430
Views
13
CrossRef citations to date
0
Altmetric
BIOMECHANICS AND MOTOR CONTROL

Corticospinal changes induced by fatiguing eccentric versus concentric exercise

ORCID Icon, &

References

  • Babault, N., Pousson, M., Ballay, Y., & Van Hoecke, J. (2001). Activation of human quadriceps femoris during isometric, concentric, and eccentric contractions. Journal of Applied Physiology, 91(6), 2628–2634. doi: 10.1152/jappl.2001.91.6.2628
  • Barrué-Belou, S., Marque, P., & Duclay, J. (2018). Recurrent inhibition is higher in eccentric compared to isometric and concentric maximal voluntary contractions. Acta Physiologica, (March). doi: 10.1111/apha.13064
  • Behrens, M., Husmann, F., Gube, M., Felser, S., Weippert, M., Bruhn, S., & Mau-Moeller, A. (2017). Intersession reliability of the interpolated twitch technique applied during isometric, concentric, and eccentric actions of the human knee extensor muscles. Muscle and Nerve, 56(2), 324–327. doi: 10.1002/mus.25498
  • Damron, L. A., Dearth, D. J., Hoffman, R. L., & Clark, B. C. (2008). Quantification of the corticospinal silent period evoked via transcranial magnetic stimulation. Journal of Neuroscience Methods, 173(1), 121–128. doi: 10.1016/j.jneumeth.2008.06.001
  • Davranche, K., Temesi, J., Verges, S., & Hasbroucq, T. (2015). Transcranial magnetic stimulation probes the excitability of the primary motor cortex: A framework to account for the facilitating effects of acute whole-body exercise on motor processes. Journal of Sport and Health Science, 4(1), 24–29. doi: 10.1016/j.jshs.2014.09.001
  • Devanne, H., Lavoie, B. A., & Capaday, C. (1997). Input-output properties and gain changes in the human corticospinal pathway. Experimental Brain Research, 114(2), 329–338. doi: 10.1007/PL00005641
  • Doguet, V., Nosaka, K., Guével, A., Thickbroom, G., Ishimura, K., & Jubeau, M. (2017). Muscle length effect on corticospinal excitability during maximal concentric, isometric and eccentric contractions of the knee extensors. Experimental Physiology, 102(11), 1513–1523. doi: 10.1113/EP086480
  • Doix, A. C. M., Matkowski, B., Martin, A., Roeleveld, K., & Colson, S. S. (2014). Effect of neuromuscular electrical stimulation intensity over the tibial nerve trunk on triceps surae muscle fatigue. European Journal of Applied Physiology, 114(2), 317–329. doi: 10.1007/s00421-013-2780-y
  • Duchateau, J., & Enoka, R. M. (2016). Neural control of lengthening contractions. Journal of Experimental Biology, 219(2), 197–204. doi: 10.1242/jeb.123158
  • Duclay, J., Pasquet, B., Martin, A., & Duchateau, J. (2011). Specific modulation of corticospinal and spinal excitabilities during maximal voluntary isometric, shortening and lengthening contractions in synergist muscles. The Journal of Physiology, 589(11), 2901–2916. doi: 10.1113/jphysiol.2011.207472
  • Duclay, J., Pasquet, B., Martin, A., & Duchateau, J. (2014). Specific modulation of spinal and cortical excitabilities during lengthening and shortening submaximal and maximal contractions in plantar flexor muscles. Journal of Applied Physiology, 117, 1440–1450. doi: 10.1152/japplphysiol.00489.2014
  • Ebenbichler, G., Kollmitzer, J., Quittan, M., Uhl, F., Kirtley, C., & Fialka, V. (1998). EMG fatigue patterns accompanying isometric fatiguing knee-extensions are different in mono- and bi-articular muscles. Electroencephalography and Clinical Neurophysiology, 109(3), 256–262. doi: 10.1016/S0924-980X(98)00015-0
  • Fang, Y., Siemionow, V., Sahgal, V., Xiong, F., & Yue, G. H. (2001). Greater movement-related cortical potential during human eccentric versus concentric muscle contractions. Journal of Neurophysiology, 86(4), 1764–1772. doi: 10.1152/jn.2001.86.4.1764
  • Fang, Y., Siemionow, V., Sahgal, V., Xiong, F., & Yue, G. H. (2004). Distinct brain activation patterns for human maximal voluntary eccentric and concentric muscle actions. Brain Research, 1023(2), 200–212. doi: 10.1016/j.brainres.2004.07.035
  • Gandevia, S. C., Allen, G. M., Butler, J. E., & Taylor, J. L. (1996). Supraspinal factors in human muscle fatigue: Evidence for suboptimal output from the motor cortex. The Journal of Physiology, 490(2), 529–536. doi: 10.1113/jphysiol.1996.sp021164
  • Gruber, M., Linnamo, V., Strojnik, V., Rantalainen, T., & Avela, J. (2009). Excitability at the motoneuron pool and motor cortex is specifically modulated in lengthening compared to isometric contractions. Journal of Neurophysiology, 101(4), 2030–2040. doi: 10.1152/jn.91104.2008
  • Gruet, M., Temesi, J., Rupp, T., Levy, P., Verges, S., & Millet, G. Y. (2014). Dynamics of corticospinal changes during and after a high-intensity quadriceps exercise. Experimental Physiology, 99(8), 1–27. doi: 10.1113/expphysiol.2014.078840
  • Guissard, N., & Duchateau, J. (2006). Neural aspects of muscle stretching. Exercise and Sport Sciences Reviews, 34(4), 154–158. doi: 10.1249/01.jes.0000240023.30373.eb
  • Hill, C. A., Thompson, M. W., Ruell, P. A., Thom, J. M., & White, M. J. (2001). Sarcoplasmic reticulum function and muscle contractile character following fatiguing exercise in humans. Journal of Physiology, 531(3), 871–878. doi: 10.1111/j.1469-7793.2001.0871h.x
  • Jones, D. A. (1996). High-and low-frequency fatigue revisited. Acta Physiologica Scandinavica, 156, 265–270. doi: 10.1046/j.1365-201X.1996.192000.x
  • Kotan, S., Kojima, S., Miyaguchi, S., Sugawara, K., & Onishi, H. (2015). Depression of corticomotor excitability after muscle fatigue induced by electrical stimulation and voluntary contraction. Frontiers in Human Neuroscience, 9, 1–7. doi: 10.3389/fnhum.2015.00363
  • Löscher, W. N., & Nordlund, M. M. (2002). Central fatigue and motor cortical excitability during repeated shortening and lengthening actions. Muscle & Nerve, 25(6), 864–872. doi: 10.1002/mus.10124
  • Orth, M., & Rothwell, J. C. (2004). The cortical silent period: Intrinsic variability and relation to the waveform of the transcranial magnetic stimulation pulse. Clinical Neurophysiology, 115(5), 1076–1082. doi: 10.1016/j.clinph.2003.12.025
  • Piitulainen, H., Komi, P., Linnamo, V., & Avela, J. (2008). Sarcolemmal excitability as investigated with M-waves after eccentric exercise in humans. Journal of Electromyography and Kinesiology, 18(4), 672–681. doi: 10.1016/j.jelekin.2007.01.004
  • Place, N., Maffiuletti, N. A., Ballay, Y., & Lepers, R. (2005). Twitch potentiation is greater after a fatiguing submaximal isometric contraction performed at short vs. long quadriceps muscle length. Journal of Applied Physiology, 98(2), 429–436. doi: 10.1152/japplphysiol.00664.2004
  • Place, N., Maffiuletti, N. A., Martin, A., & Lepers, R. (2007). Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle and Nerve, 35(4), 486–495. doi: 10.1002/mus.20714
  • Rozand, V., Cattagni, T., Theurel, J., Martin, A., & Lepers, R. (2014). Neuromuscular fatigue following isometric contractions with similar torque time integral. International Journal of Sports Medicine, 36(1), 35–40. doi: 10.1055/s-0034-1375614
  • Rozand, V., Senefeld, J. W., Hassanlouei, H., & Hunter, S. K. (2017). Voluntary activation and variability during maximal dynamic contractions with aging. European Journal of Applied Physiology, 117(12), 2493–2507. doi: 10.1007/s00421-017-3737-3
  • Ruotsalainen, I., Ahtiainen, J. P., Kidgell, D. J., & Avela, J. (2014). Changes in corticospinal excitability during an acute bout of resistance exercise in the elbow flexors. European Journal of Applied Physiology, 114(7), 1545–1553. doi: 10.1007/s00421-014-2884-z
  • Strojnik, V., & Komi, P. V. (1998). Neuromuscular fatigue after maximal stretch-shortening cycle exercise. Journal of Applied Physiology, 84(1), 344–350. doi: 10.1152/jappl.1998.84.1.344
  • Taylor, J. L., Allen, G. M., Butler, J. E., & Gandevia, S. C. (2000). Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors. Journal of Applied Physiology, 89(1), 305–313. doi: 10.1152/jappl.2000.89.1.305
  • Taylor, J. L., Amann, M., Duchateau, J., Meeusen, R., & Rice, C. L. (2016). Neural contributions to muscle fatigue: From the brain to the muscle and back again. Medicine and Science in Sports and Exercise, 48(11), 2294–2306. doi: 10.1249/MSS.0000000000000923
  • Taylor, J. L., & Gandevia, S. C. (2008). A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. Journal of Applied Physiology, 104(2), 542–550. doi: 10.1152/japplphysiol.01053.2007
  • Taylor, J. L., Todd, G., & Gandevia, S. C. (2006). Evidence for a supraspinal contribution to human muscle fatigue. Clinical and Experimental Pharmacology and Physiology, 33, 400–405. doi: 10.1111/j.1440-1681.2006.04363.x
  • Temesi, J., Gruet, M., Rupp, T., Verges, S., & Millet, G. Y. (2014). Resting and active motor thresholds versus stimulus–response curves to determine transcranial magnetic stimulation intensity in quadriceps femoris. Journal of NeuroEngineering and Rehabilitation, 11(40), 1–13. doi: 10.1186/1743-0003-11-40
  • Verges, S., Maffiuletti, N. A., Kerherve, H., Decorte, N., Wuyam, B., & Millet, G. Y. (2009). Comparison of electrical and magnetic stimulations to assess quadriceps muscle function. Journal of Applied Physiology, 106(2), 701–710. doi: 10.1152/japplphysiol.01051.2007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.