390
Views
3
CrossRef citations to date
0
Altmetric
PHYSIOLOGY AND NUTRITION

The effect of intermittent running on biomarkers of bone turnover

, , &

References

  • Batterham, A. M., & Hopkins, W. G. (2015). The case for magnitude-based inference. Medicine & Science in Sports & Exercise, 47, 885. doi: 10.1249/mss.0000000000000551
  • Bemben, D. A., Sharma-Ghimire, P., Chen, Z., Kim, E., Kim, D., & Bemben, M. G. (2015). Effects of whole-body vibration on acute bone turnover marker responses to resistance exercise in young men. Journal of Musculoskeletal and Neuronal Interactions, 15, 23–31.
  • Bjarnason, N. H., Henriksen, E. E., Alexandersen, P., Christgau, S., Henriksen, D. B., & Christiansen, C. (2002). Mechanism of circadian variation in bone resorption. Bone, 30, 307–313. doi: 10.1016/S8756-3282(01)00662-7
  • Boudenot, A., Achiou, Z., & Portier, H. (2015). Does running strengthen bone? Applied Physiology, Nutrition, and Metabolism, 40, 1309–1312. doi: 10.1139/apnm-2015-0265
  • Bowtell, J. L., Jackman, S. R., Scott, S., Connolly, L. J., Mohr, M., Ermidis, G., … Krustrup, P. (2016). Short duration small sided football and to a lesser extent whole body vibration exercise induce acute changes in markers of bone turnover. BioMed Research International, 2016, 1. doi: 10.1155/2016/3574258
  • Buchheit, M., & Laursen, P. B. (2013a). High-intensity interval training, solutions to the programming puzzle. Part II: Anaerobic energy, neuromuscular load and practical applications. Sports Medicine, 43, 927–954. doi: 10.1007/s40279-013-0066-5
  • Buchheit, M., & Laursen, P. B. (2013b). High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Medicine, 43, 313–338. doi: 10.1007/s40279-013-0029-x
  • Burr, D. B. (1993). Remodeling and the repair of fatigue damage. Calcified Tissue International, 53, S75–S81. doi: 10.1007/BF01673407
  • Chubb, S. A. P., Mandelt, C. D., & Vasikaran, S. D. (2015). Comparison of results from commercial assays for plasma CTX: The need for harmonization. Clinical Biochemistry, 48, 519–524. doi: 10.1016/j.clinbiochem.2015.03.002
  • Edwards, R. B., Tofari, P. J., Cormack, S. J., & Whyte, D. G. (2017). Non-motorized treadmill running is associated with higher cardiometabolic demands compared with overground and motorized treadmill running. Frontiers in Physiology, 8, 914. doi: 10.3389/fphys.2017.00914
  • Frost, H. M. (2003). Bone’s mechanostat: A 2003 update. The Anatomical Record, 275A, 1081–1101. doi: 10.1002/ar.a.10119
  • Gómez-Cabello, A., Ara, I., González-Agüero, A., Casajüs, J. A., & Vicente-Rodríguez, G. (2012). Effects of training on bone mass in older adults: A systematic review. Sports Medicine, 42, 301–325. doi: 10.2165/11597670-000000000-00000
  • Guillemant, J., Accarie, C., Peres, G., & Guillemant, S. (2004). Acute effects of an oral calcium load on markers of bone metabolism during endurance cycling exercise in male athletes. Calcified Tissue International, 74, 407–414. doi: 10.1007/s00223-003-0070-0
  • Helge, E. W., Aagaard, P., Jakobsen, M. D., Sundstrup, E., Randers, M. B., Karlsson, M. K., & Krustrup, P. (2010). Recreational football training decreases risk factors for bone fractures in untrained premenopausal women. Scandinavian Journal of Medicine & Science in Sports, 20, 31–39. doi: 10.1111/j.1600-0838.2010.01107.x
  • Helge, E. W., Andersen, T. R., Schmidt, J. F., Jorgensen, N. R., Hornstrup, T., Krustrup, P., & Bangsbo, J. (2014). Recreational football improves bone mineral density and bone turnover marker profile in elderly men. Scandinavian Journal of Medicine & Science in Sports, 24, 98–104. doi: 10.1111/sms.12239
  • Henriksen, D. B., Alexandersen, P., Bjarnason, N. H., Vilsboll, T., Hartmann, B., Henriksen, E. E., … Christiansen, C. (2003). Role of gastrointestinal hormones in postprandial reduction of bone resorption. Journal of Bone and Mineral Research, 18, 2180–2189. doi: 10.1359/jbmr.2003.18.12.2180
  • Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41, 3. doi: 10.1249/MSS.0b013e31818cb278
  • Hsieh, Y.-F., & Turner, C. H. (2001). Effects of loading frequency on mechanically induced bone formation. Journal of Bone and Mineral Research, 16, 918–924. doi: 10.1359/jbmr.2001.16.5.918
  • Kerschan-Schindl, K., Thalmann, M., Sodeck, G. H., Skenderi, K., Matalas, A. L., Grampp, S., … Pietschmann, P. (2009). A 246-km continuous running race causes significant changes in bone metabolism. Bone, 45, 1079–1083. doi: 10.1016/j.bone.2009.07.088
  • Kohrt, W. M., Barry, D. W., & Schwartz, R. S. (2009). Muscle forces or gravity: What predominates mechanical loading on bone?. Medicine & Science in Sports & Exercise, 41, 2050–2055. doi: 10.1249/MSS.0b013e3181a8c717
  • Kouvelioti, R., LeBlanc, P., Falk, B., Ward, W. E., Josse, A. R., & Klentrou, P. (2019). Effects of high-intensity interval running versus cycling on sclerostin, and markers of bone turnover and oxidative stress in young men. Calcified Tissue International, doi: 10.1007/s00223-019-00524-1
  • Maimoun, L., Manetta, J., Couret, I., Dupuy, A. M., Mariano-Goulart, D., Michallef, J. P., … Rossi, M. (2006). The intensity level of physical exercise and the bone metabolism response. International Journal of Sports Medicine, 27, 105–111. doi: 10.1055/s-2005-837621
  • Meyer, T., Gabriel, H. H., & Kindermann, W. (1999). Is determination of exercise intensities as percentages of VO2max or HRmax adequate?. Medicine & Science in Sports & Exercise, 31, 1342–1345. doi: 10.1097/00005768-199909000-00017
  • Mezil, Y. A., Allison, D., Kish, K., Ditor, D., Ward, W. E., Tsiani, E., & Klentrou, P. (2015). Response of bone turnover markers and cytokines to high-intensity low-impact exercise. Medicine & Science in Sports & Exercise, 47, 1495–1502. doi: 10.1249/mss.0000000000000555
  • Milgrom, C., Finestone, A., Levi, Y., Simkin, A., Ekenman, I., Mendelson, S., … Burr, D. (2000). Do high impact exercises produce higher tibial strains than running? British Journal of Sports Medicine, 34, 195–199. doi: 10.1136/bjsm.34.3.195
  • Montgomery, G., Abt, G., Dobson, C., Smith, T., & Ditroilo, M. (2016). Tibial impacts and muscle activation during walking, jogging and running when performed overground, and on motorised and non-motorised treadmills. Gait & Posture, 49, 120–126. doi: 10.1016/j.gaitpost.2016.06.037
  • Morton, J. (2007). Prescribing, quantifying and monitoring exercise intensity during interval running. Medicine & Science in Sports & Exercise, 39, 1885. doi: 10.1249/mss.0b013e31813e610b
  • Munro, C., Miller, D., & Fuglevand, A. (1987). Ground reaction forces in running: A reexamination. Journal of Biomechanics, 20, 147–155. doi: 10.1016/0021-9290(87)90306-X
  • Nybo, L., Sundstrup, E., Jakobsen, M. D., Mohr, M., Hornstrup, T., Simonsen, L., … Krustrup, P. (2010). High-intensity training versus traditional exercise interventions for promoting health. Medicine & Science in Sports & Exercise, 42, 1951–1958. doi: 10.1249/MSS.0b013e3181d99203
  • Qvist, P., Christgau, S., Pedersen, B. J., Schlemmer, A., & Christiansen, C. (2002). Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone, 31, 57–61. doi: 10.1016/S8756-3282(02)00791-3
  • Rantalainen, T., Heinonen, A., Linnamo, V., Komi, P., Takala, T., & Kainulainen, H. (2009). Short-term bone biochemical response to a single bout of high-impact exercise. Journal of Sports Science and Medicine, 8, 553–559.
  • Ravnholt, T., Tybirk, J., Jorgensen, N. R., & Bangsbo, J. (2018). High-intensity intermittent “5-10-15” running reduces body fat, and increases lean body mass, bone mineral density, and performance in untrained subjects. European Journal of Applied Physiology, 118, 1221–1230. doi: 10.1007/s00421-018-3851-x
  • Robling, A. G., Burr, D. B., & Turner, C. H. (2001). Recovery periods restore mechanosensitivity to dynamically loaded bone. The Journal of Experimental Biology, 204, 3389–3399.
  • Rogers, R. S., Dawson, A. W., Wang, Z., Thyfault, J. P., & Hinton, P. S. (2011). Acute response of plasma markers of bone turnover to a single bout of resistance training or plyometrics. Journal of Applied Physiology, 111, 1353–1360. doi: 10.1152/japplphysiol.00333.2011
  • Scott, J. P. R., Sale, C., Greeves, J. P., Casey, A., Dutton, J., & Fraser, W. D. (2011). The role of exercise intensity in the bone metabolic response to an acute bout of weight-bearing exercise. Journal of Applied Physiology, 110, 423–432. doi: 10.1152/japplphysiol.00764.2010
  • Scott, J. P. R., Sale, C., Greeves, J. P., Casey, A., Dutton, J., & Fraser, W. D. (2012). Effect of fasting versus feeding on the bone metabolic response to running. Bone, 51, 990–999. doi: 10.1016/j.bone.2012.08.128
  • Seibel, M. J. (2005). Biochemical markers of bone turnover part I: Biochemistry and variability. The Clinical Biochemist Reviews/Australian Association of Clinical Biochemists, 26, 97.
  • Smith, T. B., & Hopkins, W. G. (2011). Variability and predictability of finals times of elite rowers. Medicine & Science in Sports & Exercise, 43, 2155–2160. doi: 10.1249/MSS.0b013e31821d3f8e
  • Srinivasan, S., Agans, S. C., King, K. A., Moy, N. Y., Poliachik, S. L., & Gross, T. S. (2003). Enabling bone formation in the aged skeleton via rest-inserted mechanical loading. Bone, 33, 946–955. doi: 10.1016/j.bone.2003.07.009
  • Srinivasan, S., Ausk, B. J., Bain, S. D., Gardiner, E. M., Kwon, R. Y., & Gross, T. S. (2015). Rest intervals reduce the number of loading bouts required to enhance bone formation. Medicine & Science in Sports & Exercise, 47, 1095–1103. doi: 10.1249/mss.0000000000000509
  • Tosun, A., Bölükbaşı, N., Çıngı, E., Beyazova, M., & Ünlü, M. (2006). Acute effects of a single session of aerobic exercise with or without weight-lifting on bone turnover in healthy young women. Modern Rheumatology, 16, 300–304. doi:10.1007/s10165-006-0503-5 doi: 10.3109/s10165-006-0503-5
  • Turner, C. H., & Robling, A. G. (2005). Mechanisms by which exercise improves bone strength. Journal of Bone and Mineral Metabolism, 23, 16–22. doi: 10.1007/BF03026318
  • Vanrenterghem, J., Nedergaard, N. J., Robinson, M. A., & Drust, B. (2017). Training load monitoring in team sports: A novel framework separating physiological and biomechanical load-adaptation pathways. Sports Medicine, 47, 2135–2142. doi: 10.1007/s40279-017-0714-2
  • Vasikaran, S., Cooper, C., Eastell, R., Griesmacher, A., Morris Howard, A., Trenti, T., & Kanis John, A. (2011). International osteoporosis foundation and international federation of clinical chemistry and laboratory medicine position on bone marker standards in osteoporosis. Clinical Chemistry and Laboratory Medicine, 491, 271–1274. doi: 10.1515/cclm.2011.602
  • Wallace, I. J., Kwaczala, A. T., Judex, S., Demes, B., & Carlson, K. J. (2013). Physical activity engendering loads from diverse directions augments the growing skeleton. Journal of Musculoskeletal and Neuronal Interactions, 13, 283–288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.