S, Amreen K, Sriram D, et al. Microfluidic electrochemical device for real-time culturing and interference-free detection of Escherichia coli. Anal Chim Acta. 2022;1237:340591. doi:10.1016/j.aca.2022.340591
  • Thirabowonkitphithan P, Hajizadeh S, Laiwattanapaisal W, et al. Detection of Pseudomonas aeruginosa infection using a sustainable and selective polydopamine-based molecularly imprinted electrochemical sensor. Eur Polym J. 2024;209:112892. doi:10.1016/j.eurpolymj.2024.112892
  • Pires L, Sachsenheimer K, Kleintschek T, et al. Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor. Biosens Bioelectron. 2013;47:157–163. doi:10.1016/j.bios.2013.03.015
  • Thirabowonkitphithan P, Žalnėravičius R, Shafaat A, et al. Electrogenicity of microbial biofilms of medically relevant microorganisms: potentiometric, amperometric and wireless detection. Biosens Bioelectron. 2024;246:115892. doi:10.1016/j.bios.2023.115892
  • Kumar S, Nguyen AT, Goswami S, et al. Real-time monitoring of local Ph and biofilm formation using a noninvasive impedance-based method. SSRN Electron J. 2022;376(Pt A):133034. doi:10.1016/j.snb.2022.133034
  • Kretzschmar J, Harnisch F. Electrochemical impedance spectroscopy on biofilm electrodes – conclusive or euphonious? Curr Opin Electrochem. 2021;29:100757. doi:10.1016/j.coelec.2021.100757
  • Chabowski K, Junka AF, Szymczyk P, et al. The application of impedance microsensors for real-time analysis of Pseudomonas aeruginosa biofilm formation. Pol J Microbiol. 2015;64:115–120. doi:10.33073/pjm-2015-017
  • Bruchmann J, Sachsenheimer K, Rapp BE, et al. Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity. PLOS ONE. 2015;10:1–19. doi:10.1371/journal.pone.0117300
  • Kim S, Yu G, Kim T, et al. Rapid bacterial detection with an interdigitated array electrode by electrochemical impedance spectroscopy. Electrochim Acta. 2012;82:126–131. doi:10.1016/j.electacta.2012.05.131
  • Guła G, Szymanowska P, Piasecki T, et al. The application of impedance spectroscopy for Pseudomonas biofilm monitoring during phage infection. Viruses. 2020;12(4):407. doi:10.3390/v12040407
  • Gutiérrez D, Hidalgo-Cantabrana C, Rodríguez A, et al. Monitoring in real time the formation and removal of biofilms from clinical related pathogens using an impedance-based technology. PLOS ONE. 2016;11:1–17.
  • Temel A, Erac B. Investigating biofilm formation and antibiofilm activity using real time cell analysis method in carbapenem resistant Acinetobacter baumannii strains. Curr Microbiol. 2022;79:1–11. doi:10.1007/s00284-022-02943-0
  • Žiemytė M, Carda-Diéguez M, Rodríguez-Díaz JC, et al. Real-time monitoring of Pseudomonas aeruginosa biofilm growth dynamics and persister cells' eradication. Emerg Microbes Infect. 2021;10:2062–2075. doi:10.1080/22221751.2021.1994355
  • Blanco-Cabra N, López-Martínez MJ, Arévalo-Jaimes BV, et al. A new BiofilmChip device for testing biofilm formation and antibiotic susceptibility. NPJ Biofilms Microbiomes. 2021;7:62. doi:10.1038/s41522-021-00236-1
  • Gu P, Huang J, Yao J. Highly sensitive electrochemical impedance spectroscopy based sensor for Staphylococcus aureus detection. Int J Electrochem Sci. 2021;416(5):1229–1238. doi:10.1007/s00216-023-05115-6
  • Shafaat A, Gonzalez-Martinez JF, Silva WO, et al. A rapidly responsive sensor for wireless detection of early and mature microbial biofilms. Angewandte Chemie International Edition. 2023;62:e202308181. doi:10.1002/anie.202308181
  • Reichhardt C, Parsek MR. Confocal laser scanning microscopy for analysis of Pseudomonas aeruginosa biofilm architecture and matrix localization. Front Microbiol. 2019;10:677. doi:10.3389/fmicb.2019.00677
  • Relucenti M, Familiari G, Donfrancesco O, et al. Microscopy methods for biofilm imaging: focus on SEM and VP-SEM pros and cons. Biology (Basel). 2021;10(1):51. doi:10.3390/biology10010051
  • Castro J, Lima Â, Sousa LG, et al. Crystal violet staining alone is not adequate to assess synergism or antagonism in multi-species biofilms of bacteria associated with bacterial vaginosis. Front Cell Infect Microbiol. 2022;11:795797. doi:10.3389/fcimb.2021.795797
  • Bakke R, Kommedal R, Kalvenes S. Quantification of biofilm accumulation by an optical approach. J Microbiol Methods. 2001;44:13–26. doi:10.1016/S0167-7012(00)00236-0
  • Subramanian S, Kim YW, Meyer MT, et al. A real-time bacterial biofilm characterization platform using a microfluidic system. Techn Dig Solid-State Sens Actuat Microsyst Worksh. 2014;163–166.
  • Spoto G, Minunni M. Surface plasmon resonance imaging: what next? J Phys Chem Lett. 2012;3:2682–2691. doi:10.1021/jz301053n
  • Abadian PN, Tandogan N, Jamieson JJ, et al. Using surface plasmon resonance imaging to study bacterial biofilms. Biomicrofluidics. 2014;8:1–11. doi:10.1063/1.4867739
  • Filion-Côté S, Melaine F, Kirk AG, et al. Monitoring of bacterial film formation and its breakdown with an angular-based surface plasmon resonance biosensor. Analyst. 2017;142:2386–2394. doi:10.1039/C7AN00068E
  • Keiji Kanazawa K, Gordon JG. The oscillation frequency of a quartz resonator in contact with liquid. Anal Chim Acta. 1985;175:99–105. doi:10.1016/S0003-2670(00)82721-X
  • Martin SJ, Spates JJ, Wessendorf KO, et al. Resonator/oscillator response to liquid loading. Anal. Chem. 1997;69:2050–2054. doi:10.1021/ac961194x
  • Reipa V, Almeida J, Cole KD. Long-term monitoring of biofilm growth and disinfection using a quartz crystal microbalance and reflectance measurements. J Microbiol Methods. 2006;66:449–459. doi:10.1016/j.mimet.2006.01.016
  • Tam K, Kinsinger N, Ayala P, et al. Real-time monitoring of Streptococcus mutans biofilm formation using a quartz crystal microbalance. Caries Res. 2007;41:474–483. doi:10.1159/000108321
  • Schofield AL, Rudd TR, Martin DS, et al. Real-time monitoring of the development and stability of biofilms of Streptococcus mutans using the quartz crystal microbalance with dissipation monitoring. Biosens Bioelectron. 2007;23:407–413. doi:10.1016/j.bios.2007.05.001
  • Walden C, Greenlee L, Zhang W. Real-time interaction of mixed species biofilm with silver nanoparticles using QCM-D. Coll. Interf. Sci. Commun. 2019;28:49–53. doi:10.1016/j.colcom.2018.11.007
  • Krishnamoorthy S, Iliadis AA, Bei T, et al. An interleukin-6 ZnO/SiO2/Si surface acoustic wave biosensor. Biosens Bioelectron. 2008;24:313–318. doi:10.1016/j.bios.2008.04.011
  • Kim YW, Sardari SE, Meyer MT, et al. An ALD aluminum oxide passivated surface acoustic wave sensor for early biofilm detection. Sens Actuators B Chem. 2012;163:136–145. doi:10.1016/j.snb.2012.01.021
  • Kim YW, Meyer MT, Berkovich A, et al. A surface acoustic wave biofilm sensor integrated with a treatment method based on the bioelectric effect. Sens Actuators A Phys. 2016;238:140–149. doi:10.1016/j.sna.2015.12.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.