480
Views
28
CrossRef citations to date
0
Altmetric
Regular articles

EPS Mid-Career Award 2014

The control of attention in visual search: Cognitive and neural mechanisms

Pages 2437-2463 | Received 24 Mar 2015, Accepted 30 May 2015, Published online: 28 Jul 2015

REFERENCES

  • Allport, A. (1993). Attention and control: Have we been asking the wrong questions? A critical review of twenty-five years. In Attention and performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience (pp. 183–218). Cambridge, Mass: MIT Press.
  • Andersen, S. K., Hillyard, S. A., & Müller, M. M. (2008). Attention facilitates multiple stimulus features in parallel in human visual cortex. Current Biology, 18, 1006–1009. doi: 10.1016/j.cub.2008.06.030
  • Anderson, D. E., Vogel, E. K., & Awh, E. (2011). Precision in visual working memory reaches a stable plateau when individual item limits are exceeded. Journal of Neuroscience, 31, 1128–1138. doi: 10.1523/JNEUROSCI.4125-10.2011
  • Anderson, D. E., Vogel, E. K., & Awh, E. (2013). A common discrete resource for visual working memory and visual search. Psychological Science, 24, 929–938. doi: 10.1177/0956797612464380
  • Awh, E., Anllo-Vento, L., & Hillyard, S. A. (2000). The role of spatial selective attention in working memory for locations: Evidence from event-related potentials. Journal of Cognitive Neuroscience, 12, 840–847. doi: 10.1162/089892900562444
  • Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5, 119–126. doi: 10.1016/S1364-6613(00)01593-X
  • Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology: Human Perception and Performance, 24, 780–790.
  • Awh, E., Vogel, E. K., & Oh, S. H. (2006). Interactions between attention and working memory. Neuroscience, 139, 201–208. doi: 10.1016/j.neuroscience.2005.08.023
  • Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. Journal of Cognitive Neuroscience, 15, 600–609. doi: 10.1162/089892903321662976
  • Bichot, N. P., Rossi, A. F., & Desimone, R. (2005). Parallel and serial neural mechanisms for visual search in macaque area V4. Science, 308, 529–534. doi: 10.1126/science.1109676
  • Broadbent, D. E. (1958). Perception and communication. London: Pergamon Press.
  • Bundesen, C., Habekost, T., & Kyllingsbæk, S. (2005). A neural theory of visual attention: Bridging cognition and neurophysiology. Psychological Review, 112, 291–328. doi: 10.1037/0033-295X.112.2.291
  • Cavanagh, P., & Alvarez, G. A. (2005). Tracking multiple targets with multifocal attention. Trends in Cognitive Sciences, 9, 349–354. doi: 10.1016/j.tics.2005.05.009
  • Chawla, D., Rees, G., & Friston, K. J. (1999). The physiological basis of attentional modulation in extrastriate visual areas. Nature Neuroscience, 2, 671–676. doi: 10.1038/10230
  • Chelazzi, L., Duncan, J., Miller, E. K., & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80, 2918–2940.
  • Chun, M. M. (2000). Contextual cueing of visual attention. Trends in Cognitive Sciences, 4, 170–178. doi: 10.1016/S1364-6613(00)01476-5
  • Chun, M. M. (2011). Visual working memory as visual attention sustained internally over time. Neuropsychologia, 49, 1407–1409. doi: 10.1016/j.neuropsychologia.2011.01.029
  • Chun, M. M., & Johnson, M. K. (2011). Memory: Enduring traces of perceptual and reflective attention. Neuron, 72, 520–535. doi: 10.1016/j.neuron.2011.10.026
  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114. doi: 10.1017/S0140525X01003922
  • Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79, 1–37. doi: 10.1016/S0010-0277(00)00123-2
  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. doi: 10.1146/annurev.ne.18.030195.001205
  • Desimone, R., & Gross, C. G. (1979). Visual areas in the temporal cortex of the macaque. Brain Research, 178, 363–380. doi: 10.1016/0006-8993(79)90699-1
  • D'Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 362, 761–772. doi: 10.1098/rstb.2007.2086
  • Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36, 1827–1837. doi: 10.1016/0042-6989(95)00294-4
  • Downing, P. E. (2000). Interactions between visual working memory and selective attention. Psychological Science, 11, 467–473. doi: 10.1111/1467-9280.00290
  • Drew, T., & Vogel, E. K. (2008). Neural measures of individual differences in selecting and tracking multiple moving objects. Journal of Neuroscience, 28, 4183–4191. doi: 10.1523/JNEUROSCI.0556-08.2008
  • Driver, J. (2001). A selective review of selective attention research from the past century. British Journal of Psychology, 92, 53–78. doi: 10.1348/000712601162103
  • Driver, J., & Frith, C. (2000). Shifting baselines in attention research. Nature Reviews Neuroscience, 1, 147–148. doi: 10.1038/35039083
  • Duncan, J. (1980). The locus of interference in the perception of simultaneous stimuli. Psychological Review, 87, 272–300. doi: 10.1037/0033-295X.87.3.272
  • Duncan, J. (2006). EPS Mid-Career Award 2004: Brain mechanisms of attention. The Quarterly Journal of Experimental Psychology, 59, 2–27. doi: 10.1080/17470210500260674
  • Duncan, J., Humphreys, G., & Ward, R. (1997). Competitive brain activity in visual attention. Current Opinion in Neurobiology, 7, 255–261. doi: 10.1016/S0959-4388(97)80014-1
  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458. doi: 10.1037/0033-295X.96.3.433
  • Duncan, J., Ward, R., & Shapiro, K. (1994). Direct measurement of attentional dwell time in human vision. Nature, 369, 313–315. doi: 10.1038/369313a0
  • Eimer, M. (1994). “Sensory gating” as a mechanism for visuospatial orienting: Electrophysiological evidence from trial-by-trial cuing experiments. Perception & Psychophysics, 55, 667–675. doi: 10.3758/BF03211681
  • Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99, 225–234. doi: 10.1016/0013-4694(96)95711-9
  • Eimer, M. (2014). The neural basis of attentional control in visual search. Trends in Cognitive Sciences, 99, 225–234.
  • Eimer, M., & Grubert, A. (2014a). Spatial attention can be allocated rapidly and in parallel to new visual objects. Current Biology, 24, 193–198. doi: 10.1016/j.cub.2013.12.001
  • Eimer, M., & Grubert, A. (2014b). The gradual emergence of spatially selective target processing in visual search: From feature-specific to object-based attentional control. Journal of Experimental Psychology: Human Perception and Performance, 40, 1819–1831.
  • Ester, E. F., Serences, J. T., & Awh, E. (2009). Spatially global representations in human primary visual cortex during working memory maintenance. Journal of Neuroscience, 29, 15258–15265. doi: 10.1523/JNEUROSCI.4388-09.2009
  • Fannon, S. P., Saron, C. D., & Mangun, G. R. (2007). Baseline shifts do not predict attentional modulation of target processing during feature-based visual attention. Frontiers in Human Neuroscience, 1, 7–18. doi: 10.3389/neuro.01.1.1.001.2007
  • Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: A priority map for target selection. Trends in Cognitive Sciences, 10, 382–390. doi: 10.1016/j.tics.2006.06.011
  • Franconeri, S. L., Alvarez, G. A., & Cavanagh, P. (2013). Flexible cognitive resources: Competitive content maps for attention and memory. Trends in Cognitive Sciences, 17, 134–141. doi: 10.1016/j.tics.2013.01.010
  • Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173, 652–654. doi: 10.1126/science.173.3997.652
  • Ghorashi, S., Enns, J. T., Klein, R. M., & Di Lollo, V. (2010). Spatial selection and target identification are separable processes in visual search. Journal of Vision, 10, 1–12. doi: 10.1167/10.3.7
  • Giesbrecht, B., Weissman, D. H., Woldorff, M. G., & Mangun, G. R. (2006). Pre-target activity in visual cortex predicts behavioral performance on spatial and feature attention tasks. Brain Research, 1080, 63–72. doi: 10.1016/j.brainres.2005.09.068
  • Girelli, M., & Luck, S. J. (1997). Are the same attentional mechanisms used to detect visual search targets defined by color, orientation, and motion? Journal of Cognitive Neuroscience, 9, 238–253. doi: 10.1162/jocn.1997.9.2.238
  • Gottlieb, J. P., Kusunoki, M., & Goldberg, M. E. (1998). The representation of visual salience in monkey parietal cortex. Nature, 391, 481–484. doi: 10.1038/35135
  • Gratton, G., Corballis, P. M., & Jain, S. (1997). Hemispheric organization of visual memories. Journal of Cognitive Neuroscience, 9, 92–104. doi: 10.1162/jocn.1997.9.1.92
  • Grubert, A., & Eimer, M. (2013). Qualitative differences in the guidance of attention during single-color and multiple-color visual search: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 39, 1433–1442.
  • Grubert, A., & Eimer, M. (2015). Rapid parallel attentional target selection in single-colour and multiple-colour visual search. Journal of Experimental Psychology: Human Perception and Performance, 41, 86–101.
  • Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458, 632–635. doi: 10.1038/nature07832
  • Henderson, J. M. (2003). Human gaze control during real-world scene perception. Trends in Cognitive Sciences, 7, 498–504. doi: 10.1016/j.tics.2003.09.006
  • Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36, 791–804. doi: 10.1016/S0896-6273(02)01091-7
  • Hollingworth, A. (2009). Two forms of scene memory guide visual search: Memory for scene context and memory for the binding of target object to scene location. Visual Cognition, 17, 273–291. doi: 10.1080/13506280802193367
  • Hopf, J. M., Boelmans, K., Schoenfeld, M. A., Luck, S. J., & Heinze, H. J. (2004). Attention to features precedes attention to locations in visual search: Evidence from electromagnetic brain responses in humans. The Journal of Neuroscience, 24, 1822–1832. doi: 10.1523/JNEUROSCI.3564-03.2004
  • Hopf, J. M., Luck, S. J., Girelli, M., Hagner, T., Mangun, G. R., Scheich, H., et al. (2000). Neural sources of focused attention in visual search. Cerebral Cortex, 10, 1233–1241. doi: 10.1093/cercor/10.12.1233
  • Hornak, J., Duncan, J., & Gaffan, D. (2002). The role of the vertical meridian in visual memory for objects. Neuropsychologia, 40, 1873–1880. doi: 10.1016/S0028-3932(02)00070-2
  • Horowitz, T. S., Klieger, S. B., Fencsik, D. E., Yang, K. K., Alvarez, G. A., & Wolfe, J. M. (2007). Tracking unique objects. Perception & Psychophysics, 69, 172–184. doi: 10.3758/BF03193740
  • Horowitz, T. S., Wolfe, J. M., Alvarez, G. A., Cohen, M. A., & Kuzmova, Y. I. (2009). The speed of free will. The Quarterly Journal of Experimental Psychology, 62, 2262–2288. doi: 10.1080/17470210902732155
  • Houtkamp, R., & Roelfsema, P. R. (2009). Matching of visual input to only one item at any one time. Psychological Research Psychologische Forschung, 73, 317–326. doi: 10.1007/s00426-008-0157-3
  • Huang, L., & Pashler, H. (2007). A Boolean map theory of visual attention. Psychological Review, 114, 599–631. doi: 10.1037/0033-295X.114.3.599
  • Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2, 194–203. doi: 10.1038/35058500
  • James, W. (1890/1981). The principles of psychology. Volume 1. Cambridge, Mass.: Harvard University Press.
  • Katus, T., Grubert, A., & Eimer, M. (2014). Electrophysiological evidence for a sensory recruitment model of somatosensory working memory. Cerebral Cortex. Online publication; doi:10.1093/cercor/bhu153
  • Khayat, P. S., Spekreijse, H., & Roelfsema, P. R. (2006). Attention lights up new object representations before the old ones fade away. Journal of Neuroscience, 26, 138–142. doi: 10.1523/JNEUROSCI.2784-05.2006
  • Kiss, M., Grubert, A., & Eimer, M. (2013). Top-down task sets for combined features: Behavioural and electrophysiological evidence for two stages in attentional object selection. Attention, Perception, & Psychophysics, 75, 216–228. doi: 10.3758/s13414-012-0391-z
  • Kravitz, D. J., Kriegeskorte, N., & Baker, C. I. (2010). High-level visual object representations are constrained by position. Cerebral Cortex, 20, 2916–2925. doi: 10.1093/cercor/bhq042
  • Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. (2013). The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends in Cognitive Sciences, 17, 26–49. doi: 10.1016/j.tics.2012.10.011
  • Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77, 24–42.
  • Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20, 1000–1014.
  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. doi: 10.1038/36846
  • Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17, 391–400. doi: 10.1016/j.tics.2013.06.006
  • Mangun, G. R., & Hillyard, S. A. (1991). Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. Journal of Experimental Psychology: Human Perception and Performance, 17, 1057–1074.
  • Martinez-Trujillo, J. C., & Treue, S. (2004). Feature-based attention increases the selectivity of population responses in primate visual cortex. Current Biology, 14, 744–751. doi: 10.1016/j.cub.2004.04.028
  • Maunsell, J. H., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29, 317–322. doi: 10.1016/j.tins.2006.04.001
  • Mazza, V., & Caramazza, A. (2011). Temporal brain dynamics of multiple object processing: the flexibility of individuation. PLoS One, 6, e17453. doi:10.1371/journal.pone.0017453
  • Mazza, V., Turatto, M., Umiltà, C., & Eimer, M. (2007). Attentional selection and identification of visual objects are reflected by distinct electrophysiological responses. Experimental Brain Research, 181, 531–536. doi: 10.1007/s00221-007-1002-4
  • McMains, S. A., Fehd, H. M., Emmanouil, T. A., & Kastner, S. (2007). Mechanisms of feature-and space-based attention: Response modulation and baseline increases. Journal of Neurophysiology, 98, 2110–2121. doi: 10.1152/jn.00538.2007
  • Menneer, T., Cave, K. R., & Donnelly, N. (2009). The cost of search for multiple targets: Effects of practice and target similarity. Journal of Experimental Psychology: Applied, 15, 125–139.
  • Moore, T., & Armstrong, K. M. (2003). Selective gating of visual signals by microstimulation of frontal cortex. Nature, 421, 370–373. doi: 10.1038/nature01341
  • Moore, T., Armstrong, K. M., & Fallah, M. (2003). Visuomotor origins of covert spatial attention. Neuron, 40, 671–683. doi: 10.1016/S0896-6273(03)00716-5
  • Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229, 782–784. doi: 10.1126/science.4023713
  • Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception & Psychophysics, 57, 1–17. doi: 10.3758/BF03211845
  • Nako, R., Wu, R., & Eimer, M. (2014). Rapid guidance of visual search by object categories. Journal of Experimental Psychology: Human Perception and Performance, 40, 50–60.
  • Nako, R., Wu, R., Smith, T. J., & Eimer, M. (2014). Item and category-based attentional control during search for real-world objects: Can you find the pants among the pans? Journal of Experimental Psychology: Human Perception and Performance, 40, 1283–1288.
  • Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 411–421.
  • Olivers, C. N., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception and Performance, 32, 1243–1265.
  • Olivers, C. N. L., & Eimer, M. (2011). On the difference between working memory and attentional set. Neuropsychologia, 49, 1553–1558. doi: 10.1016/j.neuropsychologia.2010.11.033
  • Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15, 327–334.
  • Op De Beeck, H., & Vogels, R. (2000). Spatial sensitivity of macaque inferior temporal neurons. The Journal of Comparative Neurology, 426, 505–518. doi: 10.1002/1096-9861(20001030)426:4<505::AID-CNE1>3.0.CO;2-M
  • Peelen, M. V., Fei-Fei, L., & Kastner, S. (2009). Neural mechanisms of rapid natural scene categorization in human visual cortex. Nature, 460, 94–97. doi: 10.1038/nature08103
  • Peelen, M. V., & Kastner, S. (2011). A neural basis for real-world visual search in human occipitotemporal cortex. Proceedings of the National Academy of Sciences, 108, 12125–12130. doi: 10.1073/pnas.1101042108
  • Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160–174. doi: 10.1037/0096-3445.109.2.160
  • Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139, 23–38. doi: 10.1016/j.neuroscience.2005.06.005
  • Ranganath, C., Cohen, M. X., Dam, C., & D'Esposito, M. (2004). Inferior temporal, prefrontal, and hippocampal contributions to visual working memory maintenance and associative memory retrieval. Journal of Neuroscience, 24, 3917–3925. doi: 10.1523/JNEUROSCI.5053-03.2004
  • Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849–860.
  • Saenz, M., Buracas, G. T., & Boynton, G. M. (2002). Global effects of feature-based attention in human visual cortex. Nature Neuroscience, 5, 631–632. doi: 10.1038/nn876
  • Schall, J. D. (2004). On the role of frontal eye field in guiding attention and saccades. Vision Research, 44, 1453–1467. doi: 10.1016/j.visres.2003.10.025
  • Serences, J. T., & Boynton, G. M. (2007). Feature-based attentional modulations in the absence of direct visual stimulation. Neuron, 55, 301–312. doi: 10.1016/j.neuron.2007.06.015
  • Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31, 248–261.
  • Sreenivasan, K. K., Curtis, C. E., & D'Esposito, M. (2014). Revisiting the role of persistent neural activity during working memory. Trends in Cognitive Sciences, 18, 82–89. doi: 10.1016/j.tics.2013.12.001
  • Stokes, M., Thompson, R., Nobre, A. C., & Duncan, J. (2009). Shape-specific preparatory activity mediates attention to targets in human visual cortex. Proceedings of the National Academy of Sciences, 106, 19569–19574. doi: 10.1073/pnas.0905306106
  • Stokes, M. G., Kusunoki, M., Sigala, N., Nili, H., Gaffan, D., & Duncan, J. (2013). Dynamic coding for cognitive control in prefrontal cortex. Neuron, 78, 364–375. doi: 10.1016/j.neuron.2013.01.039
  • Stroud, M. J., Menneer, T., Cave, K. R., Donnelly, N., & Rayner, K. (2011). Search for multiple targets of different colours: Misguided eye movements reveal a reduction of colour selectivity. Applied Cognitive Psychology, 25, 971–982. doi: 10.1002/acp.1790
  • Theeuwes, J. (2010). Top–down and bottom–up control of visual selection. Acta Psychologica, 135, 77–99. doi: 10.1016/j.actpsy.2010.02.006
  • Thompson, K. G., & Bichot, N. P. (2005). A visual salience map in the primate frontal eye field. Progress in Brain Research, 147, 249–262. doi: 10.1016/S0079-6123(04)47019-8
  • Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751–754. doi: 10.1038/nature02466
  • Towler, J., Kelly, M., & Eimer, M. (2015). The focus of spatial attention determines the number and precision of face representations in working memory. Cerebral Cortex. doi:10.1093/cercor/bhv083
  • Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. The Quarterly Journal of Experimental Psychology, 40, 201–237. doi: 10.1080/02724988843000104
  • Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136. doi: 10.1016/0010-0285(80)90005-5
  • Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16, 459–478.
  • Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748–751. doi: 10.1038/nature02447
  • Warden, M. R., & Miller, E. K. (2010). Task-dependent changes in short-term memory in the prefrontal cortex. Journal of Neuroscience. 30, 15801–15810. doi: 10.1523/JNEUROSCI.1569-10.2010
  • Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 48–64. doi: 10.1037/0096-3445.131.1.48
  • Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin and Review, 1, 202–238. doi: 10.3758/BF03200774
  • Wolfe, J. M. (1998). What can 1 million trials tell us about visual search? Psychological Science, 9, 33–39. doi: 10.1111/1467-9280.00006
  • Wolfe, J. M. (2007). Guided search 4.0: Current progress with a model of visual search. In W. Gray (Ed.), Integrated models of cognitive systems (pp. 99–119). New York: Oxford.
  • Wolfe, J. M., & Horowitz, T. S. (2004). Opinion: What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5, 495–501. doi: 10.1038/nrn1411
  • Wyble, B., Bowman, H., & Nieuwenstein, M. (2009). The attentional blink provides episodic distinctiveness: Sparing at a cost. Journal of Experimental Psychology: Human Perception and Performance, 35, 787–807.
  • Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440, 91–95. doi: 10.1038/nature04262
  • Xu, Y., & Chun, M. M. (2009). Selecting and perceiving multiple visual objects. Trends in Cognitive Sciences, 13, 167–174. doi: 10.1016/j.tics.2009.01.008
  • Zelinsky, G. J., & Sheinberg, D. L. (1997). Eye movements during parallel–serial visual search. Journal of Experimental Psychology: Human Perception and Performance, 23, 244–262.
  • Zhang, W., & Luck, S. J. (2009). Feature-based attention modulates feedforward visual processing. Nature Neuroscience, 12, 24–25. doi: 10.1038/nn.2223

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.