289
Views
3
CrossRef citations to date
0
Altmetric
Regular articles

Common magnitude representation of fractions and decimals is task dependent

, , &
Pages 764-780 | Received 22 Jul 2014, Accepted 06 May 2015, Published online: 03 Jul 2015

REFERENCES

  • Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 113(3), 447–455. doi: 10.1016/j.jecp.2012.06.004
  • Bonato, M., Fabbri, S., Umiltà, C., & Zorzi, M. (2007). The mental representation of numerical fractions: Real or integer? Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1410–1419.
  • Čech, C. G., & Shoben, E. J. (1985). Context effects in symbolic magnitude comparisons. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11, 299–315.
  • Cohen, D. J. (2009). Integers do not automatically activate their quantity representation. Psychonomic Bulletin and Review, 16, 332–336. doi: 10.3758/PBR.16.2.332
  • Cohen, D. J. (2010). Evidence for direct retrieval of relative quantity information in a quantity judgment task: Decimals, integers, and the role of physical similarity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(6), 1389–1398.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. 2nd ed. Lawrence Erlbaum Associates.
  • Cohen Kadosh, R., Cohen Kadosh, K., Kaas, A., Henik, A., & Goebel, R. (2007). Notation-dependent and -independent representations of numbers in the parietal lobes. Neuron, 53, 307–314. doi: 10.1016/j.neuron.2006.12.025
  • Defever, E., Sasanguie, D., Vandewaetere, M., & Reynvoet, B. (2012). What can the same-different task tell us about the development of magnitude representations? Acta Psychoogica, 140, 35–42. doi: 10.1016/j.actpsy.2012.02.005
  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42. doi: 10.1016/0010-0277(92)90049-N
  • Dehaene, S., & Akhavein, R. (1995). Attention, automaticity, and levels of representation in number processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(2), 314–326.
  • DeWolf, M., Bassok, M., & Holyoak, J. (2015). Conceptual structure and the procedural affordances of rational numbers: Relational reasoning with fractions and decimals. Journal of Experimental Psychology: General, 144(1), 127–150. doi: 10.1037/xge0000034
  • DeWolf, M., Grounds, M. A., Bassok, M., & Holyoak, K. J. (2014). Representation and comparison of magnitudes for different types of rational numbers. Journal of Experimental Psychology: Human Perception and Performance, 40(1), 71–82.
  • DeWolf, M., & Vosniadou, S. (2015). The representation of fraction magnitudes and the whole number bias reconsidered. Learning and Instruction, 37, 39–49. doi: 10.1016/j.learninstruc.2014.07.002
  • Faulkenberry, T. J., & Pierce, B. H. (2011). Mental representations in fraction comparison: Holistic versus component-based strategies. Experimental Psychology, 58(6), 480–489. doi: 10.1027/1618-3169/a000116
  • Gabriel, F., Szűcs, D., & Content, A. (2013a). The mental representations of fractions: Adult's same-different judgments. Frontiers in Psychology, 4, 385.
  • Gabriel, F., Szűcs, D., & Content, A. (2013b). The development of the mental representation of the magnitude of fractions. PLOS One, 8(11), e80016. doi: 10.1371/journal.pone.0080016
  • Ganor-Stern, D. (2012). Fractions but not negative numbers are represented on the mental number line. Acta psychologica, 139(2), 350–357. doi: 10.1016/j.actpsy.2011.11.008
  • Ganor-Stern, D. (2013). Are 1/2 and 0.5 represented in the same way? Acta psychologica, 142(3), 299–307. doi: 10.1016/j.actpsy.2013.01.003
  • Ganor-Stern, D., Karasik-Rivkin, I., & Tzelgov, J. (2011). Holistic representation of unit fractions. Experimental Psychology, 58(3), 201–206. doi: 10.1027/1618-3169/a000086
  • Ganor-Stern, D., Pinhas, M., & Tzelgov, J. (2009). Comparing two-digit numbers: The importance of being presented together. The Quarterly Journal of Experimental Psychology, 62(3), 444–452. doi: 10.1080/17470210802391631
  • Ganor-Stern, D., & Tzelgov, J. (2008). Across-notation automatic numerical processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(2), 430–437.
  • Ganor-Stern, D., & Tzelgov, J. (2011). Across-notation automatic processing of two-digit numbers. Experimental psychology, 58(2), 147–153. doi: 10.1027/1618-3169/a000080
  • García-Orza, J., & Damas, J. (2011). Sequential processing of two-digit numbers: Evidence of decomposition from a perceptual number matching task. Zeitschrift für Psychologie / Journal of Psychology, 219(1), 23–29. doi: 10.1027/2151-2604/a000042
  • Garcia-Orza, J., Perea, M., Abu Mallouh, R., & Carreiras, M. (2012). Physical similarity (and not quantity representation) drives perceptual comparison of numbers: Evidence from two Indian notations. Psychonomic Bulletin and Review, 19, 294–300. doi: 10.3758/s13423-011-0212-8
  • Goldfarb, L., Henik, A., Rubinsten, O., Bloch-David, Y., & Gertner, L. (2011). The numerical distance effect is task dependent. Memory and Cognition, 39, 1508–1517. doi: 10.3758/s13421-011-0122-z
  • Huber, S., Klein, E., Willmes, K., Nuerk, H.-C., & Moeller, K. (2014). Decimal fraction representations are not distinct from natural number representations – Evidence from a combined eye-tracking and computational modelling approach. Frontiers in Human Neuroscience, 8, 172. doi: 10.3389/fnhum.2014.00172
  • Huber, S., Moeller, K., & Nuerk, H. C. (2014). Adaptive processing of fractions - Evidence from eye-tracking. Acta Psychologica, 148(5), 37–48. doi: 10.1016/j.actpsy.2013.12.010
  • Ischebeck, A., Schocke, M., & Delazer, M. (2009). The processing and representation of fractions within the brain: An fMRI investigation. NeuroImage, 47, 403–413. doi: 10.1016/j.neuroimage.2009.03.041
  • Iuculano, T., & Butterworth, B. (2011). Understanding the real value of fractions and decimals. The Quarterly Journal of Experimental Psychology, 64(11), 2088–2098. doi: 10.1080/17470218.2011.604785
  • Jacob, S. N., & Nieder, A. (2009). Notation-independent representation of fractions in the human parietal cortex. Journal of Neuroscience, 29, 4652–4657. doi: 10.1523/JNEUROSCI.0651-09.2009
  • Kallai, A. Y., & Tzelgov, J. (2009). A generalized fraction: An entity smaller than one on the mental number line. Journal of Experimental Psychology: Human Perception and Performance, 35(6), 1845–1864.
  • Kallai, A. Y., & Tzelgov, J. (2014). Decimals are not processed automatically, not even as being smaller than one. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(4), 962–975.
  • Kerslake, D. (1991). The language of fractions. In K. Durkin & B. Shire (Eds.), Language in mathematical education: Research and practice (pp. 85–94). Buckingham, UK: Open University.
  • Meert, G., Grégoire, J., & Noël, M.-P. (2009). Rational numbers: Componential versus holistic representation of fractions in a magnitude comparison task. The Quarterly Journal of Experimental Psychology, 62(8), 1598–1616. doi: 10.1080/17470210802511162
  • Meert, G., Grégoire, J., & Noël, M.-P. (2010). Comparing the magnitude of two fractions with common components: Which representations are used by 10- and 12-year-olds? Journal of Experimental Child Psychology, 107, 244–259. doi: 10.1016/j.jecp.2010.04.008
  • Moeller, K., Klein, E., Nuerk, H-C., & Willmes, K. (2013). Magnitude representation in sequential comparison of two-digit numbers is not holistic either. Cognitive Process, 14, 51–62. doi: 10.1007/s10339-012-0535-z
  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgments of numerical inequality. Nature, 215, 1519–1520. doi: 10.1038/2151519a0
  • Nuerk, H. -C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82(1), B25–B33.
  • Pinhas, M., Pothos, E. M., & Tzelgov, J. (2013). Zooming in and out from the mental number line: Evidence for a number range effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(3), 972–976.
  • Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83, 274–278. doi: 10.1037/h0028573
  • Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 1227–1238.
  • Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., … Chen, M. (2012). Early predictors of high school mathematics achievement. Psychological science, 23(7), 691–697. doi: 10.1177/0956797612440101
  • Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions: The new frontier for theories of numerical development. Trends in Cognitive Science, 17, 13–19. doi: 10.1016/j.tics.2012.11.004
  • Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62, 273–296. doi: 10.1016/j.cogpsych.2011.03.001
  • Treisman, A. M. (1969). Strategies and models of selective attention. Psychological Review, 76, 282–299. doi: 10.1037/h0027242
  • Varma, K., & Karl, S. R. (2013). Understanding decimal proportions: Discrete representations, parallel access, and privileged processing of zero. Cognitive Psychology, 66(3), 283–301. doi: 10.1016/j.cogpsych.2013.01.002
  • Verguts, T., & Van Opstal, F. (2005). Dissociation of the distance effect and size effect in one-digit numbers. Psychonomic Bulletin & Review, 12, 925–930. doi: 10.3758/BF03196787
  • Wong, B., & Szűcs, D. (2013). Single-digit Arabic numbers do not automatically activate magnitude representations in adults or in children: Evidence from the symbolic same–different task. Acta Psychologica, 144, 488–498. doi: 10.1016/j.actpsy.2013.08.006
  • Zhang, J., & Wang, H. (2005). The effect of external representations on numeric tasks. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 58(5), 817–838. doi: 10.1080/02724980443000340
  • Zhang, L., Chen, M., Lin, C. D., Szűcs, D. (2014). Flexible and unique representations of two-digit decimals. Acta Psychologica, 151, 89–97. doi: 10.1016/j.actpsy.2014.06.002
  • Zhang, L., Wang, Q., Lin, C. D., Ding, C., & Zhou, X. L. (2013). An ERP study of the processing of common and decimal fractions: How different they are. Plos one, 8(7), e6948724.
  • Zhang, L., Xin, Z. Q., Li, F. H., Ding, C., & Li, H. (2012). An ERP study on the processing of common fractions. Experimental Brain Research, 217(1), 25–34. doi: 10.1007/s00221-011-2969-4
  • Zhou, X. L., Chen, C. S., Chen, L., & Dong, Q. (2008). Holistic or compositional representation of two-digit numbers? Evidence from the distance, magnitude, and SNARC effects in a number-matching task. Cognition, 106(3), 1525–1536.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.