112
Views
2
CrossRef citations to date
0
Altmetric
Invited Review

Glucocorticoid-induced ocular hypertension: origins and new approaches to minimize

, ORCID Icon &
Pages 145-157 | Received 05 Aug 2019, Accepted 27 Apr 2020, Published online: 14 May 2020

References

  • Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids: new mechanisms for old drugs. N Engl J Med. 2005;353:1711–1713.
  • Ramamoorthy S, Cidlowski JA. Corticosteroids: mechanisms of action in health and disease. Rheum Dis Clin North Am. 2016;42:15–31, vii.
  • Webster JI, Tonelli L, Sternberg EM. Neuroendocrine regulation of immunity. Annu Rev Immunol. 2002;20:125–163.
  • Wordinger RJ, Clark AF. Effects of glucocorticoids on the trabecular meshwork: towards a better understanding of glaucoma. Prog Retin Eye Res. 1999;18:629–667.
  • Druzgala P, Wu WM, Bodor N. Ocular absorption and distribution of loteprednol etabonate, a soft steroid, in rabbit eyes. Curr Eye Res. 1991;10(10):933–937.
  • Murdick PW, Keates RH, Donovan EF, et al.et al. Ocular penetration studies. II. Topical administration of prednisolone. Arch Ophthalmol. 1966;76(4):602–603.
  • Awan MA, Agarwal PK, Watson DG, et al. Penetration of topical and subconjunctival corticosteroids into human aqueous humour and its therapeutic significance. Br J Ophthalmol. 2009;93(6):708–713.
  • Razeghinejad MR, Katz L. Steroid-induced iatrogenic glaucoma. Ophthalmic Res. 2012;47(2):66–80.
  • Yamagucchi M, Yasueda S–I, Isowaki A, et al. Formulation of an ophthalmic lipid emulsion containing anti-inflammatory steroidal drug, difluprednate. Int J Pharm. 2005;301(1–2):121–128.
  • Seckl JR. 11beta-hydroxysteroid dehydrogenases: changing glucocorticoid action. Curr Opin Pharmacol. 2004;4:597–602.
  • Cooper MS, Stewart PM. 11Beta-hydroxysteroid dehydrogenase type 1 and its role in the hypothalamus-pituitary-adrenal axis, metabolic syndrome, and inflammation. J Clin Endocrinol Metab. 2009;94:4645–4654.
  • Weinstein BI, Iyer RB, Binstock JM, et al. Decreased 3 alpha-hydroxysteroid dehydrogenase activity in peripheral blood lymphocytes from patients with primary open angle glaucoma. Exp Eye Res. 1996;62:39–45.
  • Weinstein BI, Munnangi P, Gordon GG, et al. Defects in cortisol-metabolizing enzymes in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1985;26:890–893.
  • Stokes J, Noble J, Brett L, et al. Distribution of glucocorticoid and mineralocorticoid receptors and 11beta-hydroxysteroid dehydrogenases in human and rat ocular tissues. Invest Ophthalmol Vis Sci. 2000;41:1629–1638.
  • Onyimba CU, Vijapurapu N, Curnow SJ, et al. Characterisation of the prereceptor regulation of glucocorticoids in the anterior segment of the rabbit eye. J Endocrinol. 2006;190:483–493.
  • Rauz S, Cheung CM, Wood PJ, et al. Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 lowers intraocular pressure in patients with ocular hypertension. QJM. 2003;96(7):481–490.
  • Choi K, Na Y-J, Jung WH, et al. Protective effect of a novel selective 11β-HSD1 inhibitor on eye ischemis-reperfusion induced glaucoma. Biochem Pharmacol. 2019;169(113632):1–11.
  • Kwok AK, Lam DS, Ng JS, et al. Ocular hypertensive response to topical steroids in children. Ophthalmology. 1997;104:2112–2116.
  • Ng JS, Fan DS, Young AL, et al. Ocular hypertensive response to topical dexamethasone in children: a dose-dependent phenomenon. Ophthalmol. 2000;107:2097–2100.
  • Lam DS, Fan DS, Ng JS, et al. Ocular hypertensive and anti-inflammatory responses to different dosages of topical dexamethasone in children: a randomized trial. Clin Exp Ophthalmol. 2005;33:252–258.
  • Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988;240:889–895.
  • Scheschowitsch K, Leite J, Assreuy J. New insights in glucocorticoid receptor signaling – more than just a ligand binding receptor. Front Endocrinol (Lausanne). 2017;8:1–9.
  • Grad I, Picard D. The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol. 2007;275:2–12.
  • Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones*. Endocr Rev. 1997;18:306–360.
  • Lim HW, Uhlenhaut NH, Rauch A, et al. Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo. Genome Res. 2015;25:836–844.
  • Beato M. Gene regulation by steroid hormones. Cell. 1989;56:335–344.
  • Beato M, Chalepakis G, Schauer M, et al. DNA regulatory elements for steroid hormones. J Steroid Biochem. 1989;32:737–747.
  • Surjit M, Ganti KP, Mukherji A, et al. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell. 2011;145:224–241.
  • Sundahl N, Bridelance J, Libert C, et al. Selective glucocorticoid receptor modulation: new directions with non-steroidal scaffolds. Pharmacol Ther. 2015;152:28–41.
  • Cain DW, Cidlowski JA. Specificity and sensitivity of glucocorticoid signaling in health and disease. Best Pract Res Clin Endocrinol Metab. 2015;29:545–556.
  • Kleiman A, Tuckermann JP. Glucocorticoid receptor action in beneficial and side effects of steroid therapy: lessons from conditional knockout mice. Mol Cell Endocrinol. 2007;275:98–108.
  • H-F Y-Y, Chambard J-C, Sun Y-L, et al. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell. 1990;62:1205–1215.
  • Nissen RM, Yamamoto KR. The glucocorticoid receptor inhibits NFkappaB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 2000;14:2314–2329.
  • Lonard DM, O’Malley BW. Expanding functional diversity of the coactivators. Trends Biochem Sci. 2005;30:126–132.
  • Bermudez JY, Webber HC, Brown B, et al. A comparison of gene expression profiles between glucocorticoid responder and non-responder bovine trabecular meshwork cells using RNA sequencing. PLoS ONE. 2017;12:e0169671.
  • Mao W, Tovar-Vidales T, Yorio T, et al. Perfusion-cultured bovine anterior segments as an ex vivo model for studying glucocorticoid-induced ocular hypertension and glaucoma. Invest Ophthalmol Vis Sci. 2011;52:8068–8075.
  • Oakley RH, Sar M, JA C. The human glucocorticoid receptor beta isoform, Expression, biochemical properties, and putative function. J Biol Chem. 1996;271(16):9550–9559.
  • Gougat C, Jaffuel D, Gagliardo R, et al. Overexpression of the human glucocorticoid receptor alpha and beta isoforms inhibits AP-1 and NF-kappaB activities hormone independently. J Mol Med. 2002;80(5):309–318.
  • Zhang X, Clark AF, Yorio T. Regulation of glucocorticoid responsiveness in glaucomatous trabecular meshwork cells by glucocorticoid receptor-beta. Invest Ophthalmol Vis Sci. 2005;46(120):4607–4616.
  • Zhang X, Ognibene CM, Clark AF, et al. Dexamethasone inhibition of trabecular meshwork cell phagocytosis and its modulation by glucocorticoid receptor beta. Exp Eye Res. 2007;84(2):275–284.
  • Jain A, Wordinger TJ, Yorio T, et al. Spliceosome protein (SRp) regulation of glucocorticoid receptor isoforms and glucocorticoid response in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2012;53(2):857–866.
  • Jain A, Wordinger RJ, Yorio T, et al. Role of the alternatively spliced glucocorticoid receptor isoform GRβ in steroid responsiveness and glaucoma. J Ocul Pharmacol Ther. 2014;30(2–3):121–127.
  • Becker B, Mills DW. Corticosteroids and intraocular pressure. Arch Ophthal. 1963;70:500–507.
  • Groeneweg FL, Karst H, de Kloet ER, et al. Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Mol Cell Endocrinol. 2012;350:299–309.
  • Solito E, Mulla A, Morris JF, et al. Dexamethasone induces rapid serine-phosphorylation and membrane translocation of annexin 1 in a human folliculostellate cell line via a novel nongenomic mechanism involving the glucocorticoid receptor, protein kinase C, phosphatidylinositol 3-kinase, and mitogen-activated protein kinase. Endocrinology. 2003;144:1164–1174.
  • Croxtall JD, Choudhury Q, Flower RJ. Glucocorticoids act within minutes to inhibit recruitment of signalling factors to activated EGF receptors through a receptor-dependent, transcription-independent mechanism. Br J Pharmacol. 2000;130:289–298.
  • Samarasinghe RA, Witchell SF, DeFranco DB. Cooperativity and complementarity: synergies in non-classical and classical glucocorticoid signaling. Cell Cycle. 2012;11:2819–2827.
  • Lowenberg M, Stahn C, Hommes DW, et al. Novel insights into mechanisms of glucocorticoid action and the development of new glucocorticoid receptor ligands. Steroids. 2008;73:1025–1029.
  • De Bosscher K, Haegeman G. Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol Endocrinol. 2009;23:281–291.
  • Norman AW, Mizwicki MT, Norman DP. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov. 2004;3:27–41.
  • Weinreb RN, Polansky JR, Kramer SG, et al. Acute effects of dexamethasone on intraocular pressure in glaucoma. Invest Ophthalmol Vis Sci. 1985;26:170–175.
  • Becker B. Intraocular pressure response to topical corticosteroids. Invest Ophthalmol. 1965;4:198–205.
  • Becker B, Hahn KA. Topical corticosteroids and heredity in primary open-angle glaucoma. Am J Ophthalmol. 1964;57:543–551.
  • Armaly MF. Statistical attributes of the steroid hypertensive response in the clinically normal eye I. The demonstration of three levels of response. Invest Ophthalmol. 1965;4:187–197.
  • Schwartz JT, Reuling FH, Feinleib M, et al. Twin study on ocular pressure following topically applied dexamethasone II. Inheritance of variation in pressure response. Arch Ophthalmol. 1973;90:281–286.
  • Fini ME, Schwartz SG, Gao X, et al. Steroid-induced ocular hypertension/glaucoma: focus on pharmacogenomics and implications for precision medicine. Prog Retinal Eye Res. 2017;56:58–83.
  • Patel N, Itakura T, Jr JM G, et al. GPR158, an orphan member of G protein-coupled receptor family C: glucocorticoid-stimulated expression and novel nuclear role. PloS One. 2015;10(2):e0117758.
  • Jeong S, Patel N, Edlund CK, et al. Identification of a novel mucin gene HCG22 associated with steroid-induced ocular hypertension. Investig Ophthalmol Vis Sci. 2015;56:2737–2748.
  • Hogewind BF, Micheal S, Bakker B, et al. Analysis of single nucleotide polymorphisms in the SFRS3 and FKBP4 genes in corticosteroid-induced ocular hypertension. Ophthalmic Genet. 2012;33:221–224.
  • Hogewind BF, Micheal S, Schoenmaker-Koller FE, et al. Analyses of sequence variants in the MYOC gene and of single nucleotide polymorphisms in the NR3C1 and FKBP5 genes in corticosteroid-induced ocular hypertension. Ophthalmic Genet. 2015;36:299–302.
  • Fingert JH, Alward WL, Wang K, et al. Assessment of SNPs associated with the human glucocorticoid receptor in primary open-angle glaucoma and steroid responders. Mol Vis. 2010;16:596–601.
  • Huscher D, Thiele K, Gromnica-Ihle E, et al. Dose-related patterns of glucocorticoid-induced side effects. Ann Rheum Dis. 2009;68:1119–1124.
  • Herbert HM, Viswanathan A, Jackson H, et al. Risk factors for elevated intraocular pressure in uveitis. J Glaucoma. 2004;13:96–99.
  • Caplan A, Fett N, Rosenbach M, et al. Prevention and management of glucocorticoid-induced side effects: A comprehensive review. J Am Acad Dermatol. 2017;76:201–207.
  • Boyer DS, Yoon YH, Jr BR, et al.et al. Three-year randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014;121:1904–1914.
  • Zarranz-Ventura J, Sala-Puigdollers A, Velazquez-Villoria D, et al.et al. Long-term probability of intraocular pressure elevation with intravitreal dexamethasone implant in the real-world. Plos One. 2019;14(1):e0209997.
  • Rhee DJ, Peck RE, Belmont J, et al.et al. Intraocular pressure alterations following intravitreal triamcinolone acetonide. Br J Ophthalmol. 2006;90:999–1003.
  • Ray S, Mehra KS, Misra S, et al. Plasma cortisol in glaucoma. Ann Ophthalmol. 1977;9:1151–1154.
  • Rozsival P, Hampl R, Obenberger J, et al. Aqueous humor and plasma cortisol levels in glaucoma and cataract patients. Curr Eye Res. 1081(1):391–396.
  • Meredig WE, Jentzen F, Hartmann F. Systemic side effects of topically applied corticosteroid medication (author’s translation). Klinische Monatsbatter fur Augenheilkunde. 1980;176:907–910.
  • Schwartz B, Seddon JM. Increased plasma cortisol levels in ocular hypertension. Arch Ophthalmol. 1981;99:1791–1794.
  • McCarty GR, Schwartz B. Increased plasma noncortisol glucocorticoid activity in open-angle glaucoma. Invest Ophthalmol Vis Sci. 1991;32:1600–1608.
  • Southren AL, Gordon GG, Munnangi PR, et al. Altered cortisol metabolism in cells cultured from trabecular meshwork specimens obtained from patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1983;24:1413–1417.
  • Weinsten BI, Iyer RB, Binstock JM, et al. Decreased 3 alpha-hydroxysteroid dehydrogenase activity in peripheral blood lymphocytes from patients with primary open angle glaucoma. Exp Eye Res. 1996;62:29–45.
  • Clark AF. Steroids, ocular hypertension and glaucoma. J Glaucoma. 1995;4:354–369.
  • Clark AF, Wordinger RJ. The role of steroids in outflow resistance. Exp Eye Res. 2009;88:752–759.
  • Bermudez JY, Montecchi-Palmer M, Mao W, et al. Cross-linked actin networks (CLANs) in glaucoma. Exp Eye Res. 2017;159:16–22.
  • Tripathi RC, Li J, Chan WF, et al. Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta2. Exp Eye Res. 1994;59:723–727.
  • Inatani M, Tannihara H, Katsuta H, et al. Transforming growth factor-beta 2 levels in aqueous humor of glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol. 2001;239:109–113.
  • Hoare MJ, Grierson I, Brotchie D, et al. Cross-linked actin networks (CLANs) in the trabecular meshwork of the normal and glaucomatous human eye in situ. Invest Ophthalmol Vis Sci. 2009;50:1244–1263.
  • Kesetti RB, Maddineni P, Patel PD, et al. Transforming growth factor β2 (TGFβ2) signaling plays a key role in glucocorticoid-induced ocular hypertension. J Biol Chem. 2018;293(25):9854–9868.
  • Reichardt SD, Weinhage T, Rotte A, et al. Glucocorticoids induce gastroparesis in mice through depletion of l-arginine. Endocrinology. 2014;155:3899–3908.
  • Quinn M, Ramamoorthy S, Cidlowski JA. Sexually dimorphic actions of glucocorticoids: beyond chromosomes and sex hormones. Ann N Y Acad Sci. 2014;1317:1–6.
  • Gessi S, Merighi S, Borea PA. Glucocorticoid’s pharmacology: past, present and future. Curr Pharm Des. 2010;16:3540–3553.
  • De Bosscher K, Haegeman G, Elewaut D. Targeting inflammation using selective glucocorticoid receptor modulators. Curr Opin Pharmacol. 2010;10:497–504.
  • De Bosscher K, Vanden Berghe W, Beck IM, et al. A fully dissociated compound of plant origin for inflammatory gene repression. Proc Natl Acad Sci U S A. 2005;102:15827–15832.
  • Robertson S, Allie-Reid F, Vanden Berghe W, et al. Abrogation of glucocorticoid receptor dimerization correlates with dissociated glucocorticoid behavior of compound a. J Biol Chem. 2010;285:8061–8075.
  • Lesovaya E, Yemelyanov A, Swart AC, et al. Discovery of Compound A–a selective activator of the glucocorticoid receptor with anti-inflammatory and anti-cancer activity. Oncotarget. 2015;6:30730–30744.
  • Jaroch S, Berger M, Huwe C, et al. Discovery of quinolines as selective glucocorticoid receptor agonists. Bioorg Med Chem Lett. 2010;20:5835–5838.
  • Zheng Y, Ishiguro H, Ide H, et al. Compound a inhibits bladder cancer growth predominantly via glucocorticoid receptor transrepression. Mol Endocrinol. 2015;29:1486–1497.
  • Dibas A, Yorio T. Glucocorticoid therapy and ocular hypertension. Eur J Pharmacol. 2016;787:57–71.
  • Shafiee A, Bucolo C, Budzynski E, et al. In vivo ocular efficacy profile of mapracorat, a novel selective glucocorticoid receptor agonist, in rabbit models of ocular disease. Invest Ophthalmol Vis Sci. 2011;52:1422–1430.
  • Kato M, Hagiwara Y, Oda T, et al. Beneficial pharmacological effects of selective glucocorticoid receptor agonist in external eye diseases. J Ocul Pharmacol Ther. 2011;27:353–360.
  • Spinelli SL, Xi X, McMillan DH, et al. Mapracorat, a selective glucocorticoid receptor agonist, upregulates RelB, an anti-inflammatory nuclear factor-kappaB protein, in human ocular cells. Exp Eye Res. 2014;127:290–298.
  • Pfeffer BA, DeWitt CA, Salvador-Silva M, et al. Reduced myocilin expression in cultured monkey trabecular meshwork cells induced by a selective glucocorticoid receptor agonist: comparison with steroids. Invest Ophthalmol Vis Sci. 2010;51:437–446.
  • Uings IJ, Needham D, Matthews J, et al. Discovery of GW870086: a potent anti-inflammatory steroid with a unique pharmacological profile. Br J Pharmacol. 2013;169:1389–1403.
  • Stamer WD, Hoffman EA, Kurali E, et al. Unique response profile of trabecular meshwork cells to the novel selective glucocorticoid receptor agonist, GW870086X. Invest Ophthalmol Vis Sci. 2013;54:2100–2107.
  • Alroy I, Freedman LP. DNA binding analysis of glucocorticoid receptor specificity mutants. Nucleic Acids Res. 1992;20:1045–1052.
  • Schena M, Freedman LP, Yamamoto KR. Mutations in the glucocorticoid receptor zinc finger region that distinguish interdigitated DNA binding and transcriptional enhancement activities. Genes Dev. 1989 Oct;3(10):1590–1601.
  • Beck IM, De Bosscher K, Haegeman G. Glucocorticoid receptor mutants: man-made tools for functional research. Trends Endocrinol Metab. 2011;22:295–310.
  • Kassel O, Herrlich P. Crosstalk between the glucocorticoid receptor and other transcription factors: molecular aspects. Mol Cell Endocrinol. 2007;275:13–29.
  • Karin M. New twists in gene regulation by glucocorticoid receptor: is DNA binding dispensable? Cell. 1998;93:487–490.
  • Heck S, Kullmann M, Gast A, et al. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. Embo J. 1994;13:4087–4095.
  • Reichardt HM, Kaestner KH, Tuckermann J, et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell. 1998;93:531–541.
  • Cole TJ, Blendy JA, Monaghan AP, et al. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev. 1995;9:1608–1621.
  • Reichardt HM, Tuckermann JP, Göttlicher M, et al. Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor. Embo J. 2001;20:7168–7173.
  • Frijters R, Fleuren W, Toonen EJ, et al. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor. BMC Genomics. 2010;11:359–2164-11-359.
  • Tuckermann JP, Reichardt HM, Arribas R, et al. The DNA binding-independent function of the glucocorticoid receptor mediates repression of Ap-1–dependent genes in skin. 1999;1365–1370.
  • Jewell CM, Scoltock AB, Hamel BL, et al. Complex human glucocorticoid receptor dim mutations define glucocorticoid induced apoptotic resistance in bone cells. Mol Endocrinol. 2012;26:244–256.
  • Roohk DJ, Mascharak S, Khambatta C, et al. Dexamethasone-mediated changes in adipose triacylglycerol metabolism are exaggerated, not diminished, in the absence of a functional GR dimerization domain. Endocrinology. 2013;154:1528–1539.
  • Schäcke H, Schottelius A, W-D D, et al. Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. 2004;227–232.
  • Patel GC, Millar JC, Clark AF. Glucocorticoid receptor transactivation is required for glucocorticoid-induced ocular hypertension and glaucoma. Ines Ophthalmol Vis Sci. 2019:1967–1978.
  • Boese EA, Shah M. Gonioscopy-assisted transluminal trabeculotomy (GATT) is an effective procedure for steroid-induced glaucoma. J Glaucoma;2019. Epub ahead of print. DOI:10.1097/IJG.0000000000001317
  • Southren AL, L’Hommedieu D, Gordon GG, et al. Intraocular hypotensive effect of a topically applied cortisol metabolite: 3 alpha, 5 beta tetrahydrocortisol. Invest Ophthalmol Vis Sci. 1987;28(5):901–903.
  • Clark AF, Lane D, Wilson K, et al. Inhibition of dexamethasone-induced cytoskeletal changes in cultured human trabecular meshwork cells by tetrahydocortisol. Invest Ophthalmol Vis Sci. 1996;37(5):805–813.
  • Robin AL, Suan EP, Sjaarda RN, et al. Reduction of intraocular pressure with anecortave acetate in eyes with ocular steroid injection-related glaucoma. Arch Ophthalmol. 2009;127(2):173–178.
  • McNatt LG, Weimer L, Yanni J, et al. Angiostatic activity of steroids in the chick embryo CAM and rabbit cornea models of neovascularization. J Ocul Pharmacol Ther. 1999;15(5):413–423.
  • Gerometta R, Kumar S, Shah S, et al. Reduction of steroid-induced intraocular pressure elevation in sheep by tissue plasminogen activator. Invest Ophthalmol Vis Sci. 2013;54(13):7903–7909.
  • Candia OA, Gerometta RM, Danias J. Tissue plasminogen activator reduces the elevated intraocular pressure induced by prednisolone in sheep. Exp Eye Res. 2014;128:114–116.
  • Spiga MG, Borras T. Development of a gene therapy virus with a glucocorticoid-inducible MMP1 for the treatment of steroid glaucoma. Invest Ophthalmol Vis Sci. 2010;51(6):3029–3041.117.
  • Gerometta R, Spiga MG, Borras T, et al. Treatment of sheep steroid-induced ocular hypertension with a glucocorticoid-inducible MMP1 gene therapy virus. Invest Ophthalmol Vis Sci. 2010;51(6):3042–3048.
  • Borras T, Buie LK, Spiga MG. Inducible scAAV2.GRE.MMP1 lowers IOP long-term in a large animal model for steroid-induced glaucoma gene therapy. Gene Ther. 2016;23:438–449.
  • Patel GC, Phan TN, Maddineni P, et al. Dexamethasone-induced ocular hypertension in Mice: effects of myocilin and route of administration. Am J Pathol. 2016;187:713–723.
  • Patel GC, Liu Y, Millar JC, et al. Glucocorticoid receptor GRβ regulates glucocorticoid-induced ocular hypertension in mice. Sci Rep. 2018;8(1):1–13.
  • Shepard AR, Millar JC, Pang IH, et al. Adenoviral gene transfer of active transforming growth factor-{beta}2 elevates intraocular pressure and reduces outflow facility in rodent eyes. Invest Ophthalmol Vis Sci. 2010;51(4):2067–2076.
  • Budenz DL, Bennett J, Alonso L, et al. In vivo gene transfer into murine corneal endothelial and trabecular meshwork cells. Invest Ophthalmol Vis Sci. 1995;36(11):2211–2215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.