39
Views
0
CrossRef citations to date
0
Altmetric
Review

Principles of ophthalmic ultrasound

Pages 379-389 | Received 14 Jun 2023, Accepted 27 Oct 2023, Published online: 01 Nov 2023

References

  • Silverman RH, Vinarsky E, Woods SM, et al. The effect of transducer bandwidth on ultrasonic image characteristics. Retina. 1995;15(1):37–42. doi:10.1097/00006982-199515010-00008
  • Oksala A, Lehtinen A. Diagnostic value of ultrasonics in ophthalmology. Ophthalmologica. 1957;134(6):387–395. doi:10.1159/000303246
  • Baum G, Greenwood I. The application of ultrasonics locating techniques to ophthalmology; theoretic considerations and acoustic properties of ocular media. I. Reflective properties. Am J Ophthalmol. 1958;46(5 Pt 2):319–329. doi:10.1016/0002-9394(58)90813-4
  • Baum G, Greenwood I. The application of ultrasonic locating techniques to ophthalmology. II. Ultrasonic slit lamp in the ultrasonic visualization of soft tissues. AMA Arch Ophthalmol. 1958;60(2):263–279. doi:10.1001/archopht.1958.00940080279015
  • Jansson F, Kock E. Determination of the velocity of ultrasound in the human lens and vitreous. Acta Ophthalmol (Copenh). 1962;40:420–433. doi:10.1111/j.1755-3768.1962.tb02390.x
  • Begui ZE. Acoustic properties of the refractive media of the eye. J Acoust Soc Am. 2005;26(3):365–368. doi:10.1121/1.1907343
  • Oksala A, Lehtinen A. Measurement of the velocity of sound in some parts of the eye. Acta Ophthalmol (Copenh). 1958;36(4):633–639. doi:10.1111/j.1755-3768.1958.tb02271.x
  • Linebarger EJ, Hardten DR, Shah GK, et al. Phacoemulsification and modern cataract surgery. Surv Ophthalmol. 1999;44(2):123–147. doi:10.1016/S0039-6257(99)00085-5
  • Apple DJ. Sir Harold Ridley and his fight for sight: he changed the World so that we may better see it. Thorofare NJ: SLACK, Inc.; 2006.
  • Coleman DJ, Carlin B. A new system for visual axis measurements in the human eye using ultrasound. Arch Ophtalmol. 1967;77(1):124–127. doi:10.1001/archopht.1967.00980020126027
  • Hennessy MP, Chan DG. Contact versus immersion biometry of axial length before cataract surgery. J Cataract Refract Surg. 2003;29(11):2195–2198. doi:10.1016/S0886-3350(03)00224-4
  • Olsen T, Nielsen PJ. Immersion versus contact technique in the measurement of axial length by ultrasound. Acta Ophthalmol (Copenh). 1989;67(1):101–102. doi:10.1111/j.1755-3768.1989.tb00732.x
  • Holladay JT, Musgrove KH, Prager TC, et al. A three-part system for refining intraocular lens power calculations. J Cataract Refract Surg. 1988;14(1):17–24. doi:10.1016/S0886-3350(88)80059-2
  • Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg. 1993;19(6):700–712. doi:10.1016/S0886-3350(13)80338-0
  • Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg. 1990;16(3):333–340. doi:10.1016/S0886-3350(13)80705-5
  • Baxter J, Atwan N. A Comparison between ultrasound pachymetry and CASIA2 (anterior-segment optical coherence tomography) in the measurement of central corneal thickness. Cureus. 2023;15(6):e39921. doi:10.7759/cureus.39921
  • Doğan M, Ertan E. Comparison of central corneal thickness measurements with standard ultrasonic pachymetry and optical devices. Clin Exp Optom. 2019;102(2):126–130. doi:10.1111/cxo.12865
  • Williams R, Fink BA, King-Smith PE, et al. Central corneal thickness measurements: using an ultrasonic instrument and 4 optical instruments. Cornea. 2011;30(11):1238–1243. doi:10.1097/ICO.0b013e3182152051
  • Coleman DJ, Konig WF, Katz L. A hand-operated, ultrasound scan system for ophthalmic evaluation. Am J Ophthalmol. 1969;68(2):256–263. doi:10.1016/0002-9394(69)94068-9
  • Coleman DJ, Dallow RL, Smith ME. Immersion ultrasonography: simultaneous A-scan and B-scan. Int Ophthalmol Clin. 1979;19(4):67–102. doi:10.1097/00004397-197901940-00005
  • Bronson NR. Development of a simple B-scan ultrasonoscope. Trans Am Ophthalmol Soc. 1972;70:365–408.
  • Sherar MD, Foster FS. The design and fabrication of high frequency poly(vinylidene fluoride) transducers. Ultrason Imaging. 1989;11(2):75–94. doi:10.1177/016173468901100201
  • Sherar MD, Starkoski BG, Taylor WB, et al. A 100 MHz B-scan ultrasound backscatter microscope. Ultrason Imaging. 1989;11(2):95–105. doi:10.1177/016173468901100202
  • Pavlin CJ, Harasiewicz K, Sherar MD, et al. Clinical use of ultrasound biomicroscopy. Ophthalmol. 1991;98(3):287–295. doi:10.1016/S0161-6420(91)32298-X
  • Silverman RH, Reinstein DZ, Raevsky T, et al. Improved system for sonographic imaging and biometry of the cornea. J Ultrasound Med. 1997;16(2):117–124. doi:10.7863/jum.1997.16.2.117
  • Reinstein DZ, Silverman RH, Raevsky T, et al. Arc-scanning very high-frequency digital ultrasound for 3D pachymetric mapping of the corneal epithelium and stroma in laser in situ keratomileusis. J Refract Surg. 2000;16(4):414–430. doi: 10.3928/1081-597X-20000701-04
  • Reinstein DZ, Archer TJ, Urs R, et al. Detection of keratoconus in clinically and algorithmically topographically normal fellow eyes using Epithelial thickness analysis. J Refract Surg. 2015;31(11):736–744. doi:10.3928/1081597X-20151021-02
  • Reinstein DZ, Gobbe M, Archer TJ, et al. Epithelial, stromal, and total corneal thickness in keratoconus: three-dimensional display with artemis very-high frequency digital ultrasound. J Refract Surg. 2010;26(4):259–271. doi:10.3928/1081597X-20100218-01
  • Silverman RH, Urs R, Roychoudhury A, et al. Epithelial remodeling as basis for machine-based identification of keratoconus. Invest Ophthalmol Vis Sci. 2014;55(3):1580–1587. doi:10.1167/iovs.13-12578
  • Reinstein DZ, Archer TJ, Gobbe M. LASIK flap thickness profile and reproducibility of the standard vs zero compression hansatome microkeratomes: three-dimensional display with Artemis VHF digital ultrasound. J Refract Surg. 2011;27(6):417–426. doi:10.3928/1081597X-20101110-01
  • Reinstein DZ, Archer TJ, Gobbe M, et al. Accuracy and reproducibility of Artemis central flap thickness and visual outcomes of LASIK with the Carl Zeiss Meditec VisuMax femtosecond laser and MEL 80 excimer laser platforms. J Refract Surg. 2010;26(2):107–119. doi:10.3928/1081597X-20100121-06
  • Reinstein DZ, Sutton HF, Srivannaboon S, et al. Evaluating microkeratome efficacy by 3D corneal lamellar flap thickness accuracy and reproducibility using Artemis VHF digital ultrasound arc-scanning. J Refract Surg. 2006;22(5):431–440. doi:10.3928/1081-597X-20060501-03
  • Ang M, Baskaran M, Werkmeister RM, et al. Anterior segment optical coherence tomography. Prog Retin Eye Res. 2018;66:132–156. doi: 10.1016/j.preteyeres.2018.04.002
  • Vira J, Marchese A, Singh RB, et al. Swept-source optical coherence tomography imaging of the retinochoroid and beyond. Expert Rev Med Devices. 2020;17(5):413–426. doi:10.1080/17434440.2020.1755256
  • Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146(4):496–500. doi:10.1016/j.ajo.2008.05.032
  • Mrejen S, Spaide RF. Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol. 2013;58(5):387–429. doi:10.1016/j.survophthal.2012.12.001
  • Ursea R, Feng M, Urs R, et al. Comparison of Artemis 2 ultrasound and visante optical coherence tomography corneal thickness profiles. J Refract Surg. 2013;29(1):36–41. doi:10.3928/1081597X-20121126-01
  • Wevers M, Strabbing EM, Engin O, et al. CT parameters in pure orbital wall fractures and their relevance in the choice of treatment and patient outcome: a systematic review. Int J Oral Maxillofac Surg. 2022;51(6):782–789. doi:10.1016/j.ijom.2021.10.001
  • Brenner D, Elliston C, Hall E, et al. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176(2):289–296. doi:10.2214/ajr.176.2.1760289
  • Poon R, Badawy MK. Radiation dose and risk to the lens of the eye during CT examinations of the brain. J Med Imaging Radiat Oncol. 2019;63(6):786–794. doi:10.1111/1754-9485.12950
  • Griffin AS, Hoang JK, Malinzak MD. CT and MRI of the orbit. Int Ophthalmol Clin. 2018;58(2):25–59. doi:10.1097/IIO.0000000000000218
  • Berger A. How does it work?: magnetic resonance imaging. BMJ. 2002;324(7328):35. doi:10.1136/bmj.324.7328.35
  • Lindner T, Langner S, Graessl A, et al. High spatial resolution in vivo magnetic resonance imaging of the human eye, orbit, nervus opticus and optic nerve sheath at 7.0 Tesla. Exp Eye Res. 2014;125:89–94. doi: 10.1016/j.exer.2014.05.017
  • Glarin RK, Nguyen BN, Cleary JO, et al. MR-EYE: high-resolution MRI of the human eye and orbit at Ultrahigh field (7T). Magn Reson Imaging Clin N Am. 2021;29(1):103–116. doi: 10.1016/j.mric.2020.09.004
  • Steinborn M, Fiegler J, Kraus V, et al. High resolution ultrasound and magnetic resonance imaging of the optic nerve and the optic nerve sheath: anatomic correlation and clinical importance. Ultraschall Med. 2011;32(6):608–613. doi: 10.1055/s-0029-1245822
  • Silverman RH, Ketterling JA, Coleman DJ. High-frequency ultrasonic imaging of the anterior segment using an annular array transducer. Ophthalmol. 2007;114(4):816–822. doi:10.1016/j.ophtha.2006.07.050
  • Silverman RH, Ketterling JA, Mamou J, et al. Pulse-encoded ultrasound imaging of the vitreous with an annular array. Ophthalmic Surg Lasers Imaging. 2012;43(1):82–86. doi:10.3928/15428877-20110901-03
  • Hedrick WR, Hykes DL. Beam steering and focusing with linear phiased arrays. J Diagn Med Sonogr. 1996;12(5):211–215. doi:10.1177/875647939601200502
  • Food and Drug Administration. Marketing Clearance of Diagnostic Ultrasound Systems and Transducers, Guidance for Industry and Food and Drug Administration Staff (2019).
  • Abramowicz JS, Adhikari S, Dickman E, et al. Ocular ultrasound: review of bioeffects and safety, including fetal and point of care perspective: review of bioeffects and safety, including fetal and point-of-care perspective. J Ultrasound Med. 2022;41(7):1609–1622. doi: 10.1002/jum.15864
  • Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(1):102–119. doi:10.1109/TUFFC.2014.2882
  • Urs R, Ketterling JA, Silverman RH. Ultrafast ultrasound imaging of ocular anatomy and blood flow. Invest Ophthalmol Vis Sci. 2016;57(8):3810–3816. doi:10.1167/iovs.16-19538
  • Urs R, Ketterling JA, Yu ACH, et al. Ultrasound imaging and measurement of choroidal blood flow. Transl Vis Sci Technol. 2018;7(5):5. doi:10.1167/tvst.7.5.5
  • Silverman RH, Urs R, Wapner RJ, et al. Plane-wave ultrasound Doppler of the eye in preeclampsia. Transl Vis Sci Technol. 2020;9(10):14. doi:10.1167/tvst.9.10.14
  • Correia M, Provost J, Tanter M, et al. 4D ultrafast ultrasound flow imaging: in vivo quantification of arterial volumetric flow rate in a single heartbeat. Phys Med Biol. 2016;61(23):L48–l61. doi:10.1088/0031-9155/61/23/L48

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.