1,782
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Feature confirmation in object perception: Feature integration theory 26 years on from the Treisman Bartlett lecture

Pages 1910-1940 | Received 08 Jun 2014, Accepted 10 Nov 2014, Published online: 20 Feb 2015

REFERENCES

  • Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 12, 157–162. doi: 10.1111/1467-9280.00327
  • Bauer, F., Cheadle, S. W., Parton, A., Müller, H. J., & Usher, M. (2009). Gamma flicker triggers attentional selection without awareness. Proceedings of the National Academy of Sciences, 106, 1666–1671. doi: 10.1073/pnas.0810496106
  • Beck, D., & Kastner, S. (2007). Stimulus similarity modulates competitive interactions in human visual cortex. Journal of Vision, 7, 1–12. doi: 10.1167/7.2.19
  • Bekkering, H., & Neggers, S. F. W. (2002). Visual search is modulated by action intentions. Psychological Science, 13, 370–374. doi: 10.1111/j.0956-7976.2002.00466.x
  • Braet, W., & Humphreys, G. W. (2009). The role of re-entrant processes in feature binding: Evidence from neuropsychology and TMS on late onset illusory conjunctions. Visual Cognition, 17, 25–47. doi: 10.1080/13506280802193318
  • Braithwaite, J. J., Humphreys, G. W., Hulleman, J., & Watson, D. G. (2007). Fast color grouping and slow color inhibition: Evidence for distinct temporal windows for separate processes in preview search. Journal of Experimental Psychology: Human Perception & Performance, 33, 503–517.
  • Cepeda, N. J., Cave, K. R., Bichot, N. P., & Kim, M.-.S. (1998). Spatial selection via feature-driven inhibition of distractor locations. Perception & Psychophysics, 60, 727–746. doi: 10.3758/BF03206059
  • Chechlacz, M., Rotshtein, P., Hansen, P., Riddoch, M. J., Deb, S., & Humphreys, G. W. (2012). The neural underpinnings of simultanagnosia: Disconnecting the visuospatial attention network. Journal of Cognitive Neuroscience, 24, 718–735. doi: 10.1162/jocn_a_00159
  • Chong, S., & Treisman, A. (2003). Representation of statistical properties. Vision Research, 43, 393–404. doi: 10.1016/S0042-6989(02)00596-5
  • Chong, S., & Treisman, A. (2005). Statistical processing: Computing the average size in perceptual groups. Vision Research, 45, 891–900. doi: 10.1016/j.visres.2004.10.004
  • Cinel, C., & Humphreys, G. W. (2006). On the relations between implicit and explicit spatial binding: Evidence from balint's syndrome. Cognitive, Affective and Behavioral Neuroscience, 6, 127–140. doi: 10.3758/CABN.6.2.127
  • Cohen, M. A., Alvarez, G. A., & Nakayama, K. (2011). Natural-scene perception requires attention. Psychological Science, 22, 1165–1172. doi: 10.1177/0956797611419168
  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 215–229. doi: 10.1038/nrn755
  • Cowey, A. (1979). Cortical maps and visual perception: The grindley memorial lecture. Quarterly Journal of Experimental Psychology, 31, 1–17. doi: 10.1080/14640747908400703
  • Davis, G., & Driver, J. (1998). Kanizsa subjective figures can act as occluding surfaces at parallel stages of visual search. Journal of Experimental Psychology: Human Perception and Performance, 24, 169–184.
  • Demeyere, N., & Humphreys, G. W. (2007). Distributed and focused attention: Neuropsychological evidence for separate attentional mechanisms when counting and estimating. Journal of Experimental Psychology: Human Perception and Performance, 33, 1076–1088.
  • Demeyere, N., Rzeskiewicz, A., Humphreys, K. A., & Humphreys, G. W. (2008). Automatic statistical processing of visual properties in simultanagnosia. Neuropsychologia, 46, 2861–2864. doi: 10.1016/j.neuropsychologia.2008.05.014
  • Dent, K., Allen, H. A., Braithwaite, J. J., & Humphreys, G. W. (2012). Inhibitory guidance in visual search: The case of movement-form conjunctions. Attention, Perception and Performance, 74, 269–284. doi: 10.3758/s13414-011-0240-5
  • Donnelly, N., Humphreys, G. W., & Riddoch, M. J. (1991). Parallel computation of primitive shape descriptions. Journal of Experimental Psychology: Human Perception and Performance, 17, 561–570.
  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458. doi: 10.1037/0033-295X.96.3.433
  • Ellison, A., & Walsh, V. (1998). Perceptual learning in visual search: Some evidence of specificities. Vision Research, 38, 333–345. doi: 10.1016/S0042-6989(97)00195-8
  • Enns, J., & Rensink, R. A. (1990). Sensitivity to three-dimensional orientation in visual search. Psychological Science, 1, 323–326. doi: 10.1111/j.1467-9280.1990.tb00227.x
  • Erlikhman, G., Keane, B. P., Mettler, E., Horowitz, T. S., & Kellman, P. J. (2013). Automatic feature-based grouping during multiple object tracking. Journal of Experimental Psychology: Human Perception and Performance, 39, 1625–1637.
  • Evans, K. K., & Treisman, A. (2005). Preception of objects in natural scenes: Is it really attention free? Journal of Experimental Psychology: Human Perception and Performance, 31, 1476–1492.
  • Fei-Fei, L., VanRullen, R., Koch, C., & perona, P. (2005). Why does natural scene categorization require little attention? exploring attentional requirements for natural and synthetic stimuli. Visual Cognition, 12, 893–924. doi: 10.1080/13506280444000571
  • Forti, S., & Humphreys, G. W. (2008). Sensitivity to object viewpoint and action instructions during search for targets in the lower visual field. Psychological Science, 19, 42–48. doi: 10.1111/j.1467-9280.2008.02044.x
  • Found, A., & Müller, H. M. (1996). Searching for unknown feature targets on more than one dimension: Investigating a “dimension weighting” account. Preception & Psyhophysics, 58, 88–101. doi: 10.3758/BF03205479
  • Friedman-Hill, S. R., Robertson, L. C., & Treisman, A. (1995). Parietal contributions to visual feature binding: Evidence from a patient with blateral lesions. Science, 269, 853–855. doi: 10.1126/science.7638604
  • Gilchrist, I., Humphreys, G. W., & Riddoch, M. J. (1996). Grouping and extinction: Evidence for low-level modulation of selection. Cognitive Neuropsychology, 13, 1223–1249. doi: 10.1080/026432996381737
  • Gillebert, C., & Humphreys, G. W. (2010). The decomposition of visual binding over time: Neuropsychological evidence from illusory conjunctions after posterior parietal damage. Visual Cognition, 18, 954–980. doi: 10.1080/13506280903356764
  • Goldsmith, M., & Yeari, M. (2003). Modulation of object-based attention by spatial focus under endogenous and exogenous orienting. Journal of Experimental Psychology: Human Perception and Performance, 29, 897–918.
  • Haan, B., & Rorden, C. (2010). Similarity grouping and repetition blindness are both influenced by attention. Frontiers in Human Neuroscience, 4, 20. doi:10.3389/fnhum2010.00020
  • Haberman, J., & Whitney, D. (2009). Seeing the mean: Ensemble coding for sets of faces. Journal of Experimental Psychology: Human Perception and Performance, 35, 718–734.
  • Han, S., Jiang, Y., Mao, L., Humphreys, G., & Gu, H. (2005a). Attentional modulation of perceptual grouping in human visual cortex: Functional MRI studies. Human Brain Mapping, 25, 424–432. doi: 10.1002/hbm.20119
  • Han, S., Jiang, Y., Mao, L., Humphreys, G. W., & Qin, J. (2005b). Attentional modulation of perceptual grouping in human visual cortex: ERP studies. Human Brain Mapping, 26, 199–209. doi: 10.1002/hbm.20157
  • Han, S., & Humphreys, G. W. (2007). The fronto-parietal network and top-down modulation of perceptual grouping. Neurocase, 13, 278–289. doi: 10.1080/13554790701649930
  • Handy, T. C., Grafton, S. T., Shroff, N. M., Ketay, S., & Gazzaniga, M. S. (2003). Graspable objects grab attention when the potential for action is recognized. Nature Neuroscience, 6, 421–427. doi: 10.1038/nn1031
  • Ho, G., Siakaluk, P. D., & Scialfa, C. T. (2003). Plasticity of feature-based selection in triple-cnjunction search. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 57, 48–60. doi: 10.1037/h0087412
  • Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36, 791–804. doi: 10.1016/S0896-6273(02)01091-7
  • Houck, M. R., & Hoffman, J. E. (1986). Conjunciton of color and form without attention: Evidence from an orientation-contingent color aftereffect. Journal of Experimental Psychology: Human Perception and Performance, 12, 186–199.
  • Humphreys, G. W. (1998). Neural representation of objects in space: A dual coding account. Philosophical Transactions of the Royal Society B: Biological Sciences, 353, 1341–1351. doi: 10.1098/rstb.1998.0288
  • Humphreys, G. W., Cinel, C., Wolfe, J., Olson, A., & Klempen, N. (2000). Fractionating the binding process: NNeuropsychological evidence distinguishing binding of form from binding of surface features. Vision Research, 40, 1569–1596. doi: 10.1016/S0042-6989(00)00042-0
  • Humphreys, G. W., Hodsoll, J., & Riddoch, M. J. (2009). Fractionating the binding process: Neuropsychological evidence from reversed search efficiencies. Journal of Experimental Psychology: Human Perception and Performance, 35, 627–647.
  • Humphreys, G. W., & Müller, H. J. (1993). SEarch via Recursive Rejection (SERR): A connectionist model of visual search. Cognitive Psychology, 25, 43–110. doi: 10.1006/cogp.1993.1002
  • Humphreys, G. W., Quinlan, P. T., & Riddoch, M. J. (1989). Grouping processes in visual search: Effects with single-and combined-feature targets. Journal of Experimental Psychology: General, 118, 258–279. doi: 10.1037/0096-3445.118.3.258
  • Humphreys, G. W., & Riddoch, M. J. (1993). Interactions between object and space systems revealed through neuropsychology. In D. E. Meyer (Ed.), Attention and Performance XIV (pp. 143–162). Cambridge, Mass.: MIT Press.
  • Humphreys, G. W., & Riddoch, M. J. (2001). Detection by action: Evidence for affordances in search in neglect. Nature Neuroscience, 4, 84–88. doi: 10.1038/82940
  • Humphreys, G. W., & Riddoch, M. J. (2003). From what to where: Neuropsychological evidence for implicit interactions between object- and space-based attention. Psychological Science, 14, 487–492. doi: 10.1111/1467-9280.02457
  • Humphreys, G. W., Romani, C., Olson, A., Riddoch, M. J., & Duncan, J. (1994). Non-spatial extinction following lesions of the parietal lobe in humans. Nature, 372, 357–359. doi: 10.1038/372357a0
  • Humphreys, G. W., Yoon, E. Y., Kumar, S., Lestou, V., Kitadono, K., Roberts, K. L., & Riddoch, M. J. (2010). The interaction of attention and action: From seeing action to acting on perception. British Journal of Psychology, 101, 185–206. doi: 10.1348/000712609X458927
  • Kahneman, D., Treisman, A., & Gibbs, B. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24, 175–219. doi: 10.1016/0010-0285(92)90007-O
  • Karnath, H-O. (1988). Deficits of attention in acute and recovered visual hemi-neglect. Neuropsychologia, 26, 27–43. doi: 10.1016/0028-3932(88)90028-0
  • Kimchi, R., Yeshurun, Y., & Cohen-Savransky, A. (2007). Automatic, stimulus-driven attentional capture by objecthood. Psychonomic Bulletin and Review, 14, 166–172. doi: 10.3758/BF03194045
  • Kitadono, K., & Humphreys, G. W. (2007). Interactions between perception and action programming: Evidence from visual extinction and optic ataxia. Cognitive Neuropsychology, 24, 731–754. doi: 10.1080/02643290701734721
  • Klein, R. (1988). Inhibitory tagging system facilitates visual search. Nature, 334, 430–431. doi: 10.1038/334430a0
  • Krummenacher, J., & Müller, H. M. (2014). Visual search for singleton targets redundantly defined in two feature dimensions: Coactive processing of color-motion targets? Journal of Experimental Psychology: Human Perception and Performance, 40, 1926–1939.
  • Kumada, T., & Humphreys, G. W. (2001). Lexical recovery on extinction: Interactions between visual form and stored knowledge modulate visual selection. Cognitive Neuropsychology, 18, 465–478. doi: 10.1080/02643290042000224
  • Kunar, M., Humphreys, G. W., Smith, K. J., & Watson, D. G. (2003). When a re-appearance is old news: Visual marking survives occlusion. Journal of Experimental Psychology: Human Perception and Performance, 29, 185–198.
  • Leib, A., Yamanashi, P., Amrita, M., Fischer, P. et al. (2012). Crowd perception in prosopagnosia. Neuropsychologia, 50, 1698–1707. doi: 10.1016/j.neuropsychologia.2012.03.026
  • Lestou, V., Kourtzi, Z., Humphreys, K. L., Lam, J., & Humphreys, G. W. (2014). The necessary role of the dorsal visual route in the heterarchical coding of global visual pattern: Evidence from neuropsychological fMRI. Journal of Cognitive Neuroscience, 26, 1154–1167. doi: 10.1162/jocn_a_00489
  • Li, F., VanRullen, R., Koch, C., & Perona, P. (2002). Rapid natural scene categorization in the near absence of attention. Proceedings of the National Academy of Sciences, 99, 9596–9601. doi: 10.1073/pnas.092277599
  • Li, Z. (2002). A saliency map in primary visual cortex. Trends in Cognitive Sciences, 6, 9–16. doi: 10.1016/S1364-6613(00)01817-9
  • Lobley, K., & Walsh, V. (1998). Perceptual learning in visual conjunction search. Perception, 27, 1245–1255. doi: 10.1068/p271245
  • Lu, A., Xu, G., Jin, H., Mo, L., Zhang, J., & Zhang, J. X. (2010). Electrophysiological evidence for effects of color knowledge in object recognition. Neuroscience Letters, 469(3), 405–410. doi: 10.1016/j.neulet.2009.12.039
  • Luria, A. R. (1959). Disorders of “simultaneous perception” in a case of bilateral occpitoparietal brain injury. Brain, 82, 437–449. doi: 10.1093/brain/82.3.437
  • Maljkovic, V., & Nakayama, K. (1994). The priming of pop-out. I: Role of features. Memory and Cognition, 22, 657–672. doi: 10.3758/BF03209251
  • McCullough, C. (1965). Color adaptation of edge-detectors in the human visual system. Science, 149, 1115–1116. doi: 10.1126/science.149.3688.1115
  • McMains, S., & Kastner, S. (2010). Defining the units of competition: Influence of perceptual organisation on competitive interactions in human visual cortex. Journal of Neuroscience, 31, 587–597. doi: 10.1523/JNEUROSCI.3766-10.2011
  • McMains, S., & Kastner, S. (2011). Interactions of top-down and bottom-up mechanisms in human visual cortex. Journal of Cognitive Neuroscience, 22, 2417–2426. doi: 10.1162/jocn.2009.21391
  • Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14, 247–279. doi: 10.1016/0010-0285(82)90010-X
  • Milner, A. D., & Goodale, M. (1995). The Visual Brain in Action. New York: Academic Press.
  • Müller, H. J., & Von Mühlenen, A. (2000). Probing distractor inhibition in visual search: Inhibition of return. Journal of Experimental Psychology: Human Perception and Performance, 26, 1591–1605.
  • Müller, H. J., von Muhlenen, A., & Geyer, T. (2007). Top-down inhibition of search distractors in parallel visual search. Perception and Psychophysics, 69, 1373–1388. doi: 10.3758/BF03192953
  • Müller, H. M., Humphreys, G. W., & Donnelly, N. (1994). Search via Recursive Rejection (SERR): Visual search for single and dual form-conjunction targets. Journal of Experimental Psychology: Human Perception and Performance, 20, 235–258.
  • Nakayama, K., & Silverman, G. H. (1986). Serial and parallel processing of visual feature conjunctions. Nature, 20–26;320(6059), 264–265. doi: 10.1038/320264a0
  • Pavlovskaya, M., Bonneh, Y., Soroker, N., et al. (2011). Neglect field objects impact statistical property report in patients with unilateral spatial neglect. Perception, 40, S122–S122.
  • Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. Bonwhuis (Eds.), Attention and Performance X: Control of Language Processes (pp. 551–556). Hillsdale, N.J.: Erlbaum.
  • Previc, F. H. (1990). Functional specialization in the lower and upper visual-fields in humans—its ecological origins and neurophysiological implications. Behavioral and Brain Sciences, 13(3), 519–542. doi: 10.1017/S0140525X00080018
  • Prinzmetal, W., Ivry, R. B., Beck, D., et al. (2002). A measurement theory of illusory conjunctions. Journal of Experimental Psychology: Human Perception and Performance, 28, 251–269.
  • Prinzmetal, W., Presti, D. E., & Posner, M. I. (1986). Does attention affect visual feature integration. Journal of Experimental Psychology: Human Perception and Performance, 12, 361–369.
  • Pylyshyn, Z., Haladjian, H. H., King, C. E., & Reilly, J. E. (2008). Selective nontarget inhibition in multiple object tracking. Visual Cognition, 16, 1011–1021. doi: 10.1080/13506280802247486
  • Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3, 179–198. doi: 10.1163/156856888X00122
  • Rangelov, D., Müller, H. M., & Zehetleitner, M. (2013). Visual search for feature singletons: Multiple mechanisms produce sequence effects in visual search. Journal of Vision, 13, 1–16. doi: 10.1167/13.3.22
  • Rappaport, S. J., Humphreys, G. W., & Riddoch, M. J. (2013). The attraction of yellow corn: Reduced attentional constraints on coding learned conjunctive relations. Journal of Experimental Psychology: Human Perception and Performance, 39, 1016–1031.
  • Rappaport, S. J., Riddoch, M. J., & Humphreys, G. W. (in press). Unconscious familiarity-based color-form binding: evidence from visual extinction. Journal of Cognitive Neuroscience.
  • Rensink, R. A., & Enns, J. T. (1995). Preemption effects in visual search: Evidence for low-level grouping. Psychological Review, 102, 101–130. doi: 10.1037/0033-295X.102.1.101
  • Riddoch, M. J., Humphreys, G. W., Edwards, S., Baker, T., & Willson, K. (2003). Actions glue objects but associations glue words: Neuropsychological evidence for multiple object selection. Nature Neuroscience, 6, 82–89. doi: 10.1038/nn984
  • Riddoch, M. J., Pippard, P., Booth, L., Rickell, J., Summer, J., Brownson, A., & Humphreys, G. W. (2011). Effects of action relations on the configural coding between objects. Journal of Experimental Psychology: Human Perception and Performance, 37, 580–587.
  • Risko, F. E., Stolz, A. J., & Besner, D. (2005). Basic processes in reading: Is visual word recognition obligatory? Psychonomic Bulletin & Review, 12(1), 119–124. doi: 10.3758/BF03196356
  • Roberts, K. L., & Humphreys, G. W. (2010a). Action relationships concatenate representations of separate objects in the ventral visual system. Neuroimage, 42, 1541–1548. doi: 10.1016/j.neuroimage.2010.05.044
  • Roberts, K. L., & Humphreys, G. W. (2010b). The one that does leads: Action relations alter the perceived temporal order of graspable objects. Journal of Experimental Psychology: Human Perception and Performance, 36, 776–780.
  • Roberts, K., & Humphreys, G. (2011). Action relations facilitate the identification of briefly-presented objects. Attention, Perception & Psychophysics, 73, 597–612. doi: 10.3758/s13414-010-0043-0
  • Robertson, I. H., Nico, D., & Hood, B. M. (1995). The intention to act improves unilateral neglect: Two demonstrations. NeuroReport, 7, 246–248.
  • Robertson, L., Treisman, A., Friedman-Hill, S. R., & Grabowecky, M. (1997). The interaction of spatial and object pathways: Evidence from Balint's syndrome. Journal of Cognitive Neuroscience, 9, 295–317. doi: 10.1162/jocn.1997.9.3.295
  • Rossion, B. (2013). The composite face illusion: A whole window into our understanding of holistic face perception. Visual Cognition, 21, 139–253. doi: 10.1080/13506285.2013.772929
  • Rousselet, G., Fabre-Thorpe, M., & Thorpe, S. (2002). Parallel processing in high-level categorization of natural images. Nature Neuroscience, 5, 629–630.
  • Rust, N. C., & DiCarlo, J. J. (2010). Selectivity and tolerance (“invariance”) both increase as visual information propagates from cortical area V4 to IT. Journal of Neuroscience, 30, 12978–12995. doi: 10.1523/JNEUROSCI.0179-10.2010
  • Schneider, W. X., & Deubel, H. (2002). Selection-for-perception and selection-for-spatial-motor-action are coupled by visual attention: A review of recent findings and new evidence from stimulus-driven saccade control. In W. Prinz & B. Hommel (Eds.), Common Mechanisms in perception and action: Attention and Performance XIX (pp. 607–627). London: Academic Press.
  • Seymour, K., Clifford, C. W. G., Logothetis, N. K., & Bartels, A. (2009). The coding of color, motion, and their conjunction in the human visual cortex. Current Biology, 19, 177–183. doi: 10.1016/j.cub.2008.12.050
  • Seymour, K., Clifford, C. W. G., Logothetis, N. K., & Bartels, A. (2010). Coding and binding of color and form in visual cortex. Cerebral Cortex, 20, 1946–1954. doi: 10.1093/cercor/bhp265
  • Singer, W., & Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18, 555–586. doi: 10.1146/annurev.ne.18.030195.003011
  • Sirenteanu, R., & Rettenbach, R. (2000). Perceptual learning in visual search generalizes over tsaks: Location and eyes. Vision Research, 40, 2925–2949. doi: 10.1016/S0042-6989(00)00145-0
  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. doi: 10.1037/h0054651
  • Su, Y., Lai, Y., Huang, W., Tan, W., Qu, Z., & Ding, Y. (2014). Short-term perceptual learning in visual conjunction search. Journal of Experimental Psychology: Human Perception and Preformance, 40, 1415–1424.
  • Symes, E., Tucker, M., Ellis, R., Vainio, L. & Ottoboni, G. (2008). Grasp preparation improves change detection for congruent objects. Journal of Experimental Psychology: Human Perception and Performance, 34, 854–871.
  • Takeda, Y., & Yagi, A. (2000). Inhibitory tagging in visual search can be found if search stimuli remain visible. Perception & Psychophysics, 62, 927–934. doi: 10.3758/BF03212078
  • Thorpe, S. J., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522. doi: 10.1038/381520a0
  • Treisman, A. (1985). Preattentive processing in vision. Computer Vision, Graphics and Image Processing, 31, 156–177. doi: 10.1016/S0734-189X(85)80004-9
  • Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. Quarterly Journal of Experimental Psychology, 40A, 201–237. doi: 10.1080/02724988843000104
  • Treisman, A. (1998). Feature binding, attention and object perception. Philosophical Transactions of the Royal Society B: Biological Sciences, 353, 1295–1306. doi: 10.1098/rstb.1998.0284
  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136. doi: 10.1016/0010-0285(80)90005-5
  • Treisman, A., & Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95, 15–48. doi: 10.1037/0033-295X.95.1.15
  • Treisman, A. M., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16, 459–478.
  • Treisman, A., & Schmidt, H. (1982). Illusory conjunctions in the perception of objects. Cognitive Psychology, 14, 107–141. doi: 10.1016/0010-0285(82)90006-8
  • Treisman, A., & Souther, J. (1985). Search asymmetry: A diagnostic for preattentive processing. Journal of Experimental Psychology: General, 114, 285–310. doi: 10.1037/0096-3445.114.3.285
  • Vuilleumier, P., Schwartz, S., Verdon, V., et al. (2008). Abnormal attentional modulation of retinotopic cortex in parietal patients with spatial neglect. Current Biology, 18, 1525–1529. doi: 10.1016/j.cub.2008.08.072
  • Walsh, V., Ashbridge, E., & Cowey, A. (1998). Cortical plasticity in perceptual learning demonstrated by transcranial magnetic stimulation. Neuropsychologia, 36, 45–49. doi: 10.1016/S0028-3932(97)00111-5
  • Wang, Q., Cavanagh, P., & Green, M. (1994). Familiarity and pop-out in visual search. Attention, Perception & Psychophysics, 56, 495–500. doi: 10.3758/BF03206946
  • Ward, R., Goodrich, S., & Driver, J. (1994). Grouping reduces visual extinction: Neuropsychological evidence for weight-linkage in visual selection. Visual Cognition, 1, 101–129. doi: 10.1080/13506289408402295
  • Watson, D. G., & Humphreys, G. W. (1997). Visual marking: Prioritising selection for new objects by top-down attentional inhibition. Psychological Review, 104, 90–122. doi: 10.1037/0033-295X.104.1.90
  • Watson, D. G., & Humphreys, G. W. (2000). Visual marking: Evidence for inhibition using a probe-dot detection paradigm. Perception & Psychophysics, 62, 471–481. doi: 10.3758/BF03212099
  • Wei, P., Müller, H. M., Pollmann, S., et al. (2011). Neural correlates of binding features within- or across-dimensions in visual conjunction search: An fMRI study. Neuroimage, 57, 235–241. doi: 10.1016/j.neuroimage.2011.04.024
  • Wojciulik, E., & Kanwisher, N. (1998). Implicit but not explicit feature binding in a balint's patient. Visual Cognition, 5, 157–181. doi: 10.1080/713756779
  • Wolfe, J. M. (2014). Approaches to visual search: Feature integration theory and guided search. In A. C. Nobre & S. Kastner (Eds.), The Oxford Handbook of Attention (pp. 11–55). Oxford: Oxford University Press.
  • Wolfe, J. M., Franzel, S. L., & Cave, K. R. (1989). Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 419–433.
  • Wulff, M., & Humphreys, G. W. (2013). Visual responses to action between unfamiliar object pairs modulate extinction. Neuropsychologia, 51, 622–632. doi: 10.1016/j.neuropsychologia.2013.01.004
  • Yantis, S. (1992). Mutlielement visual tracking: Attention and perceptual organization. Cognitive Psychology, 24, 295–340. doi: 10.1016/0010-0285(92)90010-Y
  • Yin, R. K. (1969). Looking at upside down faces. Journal of Experimental Psychology, 81, 141–145. doi: 10.1037/h0027474
  • Zhang, J., Meeson, A., Welchman, A. E., & Kourtzi, Z. (2010). Learning alters the tuning of functional magnetic resonance imaging petterns for visual forms. The Journal of Neuroscience, 30, 14127–14133. doi: 10.1523/JNEUROSCI.2204-10.2010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.