78
Views
2
CrossRef citations to date
0
Altmetric
Review

The current role of steroids in diabetic macular edema

ORCID Icon, , &
Pages 11-26 | Received 09 Oct 2019, Accepted 11 Feb 2020, Published online: 24 Feb 2020

References

  • Bandello F, Battaglia Parodi M, Lanzetta P, et al. Diabetic macular edema. Dev Ophthalmol. 2017;58:102–138.
  • Ferris FL 3rd, Patz A. Macular edema: a major complication of diabetic retinopathy. Trans New Orleans Acad Ophthalmol. 1983;31:307–316.
  • L’Esperance FA Jr. The treatment of ophthalmic vascular disease by argon laser photocoagulation. Trans Am Acad Ophthalmol Otolaryngol. 1969 Nov-Dec;73(6):1077–1096.
  • Reeser F, Fleischman J, Williams GA, et al. Efficacy of argon laser photocoagulation in the treatment of circinate diabetic retinopathy. Am J Ophthalmol. 1981 Dec;92(6):762–767.
  • Panozzo G, Parolini B, Gusson E, et al. Diabetic macular edema: an OCT-based classification. Semin Ophthalmol. 2004 Mar-Jun;19(1–2):13–20.
  • Romero-Aroca P, Baget-Bernaldiz M, Pareja-Rios A, et al. Diabetic macular edema pathophysiology: vasogenic versus inflammatory. J Diabetes Res. 2016;2016:2156273.
  • Warboys CM, Fraser PA. Hyperglycemia attenuates acute permeability response to advanced glycation end products in retinal microvasculature. Microvasc Res. 2010 Jul;80(1):174–176.
  • Santos JM, Mohammad G, Zhong Q, et al. Diabetic retinopathy, superoxide damage and antioxidants. Curr Pharm Biotechnol. 2011 Mar 1;12(3):352–361.
  • Fukumoto M, Nakaizumi A, Zhang T, et al. Vulnerability of the retinal microvasculature to oxidative stress: ion channel-dependent mechanisms. Am J Physiol Cell Physiol. 2012 May 1;302(9):C1413–20.
  • Al-Kharashi AS. Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy. Saudi J Ophthalmol. 2018 Oct-Dec;32(4):318–323.
  • Funatsu H, Noma H, Mimura T, et al. Association of vitreous inflammatory factors with diabetic macular edema. Ophthalmology. 2009 Jan;116(1):73–79.
  • Fogli S, Mogavero S, Egan CG, et al. Pathophysiology and pharmacological targets of VEGF in diabetic macular edema. Pharmacol Res. 2016;103:149–157.
  • Miyamoto K, Hiroshiba N, Tsujikawa A, et al. In vivo demonstration of increased leukocyte entrapment in retinal microcirculation of diabetic rats. Invest Ophthalmol Vis Sci. 1998 Oct;39(11):2190–2194.
  • Lu M, Perez VL, Ma N, et al. VEGF increases retinal vascular ICAM-1 expression in vivo. Invest Ophthalmol Vis Sci. 1999 Jul;40(8):1808–1812.
  • Gerhardinger C, Costa MB, Coulombe MC, et al. Expression of acute-phase response proteins in retinal Muller cells in diabetes. Invest Ophthalmol Vis Sci. 2005 Jan;46(1):349–357.
  • van Dijk HW, Kok PH, Garvin M, et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009 Jul;50(7):3404–3409.
  • Pierro L, Iuliano L, Cicinelli MV, et al. Retinal neurovascular changes appear earlier in type 2 diabetic patients. Eur J Ophthalmol. 2017 May 11;27(3):346–351.
  • Lieth E, LaNoue KF, Antonetti DA, et al. Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. The Penn State Retina Research Group. Exp Eye Res. 2000 Jun;70(6):723–730.
  • Fahrenthold BK, Fernandes KA, Libby RT. Assessment of intrinsic and extrinsic signaling pathway in excitotoxic retinal ganglion cell death. Sci Rep. 2018 Mar 15;8(1):4641.
  • Dupas B, Minvielle W, Bonnin S, et al. Association between vessel density and visual acuity in patients with diabetic retinopathy and poorly controlled type 1 diabetes. JAMA Ophthalmol. 2018 Jul 1;136(7):721–728.
  • Metea MR, Newman EA. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci. 2006 Mar 15;26(11):2862–2870.
  • Mitchell P, Bandello F, Schmidt-Erfurth U, et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology. 2011 Apr;118(4):615–625.
  • Brown DM, Schmidt-Erfurth U, Do DV, et al. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology. 2015 Oct;122(10):2044–2052.
  • Bandello F, Cicinelli MV, Parodi MB. Anti-VEGF molecules for the management of diabetic macular edema. Curr Pharm Des. 2015;21(32):4731–4737.
  • Schmidt-Erfurth U, Garcia-Arumi J, Bandello F, et al. Guidelines for the management of diabetic macular edema by the european society of retina specialists (EURETINA). Ophthalmologica. 2017;237(4):185–222.
  • Virgili G, Parravano M, Menchini F, et al. Anti-vascular endothelial growth factor for diabetic macular oedema. Cochrane Database Syst Rev. 2014 Oct;24(10):CD007419.
  • Cicinelli MV, Cavalleri M, Querques L, et al. Early response to ranibizumab predictive of functional outcome after dexamethasone for unresponsive diabetic macular oedema. Br J Ophthalmol. 2017 Dec;101(12):1689–1693.
  • Sarao V, Veritti D, Boscia F, et al. Intravitreal steroids for the treatment of retinal diseases. ScientificWorldJournal. 2014;2014:989501.
  • Edelman JL. Differentiating intraocular glucocorticoids. Ophthalmologica. 2010;224(Suppl 1):25–30.
  • Whitcup SM, Cidlowski JA, Csaky KG, et al. Pharmacology of corticosteroids for diabetic macular edema. Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):1–12.
  • Yang Y, Bailey C, Loewenstein A, et al. Intravitreal corticosteroids in diabetic macular edema: pharmacokinetic considerations. Retina. 2015 Dec;35(12):2440–2449.
  • Chang-Lin JE, Attar M, Acheampong AA, et al. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Invest Ophthalmol Vis Sci. 2011 Jan 5;52(1):80–86.
  • Yilmaz T, Cordero-Coma M, Federici TJ. Pharmacokinetics of triamcinolone acetonide for the treatment of macular edema. Expert Opin Drug Metab Toxicol. 2011 Oct;7(10):1327–1335.
  • Beer PM, Bakri SJ, Singh RJ, et al. Intraocular concentration and pharmacokinetics of triamcinolone acetonide after a single intravitreal injection. Ophthalmology. 2003 Apr;110(4):681–686.
  • Audren F, Tod M, Massin P, et al. Pharmacokinetic-pharmacodynamic modeling of the effect of triamcinolone acetonide on central macular thickness in patients with diabetic macular edema. Invest Ophthalmol Vis Sci. 2004 Oct;45(10):3435–3441.
  • Dyer D, Callanan D, Bochow T, et al. Clinical evaluation of the safety and efficacy of preservative-free triamcinolone (triesence [triamcinolone acetonide injectable suspension] 40 mg/ml) for visualization during pars plana vitrectomy. Retina. 2009 Jan;29(1):38–45.
  • Syed YY. Fluocinolone acetonide intravitreal implant 0.19 mg (ILUVIEN((R))): a review in diabetic macular edema. Drugs. 2017 Apr;77(5):575–583.
  • Veritti D, Sarao V, Diplotti L, et al. Fluocinolone acetonide for the treatment of diabetic macular edema. Expert Opin Pharmacother. 2017 Oct;18(14):1507–1516.
  • Kane FE, Green KE. Ocular pharmacokinetics of fluocinolone acetonide following Iluvien implantation in the vitreous humor of rabbits. J Ocul Pharmacol Ther. 2015 Feb;31(1):11–16.
  • Chen H, Sun S, Li J, et al. Different intravitreal properties of three triamcinolone formulations and their possible impact on retina practice. Invest Ophthalmol Vis Sci. 2013 Mar 1;54(3):2178–2185.
  • Bhagat R, Zhang J, Farooq S, et al. Comparison of the release profile and pharmacokinetics of intact and fragmented dexamethasone intravitreal implants in rabbit eyes. J Ocul Pharmacol Ther. 2014 Dec;30(10):854–858.
  • Nehme A, Lobenhofer EK, Stamer WD, et al. Glucocorticoids with different chemical structures but similar glucocorticoid receptor potency regulate subsets of common and unique genes in human trabecular meshwork cells. BMC Med Genomics. 2009 Sep;10(2):58.
  • Ayalasomayajula SP, Ashton P, Kompella UB. Fluocinolone inhibits VEGF expression via glucocorticoid receptor in human retinal pigment epithelial (ARPE-19) cells and TNF-alpha-induced angiogenesis in chick chorioallantoic membrane (CAM). J Ocul Pharmacol Ther. 2009 Apr;25(2):97–103.
  • Edelman JL, Lutz D, Castro MR. Corticosteroids inhibit VEGF-induced vascular leakage in a rabbit model of blood-retinal and blood-aqueous barrier breakdown. Exp Eye Res. 2005 Feb;80(2):249–258.
  • Glybina IV, Kennedy A, Ashton P, et al. Photoreceptor neuroprotection in RCS rats via low-dose intravitreal sustained-delivery of fluocinolone acetonide. Invest Ophthalmol Vis Sci. 2009 Oct;50(10):4847–4857.
  • Glybina IV, Kennedy A, Ashton P, et al. Intravitreous delivery of the corticosteroid fluocinolone acetonide attenuates retinal degeneration in S334ter-4 rats. Invest Ophthalmol Vis Sci. 2010 Aug;51(8):4243–4252.
  • Lynch SK, Lee K, Chen Z, et al. Intravitreal fluocinolone acetonide may decelerate diabetic retinal neurodegeneration. Invest Ophthalmol Vis Sci. 2019 May 1;60(6):2134–2139.
  • Jonas JB, Sofker A, Hayler J, et al. Intravitreal crystalline triamcinolone acetonide as an additional tool in pars plana vitrectomy for complicated proliferative vitreoretinopathy? Acta Ophthalmol Scand. 2003 Dec;81(6):663–665.
  • Diabetic Retinopathy Clinical Research N, Elman MJ, Aiello LP, et al., Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2010 Jun;117(6):1064–1077 e35.
  • Elman MJ, Bressler NM, Qin H, et al. Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2011 Apr;118(4):609–614.
  • Bressler SB, Glassman AR, Almukhtar T, et al. Five-year outcomes of ranibizumab with prompt or deferred laser versus laser or triamcinolone plus deferred ranibizumab for diabetic macular edema. Am J Ophthalmol. 2016;164:57–68.
  • Rodrigues MW, Cardillo JA, Messias A, et al. Bevacizumab versus triamcinolone for persistent diabetic macular edema: a randomized clinical trial. Graefes Arch Clin Exp Ophthalmol.
  • Ozgur OR, Ozkurt Y, Kulekci Z, et al. The combination of phacoemulsification surgery and intravitreal triamcinolone injection in patients with cataract and diabetic macular edema. Saudi J Ophthalmol. 2016 Jan-Mar;30(1):33–38.
  • Nunome T, Sugimoto M, Kondo M, et al. Short-term results of intravitreal triamcinolone acetonide combined with cataract surgery for diabetic macular edema in Japan: in the era of anti-vascular endothelial growth factor therapy. Ophthalmologica. 2018;240(2):73–80.
  • Akinci A, Muftuoglu O, Altinsoy A, et al. Phacoemulsification with intravitreal bevacizumab and triamcinolone acetonide injection in diabetic patients with clinically significant macular edema and cataract. Retina. 2011 Apr;31(4):755–758.
  • Takamura Y, Shimura M, Katome T, et al. Effect of intravitreal triamcinolone acetonide injection at the end of vitrectomy for vitreous haemorrhage related to proliferative diabetic retinopathy. Br J Ophthalmol. 2018 Oct;102(10):1351–1357.
  • Wykoff CC, Khurana RN, Lampen SIR, et al. Suprachoroidal triamcinolone acetonide for diabetic macular edema: the HULK trial. Ophthalmol Retina. 2018 Aug;2(8):874–877.
  • Yeh S, Kurup SK, Wang RC, et al. Suprachoroidal injection of triamcinolone acetonide, CLS-TA, for macular edema due to noninfectious uveitis: a randomized, phase 2 study (DOGWOOD). Retina. 2019 Oct;39(10):1880–1888.
  • Boyer DS, Yoon YH, Belfort R Jr., et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014 Oct;121(10):1904–1914.
  • Al-Khersan H, Hariprasad SM, Chhablani J, et al. Early response to intravitreal dexamethasone implant therapy in diabetic macular edema may predict visual outcome. Am J Ophthalmol. 2017;184:121–128.
  • Verma A, Khetan V. Transient reversal of macular ischemia with intravitreal steroid implant injection in a case of radiation maculopathy. Indian J Ophthalmol. 2018 Mar;66(3):468–471.
  • Querques L, Parravano M, Sacconi R, et al. Ischemic index changes in diabetic retinopathy after intravitreal dexamethasone implant using ultra-widefield fluorescein angiography: a pilot study. Acta Diabetol. 2017 Aug;54(8):769–773.
  • Borrelli E, Parravano M, Querques L, et al. One-year follow-up of ischemic index changes after intravitreal dexamethasone implant for diabetic macular edema: an ultra-widefield fluorescein angiography study. Acta Diabetol. 2019 Nov 21.
  • Danis RP, Sadda S, Li XY, et al. Anatomical effects of dexamethasone intravitreal implant in diabetic macular oedema: a pooled analysis of 3-year phase III trials. Br J Ophthalmol. 2016 Jun;100(6):796–801.
  • Iglicki M, Zur D, Busch C, et al. Progression of diabetic retinopathy severity after treatment with dexamethasone implant: a 24-month cohort study the ‘DR-Pro-DEX Study’. Acta Diabetol. 2018 Jun;55(6):541–547.
  • Mehta H, Fraser-Bell S, Yeung A, et al. Efficacy of dexamethasone versus bevacizumab on regression of hard exudates in diabetic maculopathy: data from the BEVORDEX randomised clinical trial. Br J Ophthalmol. 2016 Jul;100(7):1000–1004.
  • Mehta H, Fraser-Bell S, Nguyen V, et al. The interval between treatments of bevacizumab and dexamethasone implants for diabetic macular edema increased over time in the BEVORDEX trial. Ophthalmol Retina. 2018 Mar;2(3):231–234.
  • Campochiaro PA, Brown DM, Pearson A, et al. Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology. 2011 Apr;118(4):626–635 e2.
  • Campochiaro PA, Brown DM, Pearson A, et al. Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology. 2012 Oct;119(10):2125–2132.
  • Alfaqawi F, Lip PL, Elsherbiny S, et al. Report of 12-months efficacy and safety of intravitreal fluocinolone acetonide implant for the treatment of chronic diabetic macular oedema: a real-world result in the United Kingdom. Eye (Lond). 2017 Apr;31(4):650–656.
  • Fusi-Rubiano W, Mukherjee C, Lane M, et al. Treating diabetic macular oedema (DMO): real world UK clinical outcomes for the 0.19mg fluocinolone acetonide intravitreal implant (Iluvien) at 2 years. BMC Ophthalmol. 2018 Feb 27;18(1):62.
  • Bailey C, Chakravarthy U, Lotery A, et al. Real-world experience with 0.2 mug/day fluocinolone acetonide intravitreal implant (ILUVIEN) in the United Kingdom. Eye (Lond). 2017 Dec;31(12):1707–1715.
  • Augustin AJ, Bopp S, Fechner M, et al. Three-year results from the Retro-IDEAL study: real-world data from diabetic macular edema (DME) patients treated with ILUVIEN((R)) (0.19 mg fluocinolone acetonide implant). Eur J Ophthalmol. 2019 Mar 18;1120672119834474.
  • Chakravarthy U, Taylor SR, Koch FHJ, et al. Changes in intraocular pressure after intravitreal fluocinolone acetonide (ILUVIEN): real-world experience in three European countries. Br J Ophthalmol. 2019 Aug;103(8):1072–1077.
  • Eaton A, Koh SS, Jimenez J, et al. The USER study: a chart review of patients receiving a 0.2 microg/day fluocinolone acetonide implant for diabetic macular edema. Ophthalmol Ther. 2019 Mar;8(1):51–62.
  • Phase 4 IOP signals associated with ILUVIEN® (PALADIN). [ cited 2019]. Available from: https://clinicaltrials.gov/ct2/show/NCT02424019?term=paladin&rank=2
  • Kawasaki R, Cheung N, Islam FM, et al. Is diabetic retinopathy related to subclinical cardiovascular disease? Ophthalmology. 2011 May;118(5):860–865.
  • Zhu XR, Zhang YP, Bai L, et al. Prediction of risk of diabetic retinopathy for all-cause mortality, stroke and heart failure: evidence from epidemiological observational studies. Medicine (Baltimore). 2017 Jan;96(3):e5894.
  • Giovannini A, Parravano M, Ricci F, et al. Management of diabetic macular edema with intravitreal dexamethasone implants: expert recommendations using a Delphi-based approach. Eur J Ophthalmol. 2018;8:1120672118781236.
  • Escobar-Barranco JJ, Pina-Marin B, Fernandez-Bonet M. Dexamethasone implants in patients with naive or refractory diffuse diabetic macular edema. Ophthalmologica. 2015;233(3–4):176–185.
  • Kodjikian L, Bellocq D, Mathis T. Pharmacological management of diabetic macular edema in real-life observational studies. Biomed Res Int. 2018;2018:8289253.
  • Chhablani J, Bansal P, Veritti D, et al. Dexamethasone implant in diabetic macular edema in real-life situations. Eye (Lond). 2016 Mar;30(3):426–430.
  • Malcles A, Dot C, Voirin N, et al. Real-life study in diabetic macular edema treated with dexamethasone implant: the reldex study. Retina. 2017 Apr;37(4):753–760.
  • Guigou S, Pommier S, Meyer F, et al. Efficacy and safety of intravitreal dexamethasone implant in patients with diabetic macular edema. Ophthalmologica. 2015;233(3–4):169–175.
  • Castro-Navarro V, Cervera-Taulet E, Navarro-Palop C, et al. Intravitreal dexamethasone implant Ozurdex(R) in naive and refractory patients with different subtypes of diabetic macular edema. BMC Ophthalmol. 2019 Jan 11;19(1):15.
  • Iglicki M, Busch C, Zur D, et al. Dexamethasone implant for diabetic macular edema in naive compared with refractory eyes: the international retina group real-life 24-month multicenter study. The IRGREL-DEX study. Retina. 2019 Jan;39(1):44–51.
  • Comet A, Gascon P, Sauvan L, et al. INVICTUS: intravitreal anti-VEGF and dexamethasone implant comparison for the treatment of diabetic macular edema: a 6 months follow-up study. Acta Ophthalmol. 2019 Sep;97(6):e937–e938.
  • Muftuoglu IK, Mendoza N, Gaber R, et al. Integrity of outer retinal layers after resolution of central involved diabetic macular edema. Retina. 2017 Nov;37(11):2015–2024.
  • Iacono P, Parodi MB, Scaramuzzi M, et al. Morphological and functional changes in recalcitrant diabetic macular oedema after intravitreal dexamethasone implant. Br J Ophthalmol. 2017 Jun;101(6):791–795.
  • Maeshima K, Utsugi-Sutoh N, Otani T, et al. Progressive enlargement of scattered photocoagulation scars in diabetic retinopathy. Retina. 2004 Aug;24(4):507–511.
  • Torriglia A, Valamanesh F, Behar-Cohen F. On the retinal toxicity of intraocular glucocorticoids. Biochem Pharmacol. 2010 Dec 15;80(12):1878–1886.
  • Grunwald JE, Daniel E, Huang J, et al. Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2014 Jan;121(1):150–161.
  • Pannicke T, Iandiev I, Wurm A, et al. Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes. 2006 Mar;55(3):633–639.
  • Li Q, Puro DG. Diabetes-induced dysfunction of the glutamate transporter in retinal Muller cells. Invest Ophthalmol Vis Sci. 2002 Sep;43(9):3109–3116.
  • Coughlin BA, Feenstra DJ, Mohr S. Muller cells and diabetic retinopathy. Vision Res. 2017 Oct;139:93–100.
  • Vujosevic S, Bini S, Midena G, et al. Hyperreflective intraretinal spots in diabetics without and with nonproliferative diabetic retinopathy: an in vivo study using spectral domain OCT. J Diabetes Res. 2013;2013:491835.
  • Vujosevic S, Torresin T, Bini S, et al. Imaging retinal inflammatory biomarkers after intravitreal steroid and anti-VEGF treatment in diabetic macular oedema. Acta Ophthalmol. 2017 Aug;95(5):464–471.
  • Hwang HS, Chae JB, Kim JY, et al. Association between hyperreflective dots on spectral-domain optical coherence tomography in macular edema and response to treatment. Invest Ophthalmol Vis Sci. 2017 Nov 1;58(13):5958–5967.
  • Fonollosa A, Zarranz-Ventura J, Valverde A, et al. Predictive capacity of baseline hyperreflective dots on the intravitreal dexamethasone implant (Ozurdex(R)) outcomes in diabetic macular edema: a multicenter study. Graefes Arch Clin Exp Ophthalmol. 2019 Aug 26;257:2381–2390.
  • Sonoda S, Sakamoto T, Yamashita T, et al. Retinal morphologic changes and concentrations of cytokines in eyes with diabetic macular edema. Retina. 2014 Apr;34(4):741–748.
  • Sun JK, Lin MM, Lammer J, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol. 2014 Nov;132(11):1309–1316.
  • Das R, Spence G, Hogg RE, et al. Disorganization of inner retina and outer retinal morphology in diabetic macular edema. JAMA Ophthalmol. 2018 Feb 1;136(2):202–208.
  • Radwan SH, Soliman AZ, Tokarev J, et al. Association of disorganization of retinal inner layers with vision after resolution of center-involved diabetic macular edema. JAMA Ophthalmol. 2015 Jul;133(7):820–825.
  • Sun JK, Radwan SH, Soliman AZ, et al. Neural retinal disorganization as a robust marker of visual acuity in current and resolved diabetic macular edema. Diabetes. 2015 Jul;64(7):2560–2570.
  • Zur D, Iglicki M, Sala-Puigdollers A, et al. Disorganization of retinal inner layers as a biomarker in patients with diabetic macular oedema treated with dexamethasone implant. Acta Ophthalmol. 2019 Aug 17.
  • Akbar Khan I, Mohamed MD, Mann SS, et al. Prevalence of vitreomacular interface abnormalities on spectral domain optical coherence tomography of patients undergoing macular photocoagulation for centre involving diabetic macular oedema. Br J Ophthalmol. 2015 Aug;99(8):1078–1081.
  • Massin P, Duguid G, Erginay A, et al. Optical coherence tomography for evaluating diabetic macular edema before and after vitrectomy. Am J Ophthalmol. 2003 Feb;135(2):169–177.
  • Diabetic Retinopathy Clinical Research Network Writing C, Haller JA, Qin H, et al., Vitrectomy outcomes in eyes with diabetic macular edema and vitreomacular traction. Ophthalmology. 2010 Jun;117(6):1087–1093e3.
  • Yoon D, Rusu I, Barbazetto I. Reduced effect of anti-vascular endothelial growth factor agents on diabetics with vitreomacular interface abnormalities. Int Ophthalmol. 2014 Aug;34(4):817–823.
  • Wong Y, Steel DHW, Habib MS, et al. Vitreoretinal interface abnormalities in patients treatedwith ranibizumab for diabetic macular oedema. Graefes Arch Clin Exp Ophthalmol. 2017 Apr;255(4):733–742.
  • Namba R, Kaneko H, Suzumura A, et al. In vitro epiretinal membrane model and antibody permeability: relationship with anti-VEGF resistance in diabetic macular edema. Invest Ophthalmol Vis Sci. 2019 Jul 1;60(8):2942–2949.
  • Cakir A, Erden B, Bolukbasi S, et al. Comparison of the effect of ranibizumab and dexamethasone implant in diabetic macular edema with concurrent epiretinal membrane. J Fr Ophtalmol. 2019 Sep;42(7):683–689.
  • Sim DA, Keane PA, Zarranz-Ventura J, et al. The effects of macular ischemia on visual acuity in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2013 Mar 28;54(3):2353–2360.
  • Parodi Battaglia M, Iacono P, Cascavilla M, et al. A pathogenetic classification of diabetic macular edema. Ophthalmic Res. 2018;60(1):23–28.
  • Kashani AH, Green KM, Kwon J, et al. Suspended scattering particles in motion: a novel feature of OCT angiography in exudative maculopathies. Ophthalmol Retina. 2018 Jul;2(7):694–702.
  • Hasegawa N, Nozaki M, Takase N, et al. New insights into microaneurysms in the deep capillary plexus detected by optical coherence tomography angiography in diabetic macular edema. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT348–55.
  • Toto L, D’Aloisio R, Di Nicola M, et al. Qualitative and quantitative assessment of vascular changes in diabetic macular edema after dexamethasone implant using optical coherence tomography angiography. Int J Mol Sci. 2017 Jun 2;18(6).
  • Vujosevic S, Toma C, Villani E, et al. Diabetic macular edema with neuroretinal detachment: OCT and OCT-angiography biomarkers of treatment response to anti-VEGF and steroids. Acta Diabetol. 2019 Sep 21.
  • Gonzalez VH, Campbell J, Holekamp NM, et al. Early and long-term responses to anti-vascular endothelial growth factor therapy in diabetic macular edema: analysis of protocol I data. Am J Ophthalmol. 2016;172:72–79.
  • Dugel PU, Bandello F, Loewenstein A. Dexamethasone intravitreal implant in the treatment of diabetic macular edema. Clin Ophthalmol. 2015;9:1321–1335.
  • Busch C, Zur D, Fraser-Bell S, et al. Shall we stay, or shall we switch? Continued anti-VEGF therapy versus early switch to dexamethasone implant in refractory diabetic macular edema. Acta Diabetol. 2018 Aug;55(8):789–796.
  • Khan Z, Kuriakose RK, Khan M, et al. Efficacy of the intravitreal sustained-release dexamethasone implant for diabetic macular edema refractory to anti-vascular endothelial growth factor therapy: meta-analysis and clinical implications. Ophthalmic Surg Lasers Imaging Retina. 2017 Feb 1;48(2):160–166.
  • Lee H, Kang KE, Chung H, et al. Prognostic factors for functional and anatomic outcomes in patients with diabetic macular edema treated with dexamethasone implant. Korean J Ophthalmol. 2018 Apr;32(2):116–125.
  • Figueras-Roca M, Sala-Puigdollers A, Zarranz-Ventura J, et al. Anatomic response to intravitreal dexamethasone implant and baseline aqueous humor cytokine levels in diabetic macular edema. Invest Ophthalmol Vis Sci. 2019 Apr 1;60(5):1336–1343.
  • Bressler NM, Beaulieu WT, Maguire MG, et al. Early response to anti-vascular endothelial growth factor and two-year outcomes among eyes with diabetic macular edema in protocol T. Am J Ophthalmol. 2018;195:93–100.
  • Shin HJ, Lee SH, Chung H, et al. Association between photoreceptor integrity and visual outcome in diabetic macular edema. Graefes Arch Clin Exp Ophthalmol. 2012 Jan;250(1):61–70.
  • Busch C, Fraser-Bell S, Iglicki M, et al. Real-world outcomes of non-responding diabetic macular edema treated with continued anti-VEGF therapy versus early switch to dexamethasone implant: 2-year results. Acta Diabetol. 2019 Sep 21.
  • McCluskey JD, Kaufman PL, Wynne K, et al. Early adoption of the fluocinolone acetonide (FAc) intravitreal implant in patients with persistent or recurrent diabetic macular edema (DME). Int Med Case Rep J. 2019;12:93–102.
  • Rehak M, Busch C, Unterlauft JD, et al. Outcomes in diabetic macular edema switched directly or after a dexamethasone implant to a fluocinolone acetonide intravitreal implant following anti-VEGF treatment. Acta Diabetol. 2019 Nov 20.
  • Wickremasinghe SS, Fraser-Bell S, Alessandrello E, et al. Retinal vascular calibre changes after intravitreal bevacizumab or dexamethasone implant treatment for diabetic macular oedema. Br J Ophthalmol. 2017 Oct;101(10):1329–1333.
  • Mehta H, Hennings C, Gillies MC, et al. Anti-vascular endothelial growth factor combined with intravitreal steroids for diabetic macular oedema. Cochrane Database Syst Rev. 2018 Apr;18(4):CD011599.
  • Maturi RK, Glassman AR, Liu D, et al. Effect of adding dexamethasone to continued ranibizumab treatment in patients with persistent diabetic macular edema: A DRCR network phase 2 randomized clinical trial. JAMA Ophthalmol. 2018 Jan 1;136(1):29–38.
  • Maturi RK, Bleau L, Saunders J, et al. A 12-month, single-masked, randomized controlled study of eyes with persistent diabetic macular edema after multiple anti-vegf injections to assess the efficacy of the dexamethasone-delayed delivery system as an adjunct to bevacizumab compared with continued bevacizumab monotherapy. Retina. 2015 Aug;35(8):1604–1614.
  • Al-Khersan H, Hariprasad SM, Salehi-Had H. Dexamethasone and anti-VEGF combination therapy for the treatment of diabetic macular edema. Ophthalmic Surg Lasers Imaging Retina. 2019 Jan 1;50(1):4–7.
  • Bressler SB, Melia M, Glassman AR, et al. Ranibizumab plus prompt or deferred laser for diabetic macular edema in eyes with vitrectomy before anti-vascular endothelial growth factor therapy. Retina. 2015 Dec;35(12):2516–2528.
  • Edington M, Connolly J, Chong NV. Pharmacokinetics of intravitreal anti-VEGF drugs in vitrectomized versus non-vitrectomized eyes. Expert Opin Drug Metab Toxicol. 2017 Dec;13(12):1217–1224.
  • Chin HS, Park TS, Moon YS, et al. Difference in clearance of intravitreal triamcinolone acetonide between vitrectomized and nonvitrectomized eyes. Retina. 2005 Jul-Aug;25(5):556–560.
  • Chang-Lin JE, Burke JA, Peng Q, et al. Pharmacokinetics of a sustained-release dexamethasone intravitreal implant in vitrectomized and nonvitrectomized eyes. Invest Ophthalmol Vis Sci. 2011 Jun 28;52(7):4605–4609.
  • Medeiros MD, Alkabes M, Navarro R, et al. Dexamethasone intravitreal implant in vitrectomized versus nonvitrectomized eyes for treatment of patients with persistent diabetic macular edema. J Ocul Pharmacol Ther. 2014 Nov;30(9):709–716.
  • Novais EA, Maia M, Filho PA, et al. Twelve-month follow-up of dexamethasone implants for macular edema from various diseases in vitrectomized and nonvitrectomized eyes. J Ophthalmol. 2016;2016:7984576.
  • Boyer DS, Faber D, Gupta S, et al. Dexamethasone intravitreal implant for treatment of diabetic macular edema in vitrectomized patients. Retina. 2011 May;31(5):915–923.
  • Rezkallah A, Malcles A, Dot C, et al. Evaluation of efficacy and safety of dexamethasone intravitreal implants of vitrectomized and nonvitrectomized eyes in a real-world study. J Ocul Pharmacol Ther. 2018 Oct;34(8):596–602.
  • Rahimy E, Khurana RN. Anterior segment migration of dexamethasone implant: risk factors, complications, and management. Curr Opin Ophthalmol. 2017 May;28(3):246–251.
  • Khurana RN, Appa SN, McCannel CA, et al. Dexamethasone implant anterior chamber migration: risk factors, complications, and management strategies. Ophthalmology. 2014 Jan;121(1):67–71.
  • Zheng A, Chin EK, Almeida DR, et al. Combined vitrectomy and intravitreal dexamethasone (Ozurdex) sustained-release implant. Retina. 2016 Nov;36(11):2087–2092.
  • Jung YH, Lee Y. Efficacy of vitrectomy combined with an intraoperative dexamethasone implant in refractory diabetic macular edema. Acta Diabetol. 2019 Jun;56(6):691–696.
  • Kumar A, Alfahad Q, Mitra A, et al. Intravitreal fluocinolone acetonide (Iluvien) for treatment of refractory diabetic macular oedema in vitrectomised eyes. Eye (Lond). 2016 May;30(5):763–764.
  • Pessoa B, Coelho J, Correia N, et al. Fluocinolone acetonide intravitreal implant 190 mug (ILUVIEN(R)) in vitrectomized versus nonvitrectomized eyes for the treatment of chronic diabetic macular edema. Ophthalmic Res. 2018;59(2):68–75.
  • La Mantia A, Hawrami A, Laviers H, et al. Treatment of refractory diabetic macular edema with a fluocinolone acetonide implant in vitrectomized and non-vitrectomized eyes. Int J Ophthalmol. 2018;11(12):1951–1956.
  • Meireles A, Goldsmith C, El-Ghrably I, et al. Efficacy of 0.2 mug/day fluocinolone acetonide implant (ILUVIEN) in eyes with diabetic macular edema and prior vitrectomy. Eye (Lond). 2017 May;31(5):684–690.
  • Gunzenhauser RC, Greven MA, John VJ. Anterior migration of intravitreal fluocinolone acetonide implants: a case report. Retin Cases Brief Rep. 2019 Jul 17:1.
  • Rishi P, Majumder PD, Biswas J. Anterior chamber migration of fluocinolone acetonide intravitreal implant. JAMA Ophthalmol. 2019 Sep 1;137(9):e185931.
  • Wang H, Hardin J, Kaintatzis A, et al. Inadvertent expulsion of fluocinolone acetonide intravitreal implant during pars plana vitrectomy. Ophthalmol Retina. 2018 Jan;2(1):75–77.
  • Pollreisz A, Schmidt-Erfurth U. Diabetic cataract-pathogenesis, epidemiology and treatment. J Ophthalmol. 2010;2010:608751.
  • Kim SJ, Equi R, Bressler NM. Analysis of macular edema after cataract surgery in patients with diabetes using optical coherence tomography. Ophthalmology. 2007 May;114(5):881–889.
  • Diabetic Retinopathy Clinical Research Network Authors/Writing C, Baker CW, Almukhtar T, et al., Macular edema after cataract surgery in eyes without preoperative central-involved diabetic macular edema. JAMA Ophthalmol. 2013 Jul;131(7):870–879.
  • Sarao V, Veritti D, Maurutto E, et al. Pharmacotherapeutic management of macular edema in diabetic subjects undergoing cataract surgery. Expert Opin Pharmacother. 2018 Oct;19(14):1551–1563.
  • Agarwal A, Gupta V, Ram J, et al. Dexamethasone intravitreal implant during phacoemulsification. Ophthalmology. 2013 Jan;120(1):211 e1–5.
  • Furino C, Boscia F, Niro A, et al. Combined phacoemulsification and intravitreal dexamethasone implant (Ozurdex(R)) in diabetic patients with coexisting cataract and diabetic macular edema. J Ophthalmol. 2017;2017:4896036.
  • Calvo P, Ferreras A, Al Adel F, et al. Effect of an intravitreal dexamethasone implant on diabetic macular edema after cataract surgery. Retina. 2018 Mar;38(3):490–496.
  • Panozzo GA, Gusson E, Panozzo G, et al. Dexamethasone intravitreal implant at the time of cataract surgery in eyes with diabetic macular edema. Eur J Ophthalmol. 2017 Jun 26;27(4):433–437.
  • Fassbender Adeniran JM, Jusufbegovic D, Schaal S. Common and rare ocular side-effects of the dexamethasone implant. Ocul Immunol Inflamm. 2017 Dec;25(6):834–840.
  • Gillies MC, Islam FM, Larsson J, et al. Triamcinolone-induced cataract in eyes with diabetic macular oedema: 3-year prospective data from a randomized clinical trial. Clin Exp Ophthalmol. 2010 Aug;38(6):605–612.
  • Coca-Robinot J, Casco-Silva B, Armada-Maresca F, et al. Accidental injections of dexamethasone intravitreal implant (Ozurdex) into the crystalline lens. Eur J Ophthalmol. 2014 Jul-Aug;24(4):633–636.
  • Fasce F, Battaglia Parodi M, Knutsson KA, et al. Accidental injection of dexamethasone intravitreal implant in the crystalline lens. Acta Ophthalmol. 2014 Jun;92(4):e330–1.
  • Fenolland JR, Sigaux M, Giraud JM. Inadvertent subconjunctival injection of a dexamethasone implant. JAMA Ophthalmol. 2017 May 11;135(5):e170106.
  • Venincasa MJ, Sridhar J. Inadvertent subconjunctival injection of a fluocinolone acetonide implant. JAMA Ophthalmol. 2019 Mar 1;137(3):e184149.
  • Maturi RK, Pollack A, Uy HS, et al. Intraocular pressure in patients with diabetic macular edema treated with dexamethasone intravitreal implant in the 3-year mead study. retina. 2016 Jun;36(6):1143–1152.
  • Malcles A, Dot C, Voirin N, et al. Safety of intravitreal dexamethasone implant (OZURDEX): the SAFODEX study. Incidence and risk factors of ocular hypertension. Retina. 2017 Jul;37(7):1352–1359.
  • Rajesh B, Zarranz-Ventura J, Fung AT, et al. Safety of 6000 intravitreal dexamethasone implants. Br J Ophthalmol. 2020 Jan;104(1):39–46.
  • Parrish RK 2nd, Campochiaro PA, Pearson PA, et al. Characterization of intraocular pressure increases and management strategies following treatment with fluocinolone acetonide intravitreal implants in the FAME trials. Ophthalmic Surg Lasers Imaging Retina. 2016 May 1;47(5):426–435.
  • Holden SE, Currie CJ, Owens DR. Evaluation of the clinical effectiveness in routine practice of fluocinolone acetonide 190 microg intravitreal implant in people with diabetic macular edema. Curr Med Res Opin. 2017 Oct;33(sup2):5–17.
  • VanderBeek BL, Bonaffini SG, Ma L. The association between intravitreal steroids and post-injection endophthalmitis rates. Ophthalmology. 2015 Nov;122(11):2311–2315 e1.
  • Freiberg FJ, Brynskov T, Munk MR, et al. Low endophthalmitis rates after intravitreal anti-vascular endothelial growth factor injections in an operation room: a retrospective multicenter study. Retina. 2017 Dec;37(12):2341–2346.
  • Dossarps D, Bron AM, Koehrer P, et al. Endophthalmitis after intravitreal injections: incidence, presentation, management, and visual outcome. Am J Ophthalmol. 2015 Jul;160(1):17–25 e1.
  • Brynskov T, Kemp H, Sorensen TL. No cases of endophthalmitis after 20,293 intravitreal injections in an operating room setting. Retina. 2014 May;34(5):951–957.
  • Tabandeh H, Boscia F, Sborgia A, et al. Endophthalmitis associated with intravitreal injections: office-based setting and operating room setting. Retina. 2014 Jan;34(1):18–23.
  • Schwartz SG, Flynn HW Jr. Update on the prevention and treatment of endophthalmitis. Expert Rev Ophthalmol. 2014 Oct;9(5):425–430.
  • Schwartz SG, Flynn HW, Grzybowski A. Controversies in topical antibiotics use with intravitreal injections. Curr Pharm Des. 2015;21(32):4703–4706.
  • Grzybowski A, Brona P, Kim SJ. Microbial flora and resistance in ophthalmology: a review. Graefes Arch Clin Exp Ophthalmol. 2017 May;255(5):851–862.
  • Ferguson AW, Scott JA, McGavigan J, et al. Comparison of 5% povidone-iodine solution against 1% povidone-iodine solution in preoperative cataract surgery antisepsis: a prospective randomised double blind study. Br J Ophthalmol. 2003 Feb;87(2):163–167.
  • Friedman DA, Mason JO 3rd, Emond T, et al. Povidone-iodine contact time and lid speculum use during intravitreal injection. Retina. 2013 May;33(5):975–981.
  • Green-Simms AE, Ekdawi NS, Bakri SJ. Survey of intravitreal injection techniques among retinal specialists in the United States. Am J Ophthalmol. 2011 Feb;151(2):329–332.
  • Bhavsar AR, Googe JM Jr., Stockdale CR, et al. Risk of endophthalmitis after intravitreal drug injection when topical antibiotics are not required: the diabetic retinopathy clinical research network laser-ranibizumab-triamcinolone clinical trials. Arch Ophthalmol. 2009 Dec;127(12):1581–1583.
  • Kiss S, Chandwani HS, Cole AL, et al. Comorbidity and health care visit burden in working-age commercially insured patients with diabetic macular edema. Clin Ophthalmol. 2016;10:2443–2453.
  • Gonder JR, Walker VM, Barbeau M, et al. Costs and quality of life in diabetic macular edema: canadian burden of diabetic macular edema observational study (C-REALITY). J Ophthalmol. 2014;2014:939315.
  • Maniadakis N, Konstantakopoulou E. Cost effectiveness of treatments for diabetic retinopathy: a systematic literature review. Pharmacoeconomics. 2019 Aug;37(8):995–1010.
  • Ross EL, Hutton DW, Stein JD, et al. Cost-effectiveness of aflibercept, bevacizumab, and ranibizumab for diabetic macular edema treatment: analysis from the diabetic retinopathy clinical research network comparative effectiveness trial. JAMA Ophthalmol. 2016 Aug 1;134(8):888–896.
  • Sivaprasad S, Oyetunde S. Impact of injection therapy on retinal patients with diabetic macular edema or retinal vein occlusion. Clin Ophthalmol. 2016;10:939–946.
  • National Institute for Health and Care Excellence. Dexamethasone intravitreal implant for treating diabetic macular oedema. 2015 [cited 2020 Jan 11]. Available from: https://www.nice.org.uk/guidance/TA349
  • Cho H, Choi KS, Lee JY, et al. Healthcare resource use and costs of diabetic macular oedema for patients with antivascular endothelial growth factor versus a dexamethasone intravitreal implant in Korea: a population-based study. BMJ Open. 2019 Sep 20;9(9):e030930.
  • National Institute for Health and Care Excellence. Fluocinolone acetonide intravitreal implant for treating chronic diabetic macular oedema after an inadequate response to prior therapy. 2013 [cited 2020 Jan 11]. Available from: www.nice.org.uk/guidance/ta301
  • Quhill F, Beiderbeck A. Cost advantage of fluocinolone acetonide implant (ILUVIEN®) versus ranibizumab in the treatment of chronic diabetic macular oedema. Global Reg Health Technol Assess. 20174(1).
  • Raman V. A cost analysis comparing continued 3-year aflibercept monotherapy versus a switch from aflibercept to the fluocinolone acetonide intravitreal implant in phakic patients with chronic diabetic macular edema. Expert Rev Ophthalmol. 2018 Sept 03;13(5):299–307.
  • Holden SE, Currie CJ, Owens DR. Health-economic evaluation of fluocinolone acetonide 190 microg implant in people with diabetic macular edema. Curr Med Res Opin. 2017 Oct;33(sup2):45–52.
  • Neubauer AS, Haritoglou C, Ulbig MW. Cost comparison of licensed intravitreal therapies for insufficiently anti-VEGF responding fovea involving diabetic macular edema in Germany. Klin Monbl Augenheilkd. 2019 Feb;236(2):180–191.
  • Ch’ng SW, Brent AJ, Empeslidis T, et al. Real-world cost savings demonstrated by switching patients with refractory diabetic macular edema to intravitreal fluocinolone acetonide (Iluvien): a retrospective cost analysis study. Ophthalmol Ther. 2018 Jun;7(1):75–82.
  • Pochopien M, Beiderbeck A, McEwan P, et al. Cost-effectiveness of fluocinolone acetonide implant (ILUVIEN(R)) in UK patients with chronic diabetic macular oedema considered insufficiently responsive to available therapies. BMC Health Serv Res. 2019 Jan 9;19(1):22.
  • Cutino A, Green K, Kendall R, et al. Economic evaluation of a fluocinolone acetonide intravitreal implant for patients with DME based on the FAME study. Am J Manag Care. 2015 Jan;21(4 Suppl):S63–72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.