19
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Synergistic action of lactoferrin and its derived functional fragments as a promising therapeutic agent in combating mucormycosis

, , , , , , ORCID Icon & show all
Pages 857-866 | Received 31 Jan 2024, Accepted 03 May 2024, Published online: 21 Jun 2024

References

  • Sharma A, Goel A. Mucormycosis: risk factors, diagnosis, treatments, and challenges during COVID-19 pandemic. Folia Microbiol (Praha). 2022;67:363–387. doi:10.1007/s12223-021-00934-5
  • Sugar AM, Liu XP, Chen RJ. Effectiveness of quinolone antibiotics in modulating the effects of antifungal drugs. Antimicrob Agents Chemother. 1997;41:2518–2521. doi:10.1128/AAC.41.11.2518
  • Espinel-Ingroff A, Chowdhary A, Gonzalez GM, et al. Multicenter study of isavuconazole MIC distributions and epidemiological cutoff values for Aspergillus spp. for the CLSI M38-A2 broth microdilution method. Antimicrob Agents Chemother. 2013;57:3823–3828. doi:10.1128/AAC.00636-13
  • Pandey M, Singh G, Agarwal R, et al. Emerging Rhizopus microsporus Infections in India. J Clin Microbiol. 2018;56:e00433–18. doi:10.1128/JCM.00433-18
  • Goldani LZ, Sugar AM. Treatment of murine pulmonary mucormycosis with SCH 42427, a broad-spectrum triazole antifungal drug. J Antimicrob Chemother. 1994;33:369–372. doi:10.1093/jac/33.2.369
  • Liu M, Spellberg B, Phan QT, et al. The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. J Clin Invest. 2010;120:1914–1924. doi:10.1172/JCI42164
  • Rao SP, Kumar KR, Rokade VR, et al. Orbital apex syndrome due to mucormycosis caused by Rhizopus microsporum. Indian J Otolaryngol Head Neck Surg. 2006;58:84–87. doi:10.1007/BF02907751
  • Waldorf AR, Ruderman N, Diamond RD. Specific susceptibility to mucormycosis in murine diabetes and bronchoalveolar macrophage defense against Rhizopus. J Clin Invest. 1984;74:150–160. doi:10.1172/JCI111395
  • Waldorf AR. Pulmonary defense mechanisms against opportunistic fungal pathogens. Immunol Ser. 1989;47:243–271.
  • Diamond RD, Haudenschild CC. Erickson NF 3rd. Monocyte-mediated damage to Rhizopus oryzae hyphae in vitro. Infect Immun. 1982;38:292–297. doi:10.1128/iai.38.1.292-297.1982
  • Chapple DS, Mason DJ, Joannou CL, et al. Structure-function relationship of antibacterial synthetic peptides homologous to a helical surface region on human lactoferrin against Escherichia coli serotype O111. Infect Immun. 1998;66:2434–2440. doi:10.1128/IAI.66.6.2434-2440.1998
  • Håversen L, Kondori N, Baltzer L, et al. Structure-microbicidal activity relationship of synthetic fragments derived from the antibacterial alpha-helix of human lactoferrin. Antimicrob Agents Chemother. 2010;54:418–425. doi:10.1128/aac.00908-09.
  • Håversen L, Ohlsson BG, Hahn-Zoric M, et al. Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-kappa B. Cell Immunol. 2002;220:83–95. doi:10.1016/s0008-8749(03)00006-6
  • Sinha M, Kaushik S, Kaur P, et al. Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. Int J Pept. 2013;2013:390230. doi:10.1155/2013/390230
  • Legrand D, Elass E, Carpentier M, Mazurier J. Lactoferrin: a modulator of immune and inflammatory responses. Cell Mol Life Sci. 2005;62:2549–2559. doi:10.1007/s00018-005-5370-2
  • Performance Standards for Antifungal Susceptibility Testing of Filamentous Fungi. 2nd ed. CLSI supplement M61 (ISBN 978-1-68440-084-3 [Print]; ISBN 978-1-68440-085-0 [Electronic]). Clinical and Laboratory Standards Institute: 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA; 2020.
  • Jeong W, Keighley C, Wolfe R, et al. The epidemiology and clinical manifestations of mucormycosis: a systematic review and meta-analysis of case reports. Clin Microbiol Infect. 2019;25:26–34. doi:10.1016/j.cmi.2018.07.011
  • Brock JH. The physiology of lactoferrin. Biochem Cell Biol. 2002;80:1–6. doi:10.1139/o01-212
  • Andrés MT, Viejo-Díaz M, Fierro JF. Human lactoferrin induces apoptosis-like cell death in Candida albicans: critical role of K + -channel-mediated K+ efflux. Antimicrob Agents Chemother. 2008;52:4081–4088. doi:10.1128/AAC.01597-07
  • Sau K, Mambula SS, Latz E, et al. The antifungal drug amphotericin B promotes inflammatory cytokine release by a Toll-like receptor- and CD14-dependent mechanism. J Biol Chem. 2003;278:37561–37568. doi:10.1074/jbc.M306137200
  • Chakrabarti A, Das A, Sharma A, et al. Ten years' experience in zygomycosis at a tertiary care centre in India. J Infect. 2001;42:261–266. doi:10.1053/jinf.2001.0831
  • Chakrabarti A, Chatterjee SS, Das A, et al. Invasive zygomycosis in India: experience in a tertiary care hospital. Postgrad Med J. 2009;85:573–581. doi:10.1136/pgmj.2008.076463
  • Fernandes KE, Weeks K, Carter DA. Lactoferrin is broadly active against yeasts and highly synergistic with amphotericin B. Antimicrob Agents Chemother. 2020;64:e02284–19. doi:10.1128/AAC.02284-19
  • Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis. 2017;17:e383–e392. doi:10.1016/S1473-3099(17)30316-X
  • van Rhijn N, Bromley M. The consequences of our changing environment on life threatening and debilitating fungal diseases in humans. J Fungi. 2021; 7:367. doi:10.3390/jof7050367
  • Ueta E, Tanida T, Osaki T. A novel bovine lactoferrin peptide, FKCRRWQWRM, suppresses Candida cell growth and activates neutrophils. J Pept Res. 2001;57:240–249. doi:10.1111/j.1399-3011.2001.00821.x
  • Snelders E, Camps SM, Karawajczyk A, et al. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLOS ONE. 2012;7:e31801. doi:10.1371/journal.pone.0031801
  • Chibucos MC, Soliman S, Gebremariam T, et al. An integrated genomic and transcriptomic survey of mucormycosis-causing fungi. Nat Commun. 2016;7:12218. doi:10.1038/ncomms12218
  • Bellamy W, Takase M, Wakabayashi H, et al. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol. 1992;73:472–479. doi:10.1111/j.1365-2672.1992.tb05007.x
  • Fernandes KE, Carter DA. The antifungal activity of lactoferrin and its derived peptides: mechanisms of action and synergy with drugs against fungal pathogens. Front Microbiol. 2017;8:2. doi:10.3389/fmicb.2017.00002
  • Roden MM, Zaoutis TE, Buchanan WL, et al. Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis. 2005;41:634–653. doi:10.1086/432579
  • Skiada A, Pavleas I, Drogari-Apiranthitou M. Epidemiology and diagnosis of mucormycosis: an update. J Fungi (Basel). 2020;6:265. doi:10.3390/jof6040265
  • Tiphine M, Letscher-Bru V, Herbrecht R. Amphotericin B and its new formulations: pharmacologic characteristics, clinical efficacy, and tolerability. Transpl Infect Dis. 1999;1:273–283. doi:10.1034/j.1399-3062.1999.010406.x
  • Chan DI, Prenner EJ, Vogel HJ. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta. 2006;1758:1184–1202. doi:10.1016/j.bbamem.2006.04.006
  • Wakabayashi H, Hiratani T, Uchida K, et al. Antifungal spectrum and fungicidal mechanism of an N-terminal peptide of bovine lactoferrin. J Infect Chemother. 1996;1:185–189. doi:10.1007/BF02350646
  • Fernandes KE, Weeks K, Carter DA. Lactoferrin is broadly active against yeasts and highly synergistic with amphotericin B. Antimicrob Agents Chemother. 2020;64:e02284–19. doi:10.1128/AAC.02284-19
  • Tanida T, Rao F, Hamada T, et al. Lactoferrin peptide increases the survival of Candida albicans-inoculated mice by upregulating neutrophil and macrophage functions, especially in combination with amphotericin B and granulocyte-macrophage colony-stimulating factor. Infect Immun. 2001;69:3883–3890. doi:10.1128/IAI.69.6.3883-3890.2001
  • Okamoto T, Tanida T, Wei B, et al. Regulation of fungal infection by a combination of amphotericin B and peptide 2, a lactoferrin peptide that activates neutrophils. Clin Diagn Lab Immunol. 2004;11:1111–1119. doi:10.1128/CDLI.11.6.1111-1119.2004
  • Elhabal SF, Ghaffar SA, Hager R, et al. Development of thermosensitive hydrogel of Amphotericin-B and Lactoferrin combination-loaded PLGA-PEG-PEI nanoparticles for potential eradication of ocular fungal infections: in-vitro, ex-vivo and in-vivo studies. Int J Pharm X. 2023;5:100174. doi:10.1016/j.ijpx.2023.100174

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.