3,189
Views
5
CrossRef citations to date
0
Altmetric
Research Article

The need for a paradigm shift in the development of military exoskeletons

ORCID Icon, , ORCID Icon, &

References

  • Boynton, A. C., Mudie, K. L., & Tweedell, A. (2020). Physical augmentation opportunities within close combat operations. Paper presented at the International Congress on Soldiers’ Physical Performance, Qubec.
  • Crowell, H. P., Park, J.-H., Haynes, C. A., Neugebauer, J. M., & Boynton, A. C. (2019). Design, evaluation, and research challenges relevant to exoskeletons and exosuits: A 26-year perspective from the U.S. Army Research Laboratory. IISE Transactions on Occupational Ergonomics and Human Factors, 7(3-4), 199–212. doi:10.1080/24725838.2018.1563571
  • DeCostanza, A.H., Marathe, A.R., Bohannon, A., Evans, A.W., Palazzolo, E.T., Metcalfe, J.S., McDowell, K., 2018. Enhancing human-agent teaming with individualized, adaptive technologies: A discussion of critical scientific questions. US Army Research Laboratory Aberdeen Proving Ground United States. ARL-TR-8359
  • Ding, Y., Panizzolo, F. A., Siviy, C., Malcolm, P., Galiana, I., Holt, K. G., & Walsh, C. J. (2016). Effect of timing of hip extension assistance during loaded walking with a soft exosuit. Journal of NeuroEngineering and Rehabilitation, 13(1), 1–10. doi:10.1186/s12984-016-0196-8
  • Drain, J., Billing, D., Neesham-Smith, D., & Aisbett, B. (2016). Predicting physiological capacity of human load carriage – a review. Applied Ergonomics, 52, 85–94. doi:10.1016/j.apergo.2015.07.003
  • Ferris, D. P., Czerniecki, J. M., & Hannaford, B. (2005). An ankle-foot orthosis powered by artificial pneumatic muscles. 21(2), 189. doi:10.1123/jab.21.2.189
  • Galle, S., Malcolm, P., Derave, W., & De Clercq, D. (2013). Adaptation to walking with an exoskeleton that assists ankle extension. Gait and Posture, 38(3), 495–499. doi:10.1016/j.gaitpost.2013.01.029
  • Galle, S., Malcolm, P., Derave, W., & De Clercq, D. (2014). Enhancing performance during inclined loaded walking with a powered ankle–foot exoskeleton. European Journal of Applied Physiology, 114(11), 2341–2351. doi:10.1007/s00421-014-2955-1
  • Gordon, K. E., & Ferris, D. P. (2007). Learning to walk with a robotic ankle exoskeleton. Journal of Biomechanics, 40(12), 2636–2644. doi:10.1016/j.jbiomech.2006.12.006
  • Gregorczyk, K. N., Hasselquist, L., Schiffman, J. M., Bensel, C. K., Obusek, J. P., & Gutekunst, D. J. (2010). Effects of a lower-body exoskeleton device on metabolic cost and gait biomechanics during load carriage. Ergonomics, 53(10), 1263–1275. doi:10.1080/00140139.2010.512982
  • Herr, H. (2009). Exoskeletons and orthoses: Classification, design challenges and future directions. Journal of NeuroEngineering and Rehabilitation, 6(1), doi:10.1186/1743-0003-6-21
  • Karakolis, T., Sinclair, B. A., Kelly, A., Terhaar, P., & Bossi, L. L. M. (2017). Determination of orientation and practice requirements when using an obstacle course for mobility performance assessment. Human Factors: The Journal of the Human Factors and Ergonomics Society, 59(4), 535–545. doi:10.1177/0018720816686611
  • Kazerooni, H., & Steger, R. (2006). The Berkeley lower extremity exoskeleton. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 128(1), 14–25. doi:10.1115/1.2168164
  • Kelso, J. A. S., Del Colle, J. D., & Schöner, G. (1990). Action-perception as a pattern formation process. In M. Jeannerod (Ed.), Attention and performance 13: Motor representation and control (p. 139–169). Lawrence Erlbaum Associates, Inc.
  • Kim, J., Lee, G., Heimgartner, R., Arumukhom Revi, D., Karavas, N., Nathanson, D., … Walsh, C. J. (2019). Reducing the metabolic rate of walking and running with a versatile, portable exosuit. Science, 365(6454), 668–672. doi:10.1126/science.aav7536
  • Kott, A., Alberts, D. S., & Wang, C. (2015). War of 2050: A battle for information, communications, and computer security. arXiv preprint arXiv:1512.00360.
  • Lance, B., Larkin, G., Touryan, J., Rexwinkle, J., Gutstein, S., Gordon, S., … Lawhern, V. (2020). Minimizing data requirements for soldier-interactive AI/ML applications through opportunistic sensing (Vol. 11413). SPIE.
  • Lee, S., Kim, J., Baker, L., Long, A., Karavas, N., Menard, N., … Walsh, C. J. (2018). Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking. Journal of NeuroEngineering and Rehabilitation, 15(1), 66. doi:10.1186/s12984-018-0410-y
  • Lo, M., Carstairs, G. L., Mudie, K. L., Begg, R., & Billing, D. C. (2020). The use of wearable assistive technology to increase soldiers’ effectiveness. Human Factors and Mechanical Engineering for Defense and Safety, 4(1), 7. doi:10.1007/s41314-020-00035-0
  • MacLean, M. K., & Ferris, D. P. (2019). Energetics of walking with a robotic knee exoskeleton. Journal of Applied Biomechanics, 35(5), 320–326. doi:10.1123/jab.2018-0384
  • Mooney, L. M., Rouse, E. J., & Herr, H. M. (2014a). Autonomous exoskeleton reduces metabolic cost of human walking. Journal of NeuroEngineering and Rehabilitation, 11, 1. doi:10.1186/1743-0003-11-151
  • Mooney, L. M., Rouse, E. J., & Herr, H. M. (2014b). Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. Journal of NeuroEngineering and Rehabilitation, 11, 1. doi:10.1186/1743-0003-11-80
  • Moucheboeuf, G., Griffier, R., Gasq, D., Glize, B., Bouyer, L., Dehail, P., & Cassoudesalle, H. (2020). Effects of robotic gait training after stroke: A meta-analysis. Annals of Physical and Rehabilitation Medicine, doi:10.1016/j.rehab.2020.02.008
  • Mudie, K. L., Boynton, A. C., Karakolis, T., O'Donovan, M. P., Kanagaki, G. B., Crowell, H. P., … Billing, D. C. (2018). Consensus paper on testing and evaluation of military exoskeletons for the dismounted combatant. Journal of Science and Medicine in Sport, 21(11), 1154–1161. doi:10.1016/j.jsams.2018.05.016
  • Newell, K. (1986). Constraints on the development of coordination. Motor development in children: Aspects of coordination and control.
  • Panizzolo, F. A., Galiana, I., Asbeck, A. T., Siviy, C., Schmidt, K., Holt, K. G., & Walsh, C. J. (2016). A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking. Journal of NeuroEngineering and Rehabilitation, 13, 1. doi:10.1186/s12984-016-0150-9
  • Rome, L. C., Flynn, L., & Yoo, T. D. (2006). Rubber bands reduce the cost of carrying loads. Nature, 444(7122), 1023–1024. doi:10.1038/4441023a
  • Sawicki, G. S., Beck, O. N., Kang, I., & Young, A. J. (2020). The exoskeleton expansion: Improving walking and running economy. Journal of NeuroEngineering and Rehabilitation, 17(1), 25. doi:10.1186/s12984-020-00663-9
  • Sawicki, G. S., & Ferris, D. P. (2009). A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. Journal of NeuroEngineering and Rehabilitation, 6(1), 23. doi:10.1186/1743-0003-6-23
  • Selinger, J. C., O’Connor, S. M., Wong, J. D., & Donelan, J. M. (2015). Humans can continuously optimize energetic cost during walking. Current Biology, 25(18), 2452–2456. doi:10.1016/j.cub.2015.08.016
  • Singh, H., & Singh, J. (2012). Human eye tracking and related issues: A review. International Journal of Scientific and Research Publications, 2(9), 1–9.
  • Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907–915. doi:10.1038/nn1309
  • Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5(11), 1226–1235. doi:10.1038/nn963
  • Walsh, C. J., Endo, K., & Herr, H. (2007). A quasi-passive leg exoskeleton for load-carrying augmentation. International Journal of Humanoid Robotics, 4(3), 487–506. doi:10.1142/S0219843607001126
  • Witte, K. A., Fiers, P., Sheets-Singer, A. L., & Collins, S. H. (2020). Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics, 5(40), eaay9108. doi:10.1126/scirobotics.aay9108
  • Zhang, J., Fiers, P., Witte, K. A., Jackson, R. W., Poggensee, K. L., Atkeson, C. G., & Collins, S. H. (2017). Human-in-the-loop optimization of exoskeleton assistance during walking. Science, 356(6344), 1280–1284. doi:10.1126/science.aal5054