2,203
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Does the TPJ fit it all? Representational similarity analysis of different forms of mentalizing

ORCID Icon, , , , , & show all
Pages 428-440 | Received 12 May 2022, Published online: 30 Oct 2022

References

  • Abell, F., Happé, F., & Frith, U. (2000). Do triangles play tricks? Attribution of mental states to animated shapes in normal and abnormal development. Cognitive Development, 15(1), 1–16.
  • Andersson, J. L. R., Skare, S., & Ashburner, J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: Application to diffusion tensor imaging. Neuroimage, 20(2), 870–888. https://doi.org/10.1016/S1053-8119(03)00336-7
  • Arora, A., Weiss, B., Schurz, M., Aichhorn, M., Wieshofer, R. C., & Perner, J. (2015). Left inferior-parietal lobe activity in perspective tasks: Identity statements. Frontiers in Human Neuroscience, 9, 360.
  • Barch, D. M., Burgess, G. C., Harms, M. P., Petersen, S. E., Schlaggar, B. L., Corbetta, M., Glasser, M. F., Curtiss, S., Dixit, S., Feldt, C., Nolan, D., Bryant, E., Hartley, T., Footer, O., Bjork, J. M., Poldrack, R., Smith, S., Johansen-Berg, H., Snyder, A. Z., & WU-Minn HCP Consortium. (2013). Function in the human connectome: Task-fMRI and individual differences in behavior. Neuroimage, 80, 169–189.
  • Bardi, L., Desmet, C., Nijhof, A., Wiersema, J. R., & Brass, M. (2017). Brain activation for spontaneous and explicit false belief tasks overlaps: New fMRI evidence on belief processing and violation of expectation. Social Cognitive and Affective Neuroscience, 12(3), 391–400.
  • Biervoye, A., Dricot, L., Ivanoiu, A., & Samson, D. (2016). Impaired spontaneous belief inference following acquired damage to the left posterior temporoparietal junction. Social Cognitive and Affective Neuroscience, 11(10), 1513–1520.
  • Boccadoro, S., Cracco, E., Hudson, A. R., Bardi, L., Nijhof, A. D., Wiersema, J. R., Brass, M., & Mueller, S. C. (2019). Defining the neural correlates of spontaneous theory of mind (ToM): An fMRI multi-study investigation. Neuroimage, 203, 116193.
  • Carter, R. M., & Huettel, S. A. (2013). A nexus model of the temporal-parietal junction. Trends in Cognitive Sciences, 17(7), 328–336.
  • Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. Neuroimage, 50(3), 1148–1167.
  • Castelli, F., Frith, C., Happé, F., & Frith, U. (2002). Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain: A Journal of Neurology, 125(Pt 8), 1839–1849.
  • Castelli, F., Happé, F., Frith, U., & Frith, C. (2000). Movement and mind: A functional imaging study of perception and interpretation of complex intentional movement patterns. Neuroimage, 12(3), 314–325.
  • Centelles, L., Assaiante, C., Etchegoyhen, K., Bouvard, M., & Schmitz, C. (2013). From action to interaction: Exploring the contribution of body motion cues to social understanding in typical development and in autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(5), 1140–1150.
  • Centelles, L., Assaiante, C., Nazarian, B., Anton, J.-L., & Schmitz, C. (2011). Recruitment of both the mirror and the mentalizing networks when observing social interactions depicted by point-lights: A neuroimaging study. PLoS One, 6(1), e15749.
  • Csibra, G., Bíró, S., Koós, O., & Gergely, G. (2003). One-year-old infants use teleological representations of actions productively. Cognitive Science, 27(1), 111–133.
  • Dennett, D. (1978). Beliefs about beliefs [P&W, SR&B]. The Behavioral and Brain Sciences, 1(4), 568–570.
  • Diedrichsen, J., & Kriegeskorte, N. (2017). Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis. PLoS Computational Biology, 13(4), e1005508.
  • Dimsdale-Zucker, H. R., & Ranganath, C. (2019). Representational similarity analyses. In Manahan-Vaughan, Denise (Ed), Handbook of in vivo neural plasticity techniques (Vol. 28, pp. 509–525). Elsevier.
  • Dodell-Feder, D., Felix, S., Yung, M. G., & Hooker, C. I. (2016). Theory-of-mind-related neural activity for one’s romantic partner predicts partner well-being. Social Cognitive and Affective Neuroscience, 11(4), 593–603.
  • Dodell-Feder, D., Koster-Hale, J., Bedny, M., & Saxe, R. (2011). fMRI item analysis in a theory of mind task. Neuroimage, 55(2), 705–712.
  • Fehlbaum, L. V., Borbás, R., Paul, K., Eickhoff, S. B., & Raschle, N. M. (2022). Early and late neural correlates of mentalizing: ALE meta-analyses in adults, children and adolescents. Social Cognitive and Affective Neuroscience, 17(4), 351–366.
  • Flynn, E. (2007). The role of inhibitory control in false belief understanding. Infant and Child Development, 16(1), 53–69.
  • Friedman, N. P., & Robbins, T. W. (2022). The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology, 47(1), 72–89.
  • Frith, C. D., & Frith, U. (2008). Implicit and explicit processes in social cognition. Neuron, 60(3), 503–510.
  • Gallagher, H. L., & Frith, C. D. (2003). Functional imaging of “theory of mind. Trends in Cognitive Sciences, 7(2), 77–83.
  • Gobbini, M. I., Koralek, A. C., Bryan, R. E., Montgomery, K. J., & Haxby, J. V. (2007). Two takes on the social brain: A comparison of theory of mind tasks. Journal of Cognitive Neuroscience, 19(11), 1803–1814.
  • Happé, F., Cook, J. L., & Bird, G. (2017). The structure of social cognition: In(ter)dependence of sociocognitive processes. Annual Review of Psychology, 68, 243–267.
  • Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: The early beginnings. Neuroimage, 62(2), 852–855.
  • Jacoby, N., Bruneau, E., Koster-Hale, J., & Saxe, R. (2016). Localizing pain matrix and theory of mind networks with both verbal and non-verbal stimuli. Neuroimage, 126, 39–48.
  • Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2), 201–211.
  • Koster-Hale, J., Richardson, H., Velez, N., Asaba, M., Young, L., & Saxe, R. (2017). Mentalizing regions represent distributed, continuous, and abstract dimensions of others’ beliefs. Neuroimage, 161, 9–18.
  • Koul, A., Cavallo, A., Cauda, F., Costa, T., Diano, M., Pontil, M., & Becchio, C. (2018). Action observation areas represent intentions from subtle kinematic features. Cerebral Cortex, 28(7), 2647–2654.
  • Kovács, Á. M., Téglás, E., & Endress, A. D. (2010). The social sense: Susceptibility to others’ beliefs in human infants and adults. Science, 330(6012), 1830–1834.
  • Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis - connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 4.
  • McCleery, J. P., Surtees, A. D. R., Graham, K. A., Richards, J. E., & Apperly, I. A. (2011). The neural and cognitive time course of theory of mind. The Journal of Neuroscience, 31(36), 12849–12854.
  • Moessnang, C., Baumeister, S., Tillmann, J., Goyard, D., Charman, T., Ambrosino, S., Baron-Cohen, S., Beckmann, C., Bölte, S., Bours, C., Crawley, D., Dell’Acqua, F., Durston, S., Ecker, C., Frouin, V., Hayward, H., Holt, R., Johnson, M., Jones, E., & EU-AIMS LEAP group. (2020). Social brain activation during mentalizing in a large autism cohort: The longitudinal European Autism project. Molecular Autism, 11(1), 17.
  • Molenberghs, P., Hayward, L., Mattingley, J. B., & Cunnington, R. (2012). Activation patterns during action observation are modulated by context in mirror system areas. Neuroimage, 59(1), 608–615.
  • Molenberghs, P., Johnson, H., Henry, J. D., & Mattingley, J. B. (2016). Understanding the minds of others: A neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 65, 276–291.
  • Mur, M., Bandettini, P. A., & Kriegeskorte, N. (2009). Revealing representational content with pattern-information fMri–an introductory guide. Social Cognitive and Affective Neuroscience, 4(1), 101–109.
  • Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., & Kriegeskorte, N. (2014). A toolbox for representational similarity analysis. PLoS Computational Biology, 10(4), e1003553.
  • Ogawa, A., & Kameda, T. (2019). Dissociable roles of left and right temporoparietal junction in strategic competitive interaction. Social Cognitive and Affective Neuroscience, 14(10), 1037–1048.
  • Okruszek, Ł. (2018). It is not just in faces! Processing of emotion and intention from biological motion in psychiatric disorders. Frontiers in Human Neuroscience, 12, 48.
  • Okruszek, Ł., & Chrustowicz, M. (2020). Social perception and interaction database-A novel tool to study social cognitive processes with point-light displays. Frontiers in Psychiatry, 11, 123.
  • Okruszek, Ł., Haman, M., Kalinowski, K., Talarowska, M., Becchio, C., & Manera, V. (2015). Impaired recognition of communicative interactions from biological motion in schizophrenia. PLoS One, 10(2), e0116793.
  • Perner, J., Aichhorn, M., Kronbichler, M., Staffen, W., & Ladurner, G. (2006). Thinking of mental and other representations: The roles of left and right temporo-parietal junction. Social Neuroscience, 1(3–4), 245–258.
  • Perner, J., & Roessler, J. (2012). From infants’ to children’s appreciation of belief. Trends in Cognitive Sciences, 16(10), 519–525.
  • Phillips, A. T., & Wellman, H. M. (2005). Infants’ understanding of object-directed action. Cognition, 98(2), 137–155.
  • Popal, H., Wang, Y., & Olson, I. R. (2019). A guide to representational similarity analysis for social neuroscience. Social Cognitive and Affective Neuroscience, 14(11), 1243–1253.
  • Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? The Behavioral and Brain Sciences, 1(4), 515–526.
  • Press, C., Weiskopf, N., & Kilner, J. M. (2012). Dissociable roles of human inferior frontal gyrus during action execution and observation. Neuroimage, 60(3), 1671–1677.
  • Quesque, F., & Rossetti, Y. (2020). What do theory-of-mind tasks actually measure? Theory and practice. Perspectives on Psychological Science, 15(2), 384–396.
  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.
  • RStudio Team. (2015). RStudio: Integrated development environment for R. http://www.rstudio.com/
  • Samson, D., Apperly, I. A., Chiavarino, C., & Humphreys, G. W. (2004). Left temporoparietal junction is necessary for representing someone else’s belief. Nature Neuroscience, 7(5), 499–500.
  • Santiesteban, I., Banissy, M. J., Catmur, C., & Bird, G. (2012). Enhancing social ability by stimulating right temporoparietal junction. Current Biology, 22(23), 2274–2277.
  • Saxe, R. (2006). Why and how to study theory of mind with fMRI. Brain Research, 1079(1), 57–65.
  • Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. Neuroimage, 19(4), 1835–1842.
  • Schaafsma, S. M., Pfaff, D. W., Spunt, R. P., & Adolphs, R. (2015). Deconstructing and reconstructing theory of mind. Trends in Cognitive Sciences, 19(2), 65–72.
  • Schurz, M., Aichhorn, M., Martin, A., & Perner, J. (2013). Common brain areas engaged in false belief reasoning and visual perspective taking: A meta-analysis of functional brain imaging studies. Frontiers in Human Neuroscience, 7, 712.
  • Schurz, M., Maliske, L., & Kanske, P. (2020). Cross-network interactions in social cognition: A review of findings on task related brain activation and connectivity. Cortex, 130, 142–157.
  • Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience and Biobehavioral Reviews, 42, 9–34.
  • Schuwerk, T., Döhnel, K., Sodian, B., Keck, I. R., Rupprecht, R., & Sommer, M. (2014). Functional activity and effective connectivity of the posterior medial prefrontal cortex during processing of incongruent mental states. Human Brain Mapping, 35(7), 2950–2965.
  • Schuwerk, T., Schurz, M., Müller, F., Rupprecht, R., & Sommer, M. (2017). The rTpj’s overarching cognitive function in networks for attention and theory of mind. Social Cognitive and Affective Neuroscience, 12(1), 157–168.
  • Spunt, R. P., & Lieberman, M. D. (2014). Automaticity, control, and the social brain. In J. W. Sherman, B. Gawronski, & Y. Trope (Eds.), Dual-process theories of the social mind (pp. 279–296). The Guilford Press.
  • Tamir, D. I., Thornton, M. A., Contreras, J. M., & Mitchell, J. P. (2016). Neural evidence that three dimensions organize mental state representation: Rationality, social impact, and valence. Proceedings of the National Academy of Sciences of the United States of America, 113(1), 194–199.
  • Thornton, M. A., & Mitchell, J. P. (2018). Theories of person perception predict patterns of neural activity during mentalizing. Cerebral Cortex, 28(10), 3505–3520.
  • Thye, M. D., Ammons, C. J., Murdaugh, D. L., & Kana, R. K. (2018). Differential recruitment of theory of mind brain network across three tasks: An independent component analysis. Behavioural Brain Research, 347, 385–393.
  • Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. Neuroimage, 48(3), 564–584.
  • Warnell, K. R., & Redcay, E. (2019). Minimal coherence among varied theory of mind measures in childhood and adulthood. Cognition, 191, 103997.
  • Wellman, H. M. (2018). Theory of mind: The state of the art. The European Journal of Developmental Psychology, 15(6), 728–755.
  • White, S. J., Coniston, D., Rogers, R., & Frith, U. (2011). Developing the Frith-Happé animations: A quick and objective test of theory of mind for adults with autism. Autism Research : Official Journal of the International Society for Autism Research, 4(2), 149–154.
  • Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition, 13(1), 103–128.