394
Views
4
CrossRef citations to date
0
Altmetric
PHYSIOLOGY AND NUTRITION

Muscle and cerebral oxygenation during exercise in athletes with exercise-induced hypoxemia: A comparison between sea level and acute moderate hypoxia

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Amann, M., & Calbet, J. A. L. (2008). Convective oxygen transport and fatigue. Journal of Applied Physiology, 104, 861–870. doi: 10.1152/japplphysiol.01008.2007
  • Amann, M., Pegelow, D. F., Jacques, A. J., & Dempsey, J. A. (2007). Inspiratory muscle work in acute hypoxia influences locomotor muscle fatigue and exercise performance of healthy humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 293, R2036–R2045. doi: 10.1152/ajpregu.00442.2007
  • Amann, M., Romer, L. M., Subudhi, A. W., Pegelow, D. F., & Dempsey, J. A. (2007). Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. The Journal of Physiology, 581, 389–403. doi: 10.1113/jphysiol.2007.129700
  • Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, 37, 379–384. doi: 10.3758/BF03192707
  • Benoit, H., Busso, T., Castells, J., Geyssant, A., & Denis, C. (2003). Decrease in peak heart rate with acute hypoxia in relation to sea level VO(2max). European Journal of Applied Physiology, 90, 514–519. doi: 10.1007/s00421-003-0899-y
  • Bhambhani, Y., Malik, R., & Mookerjee, S. (2007). Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respiratory Physiology & Neurobiology, 156, 196–202. doi: 10.1016/j.resp.2006.08.009
  • Chapman, R. F., Emery, M., & Stager, J. M. (1999). Degree of arterial desaturation in normoxia influences VO2max decline in mild hypoxia. Medicine & Science in Sports & Exercise, 31, 658–663. doi: 10.1097/00005768-199905000-00006
  • Cohen, J. (2013). Statistical power analysis for the behavioral sciences [Internet]. Routledge. doi: 10.4324/9780203771587
  • Constantini, K., Tanner, D. A., Gavin, T. P., Harms, C. A., Stager, J. M., & Chapman, R. F. (2017). Prevalence of exercise-induced arterial hypoxemia in distance runners at sea level. Medicine & Science in Sports & Exercise, 49, 948–954. doi: 10.1249/MSS.0000000000001193
  • Dempsey, J. A., Hanson, P. G., & Henderson, K. S. (1984). Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. The Journal of Physiology, 355, 161–175. doi: 10.1113/jphysiol.1984.sp015412
  • Dempsey, J. A., Romer, L., Rodman, J., Miller, J., & Smith, C. (2006). Consequences of exercise-induced respiratory muscle work. Respiratory Physiology & Neurobiology, 151, 242–250. doi: 10.1016/j.resp.2005.12.015
  • Dempsey, J. A., & Wagner, P. D. (1999). Exercise-induced arterial hypoxemia. Journal of Applied Physiology, 87, 1997–2006. doi: 10.1152/jappl.1999.87.6.1997
  • Derchak, P. A., Sheel, A. W., Morgan, B. J., & Dempsey, J. A. (2002). Effects of expiratory muscle work on muscle sympathetic nerve activity. Journal of Applied Physiology, 92, 1539–1552. doi: 10.1152/japplphysiol.00790.2001
  • Durand, F., Mucci, P., & Préfaut, C. (2000). Evidence for an inadequate hyperventilation inducing arterial hypoxemia at submaximal exercise in all highly trained endurance athletes. Medicine & Science in Sports & Exercise, 32, 926–932. doi: 10.1097/00005768-200005000-00008
  • Ellis, P. D. (2010). The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. Cambridge: Cambridge University Press.
  • Fan, J.-L., & Kayser, B. (2016). Fatigue and exhaustion in hypoxia: The role of cerebral oxygenation. High Altitude Medicine & Biology, 17, 72–84. doi: 10.1089/ham.2016.0034
  • Gaston, A.-F., Durand, F., Roca, E., Doucende, G., Hapkova, I., & Subirats, E. (2016). Exercise-induced hypoxaemia developed at sea-level influences responses to exercise at moderate altitude. PLOS ONE, 11, e0161819. doi: 10.1371/journal.pone.0161819
  • Gavin, T. P., Derchak, P. A., & Stager, J. M. (1998). Ventilation’s role in the decline in VO2max and SaO2 in acute hypoxic exercise. Medicine & Science in Sports & Exercise, 30, 195–199. doi: 10.1097/00005768-199802000-00004
  • Grataloup, O., Busso, T., Castells, J., Denis, C., & Benoit, H. (2007). Evidence of decrease in peak heart rate in acute hypoxia: Effect of exercise-induced arterial hypoxemia. International Journal of Sports Medicine, 28, 181–185. doi: 10.1055/s-2006-924216
  • Harms, C. A., Babcock, M. A., McClaran, S. R., Pegelow, D. F., Nickele, G. A., Nelson, W. B., & Dempsey, J. A. (1997). Respiratory muscle work compromises leg blood flow during maximal exercise. Journal of Applied Physiology, 82, 1573–1583. doi: 10.1152/jappl.1997.82.5.1573
  • Hoffman, M. D., Ong, J. C., & Wang, G. (2010). Historical analysis of participation in 161 km ultramarathons in North America. The International Journal of the History of Sport, 27, 1877–1891. doi: 10.1080/09523367.2010.494385
  • Joslin, J., Hoffman, M. D., Rogers, I., Worthing, R. M., Ladbrook, M., & Mularella, J. (2015). Special considerations in medical screening for participants in remote endurance events. Sports Medicine, 45, 1121–1131. doi: 10.1007/s40279-015-0342-7
  • Legrand, R., Ahmaidi, S., Moalla, W., Chocquet, D., Marles, A., Prieur, F., & Mucci, P. (2005). O2 arterial desaturation in endurance athletes increases muscle deoxygenation. Medicine & Science in Sports & Exercise, 37, 782–788. doi: 10.1249/01.MSS.0000161806.47058.40
  • Leuenberger, U., Jacob, E., Sweer, L., Waravdekar, N., Zwillich, C., & Sinoway, L. (1995). Surges of muscle sympathetic nerve activity during obstructive apnea are linked to hypoxemia. Journal of Applied Physiology, 79, 581–588. doi: 10.1152/jappl.1995.79.2.581
  • Levine, T. R., & Hullett, C. R. (2002). Eta squared, partial eta squared, and misreporting of effect size in communication research. Human Communication Research [Internet]. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-2958.2002.tb00828.x
  • Nielsen, H. B., Boushel, R., Madsen, P., & Secher, N. H. (1999). Cerebral desaturation during exercise reversed by O2 supplementation. American Journal of Physiology, 277, H1045–H1052.
  • Perrey, S., & Ferrari, M. (2018). Muscle oximetry in sports science: A systematic review. Sports Medicine, 48, 597–616. doi: 10.1007/s40279-017-0820-1
  • Powers, S. K., Martin, D., & Dodd, S. (1993). Exercise-induced hypoxaemia in elite endurance athletes. Incidence, causes and impact on VO2max. Sports Medicine, 16, 14–22. doi: 10.2165/00007256-199316010-00003
  • Prefaut, C., Durand, F., Mucci, P., & Caillaud, C. (2000). Exercise-induced arterial hypoxaemia in athletes: A review. Sports Medicine, 30, 47–61. doi: 10.2165/00007256-200030010-00005
  • Rasmussen, P., Nielsen, J., Overgaard, M., Krogh-Madsen, R., Gjedde, A., Secher, N. H., & Petersen, N. C. (2010). Reduced muscle activation during exercise related to brain oxygenation and metabolism in humans. The Journal of Physiology, 588, 1985–1995. doi: 10.1113/jphysiol.2009.186767
  • Rowell, L. B., Johnson, D. G., Chase, P. B., Comess, K. A., & Seals, D. R. (1989). Hypoxemia raises muscle sympathetic activity but not norepinephrine in resting humans. Journal of Applied Physiology, 66, 1736–1743. doi: 10.1152/jappl.1989.66.4.1736
  • Sheel, A. W., Derchak, P. A., Morgan, B. J., Pegelow, D. F., Jacques, A. J., & Dempsey, J. A. (2001). Fatiguing inspiratory muscle work causes reflex reduction in resting leg blood flow in humans. The Journal of Physiology, 537, 277–289. doi: 10.1111/j.1469-7793.2001.0277k.x
  • St Croix, C. M., Morgan, B. J., Wetter, T. J., & Dempsey, J. A. (2000). Fatiguing inspiratory muscle work causes reflex sympathetic activation in humans. The Journal of Physiology, 529, 493–504. doi: 10.1111/j.1469-7793.2000.00493.x
  • Stickland, M. K., Morgan, B. J., & Dempsey, J. A. (2008). Carotid chemoreceptor modulation of sympathetic vasoconstrictor outflow during exercise in healthy humans. The Journal of Physiology, 586, 1743–1754. doi: 10.1113/jphysiol.2007.147421
  • Stickland, M. K., Smith, C. A., Soriano, B. J., & Dempsey, J. A. (2009). Sympathetic restraint of muscle blood flow during hypoxic exercise. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 296, R1538–R1546. doi: 10.1152/ajpregu.90918.2008
  • Subudhi, A. W., Dimmen, A. C., & Roach, R. C. (2007). Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. Journal of Applied Physiology, 103, 177–183. doi: 10.1152/japplphysiol.01460.2006
  • Subudhi, A. W., Lorenz, M. C., Fulco, C. S., & Roach, R. C. (2008). Cerebrovascular responses to incremental exercise during hypobaric hypoxia: Effect of oxygenation on maximal performance. American Journal of Physiology-Heart and Circulatory Physiology, 294, H164–H171. doi: 10.1152/ajpheart.01104.2007
  • Van Thienen, R., & Hespel, P. (2016). Enhanced muscular oxygen extraction in athletes exaggerates hypoxemia during exercise in hypoxia. Journal of Applied Physiology, 120, 351–361. doi: 10.1152/japplphysiol.00210.2015
  • Verges, S., Bachasson, D., & Wuyam, B. (2010). Effect of acute hypoxia on respiratory muscle fatigue in healthy humans. Respiratory Research, 11, 109. doi: 10.1186/1465-9921-11-109
  • Vogiatzis, I., Georgiadou, O., Koskolou, M., Athanasopoulos, D., Kostikas, K., Golemati, S., … Zakynthinos, S. (2007). Effects of hypoxia on diaphragmatic fatigue in highly trained athletes: Hypoxic exercise and diaphragmatic fatigue. The Journal of Physiology, 581, 299–308. doi: 10.1113/jphysiol.2006.126136
  • Vogiatzis, I., Louvaris, Z., Habazettl, H., Athanasopoulos, D., Andrianopoulos, V., Cherouveim, E., … Zakynthinos, S. (2011). Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes. The Journal of Physiology, 589, 4027–4039. doi: 10.1113/jphysiol.2011.210880
  • Wilson, J. R., Mancini, D. M., McCully, K., Ferraro, N., Lanoce, V., & Chance, B. (1989). Noninvasive detection of skeletal muscle underperfusion with near-infrared spectroscopy in patients with heart failure. Circulation, 80, 1668–1674. doi: 10.1161/01.CIR.80.6.1668

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.