571
Views
16
CrossRef citations to date
0
Altmetric
Regular articles

Prediction and uncertainty in associative learning: examining controlled and automatic components of learned attentional biases

, , &
Pages 1485-1503 | Received 11 Feb 2016, Accepted 05 May 2016, Published online: 07 Jun 2016

References

  • Anderson, B. A. (2013). A value-driven mechanism of attentional selection. Journal of Vision, 13, 1–16. doi:10.1167/13.3.7
  • Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437–443. doi:10.1016/j.tics.2012.06.010
  • Badre, D., Doll, B. B., Long, N. M., & Frank, M. J. (2012). Rostrolateral prefrontal cortex and individual differences in uncertainty-driven exploration. Neuron, 73, 595–607. doi:10.1016/j.neuron.2011.12.025
  • Beesley, T., Nguyen, K. P., Pearson, D., & Le Pelley, M. E. (2015). Uncertainty and predictiveness determine attention to cues during human associative learning. The Quarterly Journal of Experimental Psychology, 68, 2175–2199. doi:10.1080/17470218.2015.1009919
  • Bond, A. B., & Kamil, A. C. (1998). Apostatic selection by blue jays produces balanced polymorphism in virtual prey. Nature, 395, 594–596. doi:10.1038/26961
  • Chelazzi, L., Perlato, A., Santandrea, E., & Della Libera, C. (2013). Rewards teach visual selective attention. Vision Research, 85, 58–72. doi:10.1016/j.visres.2012.12.005
  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 215–229. doi:10.1038/nrn755
  • Correa, Á., Rao, A., & Nobre, A. C. (2009). Anticipating conflict facilitates controlled stimulus-response selection. Journal of Cognitive Neuroscience, 21, 1461–1472. doi:10.1162/jocn.2009.21136
  • Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8, 1704–1711. doi:10.1038/nn1560
  • Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441, 876–879. doi:10.1038/nature04766
  • Dayan, P., Kakade, S., & Montague, P. R. (2000). Learning and selective attention. Nature Neuroscience, 3, 1218–1223. doi:10.1038/81504
  • Esber, G. R., & Haselgrove, M. (2011). Reconciling the influence of predictiveness and uncertainty on stimulus salience: A model of attention in associative learning. Proceedings of the Royal Society B: Biological Sciences, 278, 2553–2561. doi:10.1098/rspb.2011.0836
  • Evans, J. S. B. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59, 255–78. doi:10.1146/annurev.psych.59.103006.093629
  • Favreau, M., & Segalowitz, N. S. (1983). Automatic and controlled processes in the first- and second-language reading of fluent bilinguals. Memory & Cognition, 11, 565–574. doi:10.3758/BF03198281
  • Feldmann-Wüstefeld, T., Uengoer, M., & Schubö, A. (2015). You see what you have learned. Evidence for an interrelation of associative learning and visual selective attention. Psychophysiology, 52, 1483–1497. doi:10.1111/psyp.12514
  • Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299, 1898–1902. doi:10.1126/science.1077349
  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044. doi:10.1037/0096-1523.18.4.1030
  • Gottlieb, J., Oudeyer, P-Y., Lopes, M., Baranes, A. (2013). Information-seeking, curiosity, and attention: Computational and neural mechanisms. Trends in Cognitive Sciences, 17, 585–593. doi:10.1016/j.tics.2013.09.001
  • Griffiths, O., Johnson, A. M., & Mitchell, C. J. (2011). Negative transfer in human associative learning. Psychological Science, 22, 1198–1204. doi:10.1177/0956797611419305
  • Haggard, P. (2008). Human volition: Towards a neuroscience of will. Nature Reviews Neuroscience, 9, 934–946. doi:10.1038/nrn2497
  • Haselgrove, M., Esber, G. R., Pearce, J. M., & Jones, P. M. (2010). Two kinds of attention in Pavlovian conditioning: Evidence for a hybrid model of learning. Journal of Experimental Psychology: Animal Behavior Processes, 36, 456–470. doi:10.1037/a0018528
  • Hogarth, L., Dickinson, A., Austin, A., Brown, C., & Duka, T. (2008). Attention and expectation in human predictive learning: The role of uncertainty. The Quarterly Journal of Experimental Psychology, 61, 1658–1668. doi:10.1080/17470210701643439
  • James, W. (1890/1983). The principles of psychology. Cambridge, MA: Harvard University Press.
  • Kattner, F. (2015). Transfer of absolute and relative predictiveness in human contingency learning. Learning & Behavior, 43, 32–43. doi:10.3758/s13420-014-0159-5
  • Kaye, H., & Pearce, J. M. (1984a). The strength of the orienting response during Pavlovian conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 10, 90–109. doi:10.1037/0097-7403.10.1.90
  • Kaye, H., & Pearce, J. M. (1984b). The strength of the orienting response during blocking. The Quarterly Journal of Experimental Psychology Section B, 36B, 131–144. doi:10.1080/14640748408402199
  • Kersten, A. W., Goldstone, R. L., & Schaffert, A. (1998). Two competing attentional mechanisms in category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 1437–1458. doi:10.1037/0278-7393.24.6.1437
  • Koivisto, M. (1997). Time course of semantic activation in the cerebral hemispheres. Neuropsychologia, 35, 497–504. doi:10.1016/S0028-3932(96)00100-5
  • Le Pelley, M. E. (2004). The role of associative history in models of associative learning: A selective review and a hybrid model. The Quarterly Journal of Experimental Psychology: Section B, 57, 193–43. doi:10.1080/02724990344000141
  • Le Pelley, M. E. (2010). Attention and human associative learning. In C. J. Mitchell & M. E. Le Pelley (Eds.), Attention and associative learning: From brain to behaviour (pp. 187–215). Oxford: Oxford University Press.
  • Le Pelley, M. E., Beesley, T., & Griffiths, O. (2011). Overt attention and predictiveness in human contingency learning. Journal of Experimental Psychology: Animal Behavior Processes, 37, 220–229. doi:10.1037/a0021384
  • Le Pelley, M. E., Beesley, T., & Griffiths, O. (in press). Associative learning and derived attention in humans. In R. A. Murphy & R. C. Honey (Eds.), The Wiley Blackwell handbook on the cognitive neuroscience of learning. Chichester: Wiley.
  • Le Pelley, M. E., & McLaren, I. P. L. (2003). Learned associability and associative change in human causal learning. The Quarterly Journal of Experimental Psychology: Section B, 56, 68–79. doi:10.1080/02724990244000179
  • Le Pelley, M. E., Mitchell, C. J., Beesley, T., George, D. N., & Wills, A. J. (in press). Attention and associative learning in humans: An integrative review. Psychological Bulletin.
  • Le Pelley, M. E., Pearson, D., Griffiths, O., & Beesley, T. (2015). When goals conflict with values: Counterproductive attentional and oculomotor capture by reward-related stimuli. Journal of Experimental Psychology: General, 144, 158–171. doi:10.1037/xge0000037
  • Le Pelley, M. E., Turnbull, M. N., Reimers, S. J., & Knipe, R. L. (2010). Learned predictiveness effects following single-cue training in humans. Learning & Behavior, 38, 126–144. doi:10.3758/LB.38.2.126
  • Le Pelley, M. E., Vadillo, M. A., & Luque, D. (2013). Learned predictiveness influences rapid attentional capture: Evidence from the dot probe task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 1888–1900. doi:10.1037/a0033700
  • Lochmann, T., & Wills, A. J. (2003). Predictive history in an allergy prediction task. In F. Schmalhofer, R. M. Young, & G. Katz (Eds.), Proceedings of EuroCogSci 03: The European cognitive science conference (pp. 217–222). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Logan, G. D., & Zbrodoff, N. J. (1982). Constraints on strategy construction in a speeded discrimination task. Journal of Experimental Psychology: Human Perception and Performance, 8, 502–520. doi:10.1037/0096-1523.8.4.502
  • Mackintosh, N. J. (1975). A theory of attention: Variations in the associability of stimuli with reinforcement. Psychological Review, 82, 276–298. doi:10.1037/h0076778
  • MacLeod, C., Mathews, A., & Tata, P. (1986). Attentional bias in emotional disorders. Journal of Abnormal Psychology, 95, 15–20. doi:10.1037/0021-843X.95.1.15
  • Mitchell, C. J., & Le Pelley, M. E. (Eds.). (2010). Attention and associative learning: From brain to behaviour. Oxford, UK: Oxford Universty Press.
  • Moors, A., & De Houwer, J. (2006). Automaticity: A theoretical and conceptual analysis. Psychological Bulletin, 132, 297–326. doi:10.1037/0033-2909.132.2.297
  • Morís, J., Cobos, P. L., Luque, D., & López, F. J. (2014). Associative repetition priming as a measure of human contingency learning: Evidence of forward and backward blocking. Journal of Experimental Psychology: General, 143, 77–93. doi:10.1037/a0030919
  • Neely, J. H. (1977). Semantic priming and retrieval from lexical memory: Roles of inhibitionless spreading activation and limited-capacity attention. Journal of Experimental Psychology: General, 106, 226–254. doi:10.1037/0096-3445.106.3.226
  • Neely, J. H. (1991). Semantic priming effects in visual word recognition: A selective review of correct findings and theory. In D. Besner & G. W. Humphreys (Eds.), Basic processing in reading: Visual word recognition (pp. 264–336). Hillsdale, NJ: Erlbaum.
  • Ortells, J. J., Fox, E., Noguera, C., & Abad, M. J. F. (2003). Repetition priming effects from attended vs. ignored single words in a semantic categorization task. Acta Psychologica, 114, 185–210. doi:10.1016/j.actpsy.2003.08.002
  • Osman, A., Kornblum, S., & Meyer, D. E. (1986). The point of no return in choice reaction time: Controlled and ballistic stages of response preparation. Journal of Experimental Psychology: Human Perception and Performance, 12, 243–258. doi:10.1037/0096-1523.12.3.243
  • Oudeyer, P. Y., Kaplan, F., & Hafner, V. V. (2007). Intrinsic motivation systems for autonomous mental development. IEEE Transactions on Evolutionary Computation, 11, 265–286. doi:10.1109/TEVC.2006.890271
  • Pavlov, I. P. (1927). Conditioned reflexes. Oxford: Oxford University Press.
  • Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87, 532–552. doi:10.1037/0033-295X.87.6.532
  • Pearce, J. M., & Kaye, H. (1985). Strength of the orienting response during inhibitory conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 11, 405–420. doi:10.1037/0097-7403.11.3.405
  • Pearce, J. M., & Mackintosh, N. J. (2010). Two theories of attention: A review and a possible integration. In C. J. Mitchell & M. E. Le Pelley (Eds.), Attention and associative learning: From brain to behaviour (pp. 11–40). Oxford: Oxford University Press.
  • Perlman, A., & Tzelgov, J. (2006). Interactions between encoding and retrieval in the domain of sequence-learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 118–130. doi:10.1037/0278-7393.32.1.118
  • Posner, M. I., Nissen, M. J., & Ogden, W. C. (1978). Attended and unattended processing modes: The role of set for spatial location. In H. L. Pick & I. J. Saltzman (Eds.), Modes of perceiving and processing information (pp. 137–157). Hillsdale, NJ: Erlbaum.
  • Pylkkänen, L., & Marantz, A. (2003). Tracking the time course of word recognition with MEG. Trends in Cognitive Sciences, 7, 187–189. doi:10.1016/S1364-6613(03)00092-5
  • Roesch, M. R., Esber, G. R., Li, J., Daw, N. D., & Schoenbaum, G. (2012). Surprise! Neural correlates of Pearce–Hall and Rescorla–Wagner coexist within the brain. European Journal of Neuroscience, 35, 1190–1200. doi:10.1111/j.1460-9568.2011.07986.x
  • Rushworth, M. F., & Behrens, T. E. (2008). Choice, uncertainty and value in prefrontal and cingulate cortex. Nature Neuroscience, 11, 389–397. doi:10.1038/nn2066
  • Shone, L. T., Harris, I. M., & Livesey, E. J. (2015). Automaticity and cognitive control in the learned predictiveness effect. Journal of Experimental Psychology: Animal Learning and Cognition, 41, 18–31. doi:10.1037/xan0000047
  • Swan, J. A., & Pearce, J. M. (1988). The orienting response as an index of stimulus associability in rats. Journal of Experimental Psychology: Animal Behavior Processes, 14, 292–301. doi:10.1037/0097-7403.14.3.292
  • Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51, 599–606. doi:10.3758/BF03211656
  • Wang, L., Yu, H., & Zhou, X. (2013). Interaction between value and perceptual salience in value-driven attentional capture. Journal of Vision, 13, 5. doi:10.1167/13.3.5
  • Wilson, P. N., Boumphrey, P., & Pearce, J. M. (1992). Restoration of the orienting response to a light by a change in its predictive accuracy. Quarterly Journal of Experimental Psychology, 44B, 17–36. doi:10.1080/02724999208250600
  • Yantis, S. (2000). Goal-directed and stimulus-driven determinants of attentional control. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVII (pp. 73–103). Cambridge, MA: MIT Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.