988
Views
1
CrossRef citations to date
0
Altmetric
SPORT & EXERCISE MEDICINE & HEALTH

Interindividual variability in metabolic adaptation of non-exercise activity thermogenesis after a 1-year weight loss intervention in former elite athletes

ORCID Icon, , , , , , & ORCID Icon show all

References

  • Ainsworth, B. E., Haskell, W. L., Herrmann, S. D., Meckes, N., Bassett, D. R., Tudor-Locke, C., Greer, J. L., Vezina, J., Whitt-Glover, M. C., & Leon, A. S. (2011). 2011 compendium of physical activities: A second update of codes and MET values. Medicine & Science in Sports & Exercise, 43(8), 1575–1581. https://doi.org/10.1249/MSS.0b013e31821ece12
  • Aronne, L. J., Hall, K. D., Jakicic, J. M., Leibel, R. L., Lowe, M. R., Rosenbaum, M., & Klein, S. (2021). Describing the weight-reduced state: Physiology, behavior, and interventions. Obesity, 29(S1), S9–S24. https://doi.org/10.1002/oby.23086
  • Atkinson, G., & Batterham, A. M. (2015). True and false interindividual differences in the physiological response to an intervention. Experimental Physiology, 100(6), 577–588. https://doi.org/10.1113/EP085070
  • Bonafiglia, J. T., Islam, H., Preobrazenski, N., Ma, A., Deschenes, M., Erlich, A. T., Quadrilatero, J., Hood, D. A., & Gurd, B. J. (2021). Examining interindividual differences in select muscle and whole-body adaptations to continuous endurance training. Experimental Physiology, 106(11), 2168–2176. https://doi.org/10.1113/EP089421
  • Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227–268. https://doi.org/10.1207/S15327965PLI1104_01
  • de Groot, L. C., van Es, A. J., van Raaij, J. M., Vogt, J. E., & Hautvast, J. G. (1990). Energy metabolism of overweight women 1 mo and 1 y after an 8-wk slimming period. The American Journal of Clinical Nutrition, 51(4), 578–583. https://doi.org/10.1093/ajcn/51.4.578
  • Dent, R., McPherson, R., & Harper, M.-E. (2020). Factors affecting weight loss variability in obesity. Metabolism, 113, 154388. https://doi.org/10.1016/j.metabol.2020.154388
  • Dhurandhar, E. J., Kaiser, K. A., Dawson, J. A., Alcorn, A. S., Keating, K. D., & Allison, D. B. (2015). Predicting adult weight change in the real world: A systematic review and meta-analysis accounting for compensatory changes in energy intake or expenditure. International Journal of Obesity, 39(8), 1181–1187. https://doi.org/10.1038/ijo.2014.184
  • Fedewa, M. V., Hathaway, E. D., Williams, T. D., & Schmidt, M. D. (2017). Effect of exercise training on non-exercise physical activity: A systematic review and meta-analysis of randomized controlled trials. Sports Medicine, 47(6), 1171–1182. https://doi.org/10.1007/s40279-016-0649-z
  • Griffin, J. R., Maxwell, T. M., & Griffin, L. (2016). The prevalence and consequences of obesity in athletes. Current Orthopaedic Practice, 27(2), 129–134. https://doi.org/10.1097/BCO.0000000000000346
  • Herrmann, S. D., Willis, E. A., Honas, J. J., Lee, J., Washburn, R. A., & Donnelly, J. E. (2015). Energy intake, nonexercise physical activity, and weight loss in responders and nonresponders: The midwest exercise trial 2. Obesity (Silver Spring), 23(8), 1539–1549. https://doi.org/10.1002/oby.21073
  • Heymsfield, S. B., Harp, J. B., Reitman, M. L., Beetsch, J. W., Schoeller, D. A., Erondu, N., & Pietrobelli, A. (2007). Why do obese patients not lose more weight when treated with low-calorie diets? A mechanistic perspective. The American Journal of Clinical Nutrition, 85(2), 346–354. https://doi.org/10.1093/ajcn/85.2.346
  • Hopkins W. G. (2015). Individual responses made easy. Journal of Applied Physiology, 118(12), 1444–1446. https://doi.org/10.1152/japplphysiol.00098.2015
  • King, N. A., Caudwell, P., Hopkins, M., Byrne, N. M., Colley, R., Hills, A. P., Stubbs, J. R., & Blundell, J. E. (2007). Metabolic and behavioral compensatory responses to exercise interventions: Barriers to weight loss. Obesity (Silver Spring), 15(6), 1373–1383. https://doi.org/10.1038/oby.2007.164
  • Kumahara, H., Schutz, Y., Ayabe, M., Yoshioka, M., Yoshitake, Y., Shindo, M., Ishii, K., & Tanaka H. (2004). The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: A validation study against whole-body indirect calorimetry. The British Journal of Nutrition, 91(2), 235–243. https://doi.org/10.1079/BJN20031033
  • Leibel, R. L., Rosenbaum, M., & Hirsch, J. (1995). Changes in energy expenditure resulting from altered body weight. New England Journal of Medicine, 332(10), 621–628. https://doi.org/10.1056/NEJM199503093321001
  • Levine, J., Melanson, E. L., Westerterp, K. R., & Hill, J. O. (2001). Measurement of the components of nonexercise activity thermogenesis. American Journal of Physiology-Endocrinology and Metabolism, 281(4), E670–E6E5. https://doi.org/10.1152/ajpendo.2001.281.4.E670
  • Levine, J. A., Eberhardt, N. L., & Jensen, M. D. (1999). Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science, 283(5399), 212–214. https://doi.org/10.1126/science.283.5399.212
  • Levine, J. A., Lanningham-Foster, L. M., McCrady, S. K., Krizan, A. C., Olson, L. R., Kane, P. H., Jensen, M. D., & Clark, M. M. (2005). Interindividual variation in posture allocation: Possible role in human obesity. Science, 307(5709), 584–586. https://doi.org/10.1126/science.1106561
  • Martin, C. K., Das, S. K., Lindblad, L., Racette, S. B., McCrory, M. A., Weiss, E. P., DeLany, J. P., & Kraus, W. E. (2011). Effect of calorie restriction on the free-living physical activity levels of nonobese humans: Results of three randomized trials. Journal of Applied Physiology, 110(4), 956–963. https://doi.org/10.1152/japplphysiol.00846.2009
  • Nunes, C. L., Casanova, N., Francisco, R., Bosy-Westphal, A., Hopkins, M., Sardinha, L. B., & Silva, A. M. (2021). Does adaptive thermogenesis occur after weight loss in adults? A systematic review. British Journal of Nutrition, 1–43. https://doi.org/10.1017/S0007114521001094.
  • Nunes, C. L., Jesus, F., Francisco, R., Matias, C. N., Heo, M., Heymsfield, S. B., Bosy-Westphal, A., Sardinha, L. B., Martins, P., Minderico, C. S., & Silva, A. M. (2022). Adaptive thermogenesis after moderate weight loss: Magnitude and methodological issues. European Journal of Nutrition, 61(3), 1405–1416. https://doi.org/10.1007/s00394-021-02742-6
  • Ostendorf, D. M., Caldwell, A. E., Creasy, S. A., Pan, Z., Lyden, K., Bergouignan, A., MacLean, P. S., Wyatt, H. R., Hill, J. O., Melanson, E. L., & Catenacci, V. A. (2019). Physical activity energy expenditure and total daily energy expenditure in successful weight loss maintainers. Obesity (Silver Spring), 27(3), 496–504. https://doi.org/10.1002/oby.22373
  • Park, Y. W., Heymsfield, S. B., & Gallagher, D. (2002). Are dual-energy X-ray absorptiometry regional estimates associated with visceral adipose tissue mass? International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 26(7), 978–983. https://doi.org/10.1038/sj.ijo.0801982.
  • Racette, S. B., Schoeller, D. A., Kushner, R. F., Neil, K. M., & Herling-Iaffaldano, K. (1995). Effects of aerobic exercise and dietary carbohydrate on energy expenditure and body composition during weight reduction in obese women. The American Journal of Clinical Nutrition, 61(3), 486–494. https://doi.org/10.1093/ajcn/61.3.486
  • Redman, L. M., Heilbronn, L. K., Martin, C. K., de Jonge, L., Williamson, D. A., Delany, J. P., & Ravussin, E. (2009). Metabolic and behavioral compensations in response to caloric restriction: Implications for the maintenance of weight loss. PloS one, 4(2), e4377. https://doi.org/10.1371/journal.pone.0004377
  • Riou, M.-E., Jomphe-Tremblay, S., Lamothe, G., Finlayson, G. S., Blundell, J. E., Décarie-Spain, L., Gagnon, J.-C., & Doucet, É. (2019). Energy compensation following a supervised exercise intervention in women living with overweight/obesity is accompanied by an early and sustained decrease in non-structured physical activity. Frontiers in Physiology, 10, 1048. https://doi.org/10.3389/fphys.2019.01048
  • Rosenbaum, M., Ravussin, E., Matthews, D. E., Gilker, C., Ferraro, R., Heymsfield, S. B., Hirsch, J., & Leibel, R. L. (1996, March). A comparative study of different means of assessing long-term energy expenditure in humans. American Journal of Physiology, 270(3 Pt 2), R496–R504. https://doi.org/10.1152/ajpregu.1996.270.3.R496.
  • Rosenbaum, M., Vandenborne, K., Goldsmith, R., Simoneau, J.-A., Heymsfield, S., Joanisse, D. R., Hirsch, J., Murphy, E., Matthews, D., Segal, K. R., & Leibel, R. L. (2003). Effects of experimental weight perturbation on skeletal muscle work efficiency in human subjects. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 285(1), R183–RR92. https://doi.org/10.1152/ajpregu.00474.2002
  • Sasaki, J. E., John, D., & Freedson, P. S. (2011). Validation and comparison of ActiGraph activity monitors. Journal of Science and Medicine in Sport, 14(5), 411–416. https://doi.org/10.1016/j.jsams.2011.04.003
  • Silva, A. M., Júdice, P. B., Carraça, E. V., King, N., Teixeira, P. J., & Sardinha, L. B. (2018). What is the effect of diet and/or exercise interventions on behavioural compensation in non-exercise physical activity and related energy expenditure of free-living adults? A systematic review. British Journal of Nutrition, 119(12), 1327–1345. https://doi.org/10.1017/S000711451800096X
  • Silva, A. M., Nunes, C. L., Jesus, F., Francisco, R., Matias, C. N., Cardoso, M., Santos, I., Carraça, E. V., Silva, M. N., Sardinha, L. B., Martins, P., & Minderico, C. S. (2021). Effectiveness of a lifestyle weight-loss intervention targeting inactive former elite athletes: The Champ4Life randomised controlled trial. British Journal of Sports Medicine, 12(2). https://doi.org/10.3390/nu12020286.
  • Silva, A. M., Nunes, C. L., Matias, C. N., Jesus, F., Francisco, R., Cardoso, M., Santos, I., Carraça, E. V., Silva, M. N., Sardinha, L. B., Martins, P., & Minderico, C. S. (2020). Champ4life study protocol: A one-year randomized controlled trial of a lifestyle intervention for inactive former elite athletes with overweight/obesity. Nutrients, 12(2), 286. https://doi.org/10.3390/nu12020286
  • Stubbs, R. J., Hughes, D. A., Johnstone, A. M., Horgan, G. W., King, N., & Blundell, J. E. (2004). A decrease in physical activity affects appetite, energy, and nutrient balance in lean men feeding ad libitum. The American Journal of Clinical Nutrition, 79(1), 62–69. https://doi.org/10.1093/ajcn/79.1.62
  • Swift, D. L., McGee, J. E., Earnest, C. P., Carlisle, E., Nygard, M., & Johannsen, N. M. (2018). The effects of exercise and physical activity on weight loss and maintenance. Progress in Cardiovascular Diseases, 61(2), 206–213. https://doi.org/10.1016/j.pcad.2018.07.014
  • Swinton, P. A., Hemingway, B. S., Saunders, B., Gualano, B., & Dolan, E. (2018). A statistical framework to interpret individual response to intervention: Paving the way for personalized nutrition and exercise prescription. Frontiers in Nutrition, 5. https://doi.org/10.3389/fnut.2018.00041
  • von Loeffelholz, C., & Birkenfeld, A. (2000). The role of non-exercise activity thermogenesis in human obesity. MDText.com, Inc. Retrieved April 9, 2018, from https://www.ncbi.nlm.nih.gov/books/NBK279077/
  • Weir, C. B., & Jan, A. (2022). BMI classification percentile and cut off points. Statpearls. StatPearls Publishing. Retrieved April 20, 2019.
  • Weststrate J. A. (1993). Resting metabolic rate and diet-induced thermogenesis: A methodological reappraisal. The American Journal of Clinical Nutrition, 58(5), 592–601. https://doi.org/10.1093/ajcn/58.5.592
  • World Medical Association. (2008). Declaration of Helsinki – ethical principles for medical research involving human subjects. WMJ, 54(4), 122–125. Retrieved 15 September, 2022, https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/doh-oct2008/.